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Abstract. A one-dimensional  model of electron  multiplication in a  gas is considered by using 
a  system of moments  equations.  An  approximate  expression for the first Townsend  ionisation 
coefficient is derived  and  found  to  be  in  good  agreement  with  the  experimental  data  for  a 
variety of atomic  gases. 

1. Introduction 

Consider  a  stationary,  spatial  electron  current growth in a gas in a  non-uniform  electric 
field E = E(x)b, .  Assume  that  current  densityjo is initiated  at  plane x = 0. As a  result of 
the  acceleration of the  electrons in the  electric field and  a  subsequent  avalanche ionis- 
ation,  the  current  increases  withx  and  can  be  represented  byj(x) = P(x) j , .  The  problem 
of the  evaluation of P(x) in strong  uniform fields was studied on the basis of a  one- 
dimensional  model  (Friedland 1974, Friedland  and  Kagan 1982, 1983) in which the 
electrons  were allowed to move  strictly in the  direction of the field. The energy  losses in 
elastic  collisions were  neglected  and it  was  assumed  that new electrons  had  been  created 
in ionising  collisions,  having  identical  initial  energy.  Also,  therefore,  because of the 
uniformity of the  electric field, it was concluded  that  any  average  characteristic of a  test 
electron,  created in a gas at X ’ ,  was a  function of the  distance x-x’ only.  For  example, 
the  average  energy tii of the  test  electron  and  the  average  number of ionisations &dx  
caused by the  electron in the  interval ( x ,  x + dx)  are both  functions of x-x’ only. Since 
the growing current in the discharge  comprises  an  ensemble of test electrons,  each with 
a  similar average  history,  one  can  relate P ( x )  to &. It was found  indeed  (Friedland 1974) 
that 

d P  
dx  ax 
- = - P(x‘) 

d&(X - X ’ )  
dx‘ P(0)  = 1. 

Thus  the  total  electron  current  can be  expressed by a single test  electron  average 
characteristic &(x - X ’ )  which can be  conveniently  found by using, for  example,  the 
Monte  Carlo  simulation  method.  Alternatively  (Friedland  and  Kagan 1983) the  Laplace 
transformation of (1) yields 

P,$ = l/S(l - &$) (2) 

where PS and a, are  Laplace images  of P ( x )  and &(x) respectively.  Therefore, if c& is 
known,  the  inverse  Laplace  transformation of (2)  yields P(x).  Unfortunately, it is 
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impossible to  derive  an  analytic  form of for  an  arbitrary  dependence of the  inelastic 
collision  cross  sections on  the  electron  energy E .  Nevertheless, by assuming that  the 
ionisation  cross  section rises linearly  for  small  values of E and  becomes  a  constant  at 
E - x ,  expressions  for a; are  reduced  for  the limiting  cases of low and high values of the 
strength of the  electric field E .  The  intermediate  range of E has  been  described by using 
simple interpolation  formulae  for as in the  Laplace  space.  This  procedure yields a  good 
agreement with the  experimental  results  for  the  current  growth in a  variety of different 
gases. The  form of the  interpolation,  however. it not  unique which is a  disadvantage of 
the  method. 

In the  present  study we  will consider  the  intermediate  range of E without  employing 
the  above-mentioned  interpolation  procedure.  We will adopt  the  one-dimensional  scat- 
tering  model  and use the  Boltzmann  equation  for  the  conventional velocity distribution 
function f (  u .  x )  of the  electrons in the  avalanche (13 2). Instead of solving forf(  u ,  x ) ,  we 
will derive  and solve  a  system of equations  for  the  moments  off.  The  exact  solution is 
possible (13 3) if one  assumes  a  linear  dependence of the inelastic  cross  sections on  the 
electron  energy E .  The case of more  intense  electric fields will be  considered in 8 4 by 
including  small quadratic  terms in the  energy  dependence of the cross  sections  and 
solving  a truncated system of moments  equations. 

2. The Boltzmann equation and moments equations 

We  adopt  here  a  one-dimensional  electron  scattering  model  and define 

f ( x .  U )  du  = f [ x .  (2~/m)’”] du  = F ( x ,  E )  du 

where E = mu2/2 as  the density of those  electrons in the discharge  at  point x, which are 
characterised by velocities in the  interval ( U ,  U + d U ) .  The distribution F(x,  E )  obeys  the 
Boltzmann  equation, which  in our case  can be  written in the following form: 

+ mu d u p  lox F ( x ,  E ” ) Q ~ , ( E ” ) ~ ( E ” .  E)u”du” 

+ mu d u p  lox F ( x ,  E ” ) Q ~ ~ ( E ” ) ~ ( E ” ,  E)u”du” - F ( x ,  E ) ~ Q ~ ~ ( E ) U  du  (3) 

wherep is the  pressure of the  gas, E’ = E + and Q, and Q, are  the  total cross  sections 
at  normal  conditions ( p  = 1 Torr, T = 273 “C). In  reducing  the collision term (3) we 
combined all the  electron-atom  excitation  processes  (the  total cross  section Q,, ( E ) )  to 
define an  average  excitation  energy  and  assumed  that 

Q ~ ( E >  = 0 E <  E l .  (4) 

Similarly Qio in (3) is the  total  ionisation cross section,  and if we  define E~ as  the  average 
energy  loss in ionisation we assume 

Q i o ( E )  = 0 E < E 2 .  ( 5 )  

In  equation (3), the  function is defined so that v(&”, E )  d E is the  probability of an  event 
in which the  energy of the  secondary  electron  in  the  ionisation  process  belongs  to  the 
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interval ( E ,  E + dE) if the  primary  electron  has  energy E”. Similarly, Q)( E”, E )  d E describes 
the  probability of the energy of the  primary  electron  after  the  ionisation belonging to 
the interval ( E ,  E + d E )  if initially  this energy was E”. Obviously 

V(&”, E )  = Q)(&”, E )  = 0 E > E“ - Ei ( 6 )  

and 
8-  E i  ? - E ,  

v(&” ,  E )  d E = Q)(&”, E )  dE = 1 

where E, is the  ionisation  energy of the gas. 
Moreover, by definition, 

V(&”, E )  = Q)(&”, E” - E 2  - E ) .  (8) 

Note  that since v(&”, E )  de = v(&”,  &)mud U ,  the  probability of the  event in which the 
secondary  electron  has u = 0 vanishes.  Similar  conditions  also  characterise  the  primary 
electron.  Thus,  ionisation  events  do  not  contribute  the  distribution  functionf(x, U )  to 
the  interval  d U around u = 0. Taking  (4)  into  account, we also  conclude  that  excitation 
events  also do  not increase  the  number of electrons in this  interval.  Therefore, finally, 

f(x, 0) = 0 x f 0  (9) 
and,  as  usual, 

f(x, x )  = 0. (10) 

Direct  numerical  solution of (3)  for f is rather  complex. On the  other  hand, in 
experiments,  one usually  studies  various moments of the  distribution  function such  as 
the  particle  current  density j (x )  energy flux E(x) etc.  These  quantities  are  related  to 
f ( x ,  U )  via 

j ( x )  = 1% uF(x,  E )  du  
0 

E(x) = E U F ( X ,  E )  du  IoX 
and  obey  rather  simple  moments  equations.  Indeed, by integrating  (3) with respect to 
U ,  after  some  simple  algebra, we get 

d j /dx = Vi ( x )  (12) 

where 

Equation (11)  defines the  average flux of the  energy E and  not  the  average  quantities 
themselves.  Equation (13)  defines  the  number of ionisations  in the units of volume  per 
second.  Equation (12)  is,  in fact,  the  continuityequation  for  our  problem  and ci(x) gives 
the  average  ionisation  frequency in  unit  volume. Next, on multiplying  (3) by E and  again 
intergrating the resulting  equation with  respect  to U and using the  properties of Q) and 
v ,  we get the  second-moment  equation 

dE/dx = eEj - E ~ V , ( X )  - &2Vi(x) (14) 

D6-H 
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where 

Equation (14)  describes  the  energy  balance in the growing current  and ISr is the  average 
number of excitations  per  second in unit  volume. The solution of (12) and (14) requires 
the  knowledge of Ci(x) and Cr(x). The next  two  sections  describe  two  possible approaches 
in approximating  these  functions,  thus allowing the solution of the  moments  equations. 

3. Linear energy dependence of inelastic cross sections 

Assume,  at this point,  that  the ionisation  and the  total excitation cross sections depend 
linearly on  the  electron  energy 

Qio(E) = Q ~ O ( E )  = k~ (16) 
We will discuss this  assumption  at  the  end of this  section.  Then 

Ci(X) = paE li,(x) = pkE (17) 

and  equations (12) and (14) reduce  to  the following complete  set of equations: 

dj ldx = paE (18) 

dE/dx = eE(x)j - p ( ~ ~ k  + E , u ) ~ .  (19) 

The electron flux j thus satisfies the following second-order  ordinary  differential  equation 

d 2j/dx2 + k + E ~ U )  dj/dx - epaE(x)j = 0. (20) 

Assume now that  E(x) = E = constant.  Then  the solution of (20) is 

j(x) = Cl eelx + C2 e"2" (21) 

where  are  the  roots of the  quadratic  equation 

or 

Obviously, a1 > 0, a2 < 0 and /az/  > al. The constants Cl and C2 in (21) are  found  from 
the initial conditionsj(0) = j o  and El,,0 = (l/pa)dj/dx = 0. This yields 

c1 = a l l ' o / ( a I  - ad c2 = & 2 j 0 / @ 2  - & l ) .  (24) 

iz(x) = (joaI/a1 - 4 exp[(al/p>pxI (25) 

At large enough values of px (21) thus  becomes 

where al is the  conventional first Townsend  ionisation  coefficient. 
The  asymptotic (large-px)  expression  for E(x) can now be  found  from (18): 

&=(X) = [(ioal/P)/a(al - a211 exp(a1x) (26) 
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and,  therefore,  the  asymptotic  value of the  average  energy  per  particle in the flux 
becomes 

E o  = E x / j x  = q / p a .  (27)  

Let  us  now discuss the validity of the  linear  approximation,  for  the inelastic  cross 
sections.  This  approximation is always valid at relatively  small  electron  energies. As an 
example we show Qio( E )  and Q,( E )  for A in  figure 1. In  table 1 we also present  the values 
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Figure 1 .  The  cross  section of ionisation  and  total  cross  section of inelastic  collisions for 
A with a,, = 0.528 X 10-*cm. Full curves:  experimental  results:  broken  lines:  the  linear 
approximation;  full  circles:  the  quadratic  approximation. 

Table 1. Constants  characterising  ionisation  and  inelastic  efficiencies  in  various  gases. 

a k C 

((cm  Torr  eV)-l) ((cm  Torr "V)") ((cm  Torr)"eV2)  ((cm  Torr)"eV-2)  (ev)  (ev) 
C l  E I  E :  

Ne 0.047  0.027  1.8 x 10-4 2.8 x lo-' 
A 0.53 

16.5  21.6 

Kr  0.68  0.26 8.5 X 10-3 4.5 x 10" 9.9 14.0 
Xe 1.13  0.26  0.017 2.9 X 10-3 8.3  12.1 

0.21  7.3 X 10-3 3.7 x 10" 11.5  15.7 
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Figure 2. The first Townsend  ionisation  coefficient  versus E / p  for Ne. Full curves:  exper- 
imental  results: full squares:  the  linear  approximation; full circles: the  quadratic 
approximation. 
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Figure 3. The first Townsend  ionisation  coefficient  versus E / p  for A. Full curves:  exper- 
imental  results: full squares:  the  linear  approximation; full circles:  the  quadratic 
approximation. 

of a and k (initial  slopes of the  ionisation  and  total  excitation cross  sections),  for  a  variety 
of inert gases (der  Heer et a1 1979). In  the  same  table we also  show the values of and 
E?.  We  used  the  excitation  energy of the lowest  level of an  atom  and  the  ionisation  energy 
as an  estimate  for  and E ~ .  

The first Townsend  ionisation coefficient a,/p, found  from  equation (23) by using 
the  data of table 1 for  Ne, A,  Kr  and  Xe is shown  in figures 2-5. One can  see in these 
figures that, in general,  the  agreement  between  the  theory  and  experiment  at low values 
of E / p  is quite  good.  Nevertheless  at high values of E / p  there is a  systematic  discrepancy 
between  the  computed  and  experimental  curves.  This  discrepancy is due  to  the violation 
of the  linear  approximation of the cross  sections  at  large  average  energies,  characteristic 
to  the  regime of high values of E / p .  

In  the following  section we  will improve  the  theory by adding  a  quadratic  correction 
to  the  energy  dependence of the cross  section. 
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Figure 4. The first Townsend  ionisation  coefficient  versus E / p  for Kr. Full curves:  exper- 
imental  results: full squares:  the  linear  approximation;  full  circles:  the  quadratic 
approximation. 
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Figure 5.  The first Townsend  ionisation  coefficient  versus E / p  for Xe.  Full curves:  exper- 
imental  results;  full  squares:  the  linear  approximation;  full  circles:  the  quadratic 
approximation. 

4. Quadratic approximation of the inelastic cross sections 

Assume,  now,  that in contrast to (16) 

Q,, = a& - Q,, = k& - 

The values of c and c l  that  are  obtained  from  the  experimental values (de Heer 1979) 
can  be found in table 1. Figure 1 for A shows that in a certain  energy  range  the use of 
(28) improves  the  agreement with the  experimental cross sections. Similarly to (17) we 
now have: 

pi = paE - pc&* Yr = pkE - pc1 e2 = 1 .c2F(x, &)U du. 
- - 
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By substituting  these  expressions  into (18) and  (19), we get 

dj ldx = p a f  - pc? (30) 

dE/dx = eEj(x) - p ( e l l i  + E2a)P + p ( E 1 c l  + E ~ C ? ) ? .  (31) 

We  can  see  that  equations (30) and  (31)  are  not sufficient for solving the  problem in a 
quadratic  approximation. To proceed, we have  to  derive  an  equation  for 3. The  latter 
is found  from  the  kinetic  equation  (3) by multiplying it by and  integrating with respect 
to U. The  resulting  equation involves  integrals which can be  evaluated  only if the 
scattering  function v( E’ ,  E )  is known.  We will assume, in agreement with the  experiment, 
that most of the  secondary  electrons in the  ionisation  process  have  energies much  lower 
than  that of the  primary  electron.  and  consequently we can approximate v(&”, E )  by the 
&function a(&). This  yields the following equation  for 2: 
d?/dx = (2eE  +pEia  +peik)C - p [ 2 ( ~ , k  + &:a)  + E ~ C ,  + $c]Z 

+ 2 p ( e , c ,  + E 2 C 2 ) € 3 .  
- 

(32) 

This equation involves the higher moment 7 so the system of moments  equations is not 
closed.  Nevertheless  the following arguments allows us to  perform  the  closure.  The 
quadratic  approximation  for  the cross  sections is only valid if the  quadratic  terms  are 
small compared with the  linear  terms  (otherwise we should  continue  the  expansion  and 
include  cubic  terms  etc).  Therefore,  naturally in using (29). we assumed  that 

- 
C E :  a s  c ,  E: 4 kc.  (33) 

Thus.  to  the lowest significant order,  equation (32)  can be solved by taking c = c l  = 0. 
In this approximation  our system of moments  equations  becomes  closed. 

- 

Defining a new variable z = p x  and  letting 

y = eE/p  A ,  = Elk + &?a A, = € 1 ~ 1  + € ? C  

A 3  = € ; a  + Eik A ,  = 2A1 (34) 

equations (30)-(32)  become 
- 

dj/dz = a f  - CE’ 

which  must be  solved  subject  to  the following  initial  conditions: 
- 

j (0)  = i o  P(0) = 0 & y o )  = 0. (38) 
We  seek  solutions of the  form BeBZ  of (35)-(37).  This  yields  the  characteristic  equation 
for p 

(A4 + P>[P(P + A) - ay1 + (2Y + A,)(CY - B A d  = 0. (39) 

The second  term in (39) is of an  order of magnitude  proportional  to c (or cl). In  the  zero 
approximation  (the  linear  approximation of the cross  sections) we therefore neglect  this 
term.  Then /3 satisfies a  quadratic  equation 

/?(p + A )  - a y  = 0 (40) 
which, of course. coincides  with  (22)  and  its  largest root Plo, having the  meaning  of  the 
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first Townsend  ionisation  coefficient, in new notation  becomes 

Plo = - A 1 / 2  + [ ( A , / 2 ) 2  + ay]1/2.  (41) 
In  the first order,  taking  into  account  the  terms of order c in (39), we rewrite (29) 

P(P + A , )  - ay + [(2Y + A3)/(A4 + P1o)l(cr - PlOA2) = 0. (42) 
By using the  notation A = ( 2 y  + A 3 ) ( c y  - Pld2)/(A4 + &), the  solution of (39), in 
the first order  then  becomes 

P ,  = - A 1 / 2  + [ ( A , / 2 ) 2  + ay - AI1/*. (43) 

The numerical  values of P l / p  found by using equation (43) are  compared in figures 2-5 
with the  experimental results  for the first Townsend  ionisation coefficient (Brown 1959, 
Fletcher  and  Davies 1963). 

The  comparison  for  Ne, A,  Kr  and  Xe  shows  an  excellent  agreement with the 
experiment  for all values of E / p .  The validity of condition  (33)  used in the  described 
perturbation  scheme  depends  on  the smallness of the ratio 

q = cE2/aE. 
- 

Asymptotically the  moments  equations (35)-(37) yield 

= ( c / a ) ( 2 y  + A 3 ) / ( P 1 0  

which,  as  can  be checked,  remains reasonably small in the  entire  range of the  values of 
ElP. 

5. Discussion 

We now briefly discuss the peculiarities of the  present  calculation.  The  Townsend 
coefficient (Y in inert gases was calculated  previously by a  variety of other  methods, such 
as the  direct  solution of the  Boltzmann  equation  or by means of the  Monte  Carlo 
computer  simulation  (see,  for  example,  Kucukarpaci et a1 (1981),  Taniguchi et a1 (1978)). 
The  present  study  presents  a  different  approach  to  the  problem which yields an analytic 
expression of a / p  in a  large  range of the values of E / p  and is in good  agreement with the 
experiment  as  can  be  seen in figures 2-5. 

The validity of the  theory in such  a  large  range of E / p  for  a  variety of gases needs  an 
explanation.  The  reason  for this is the fact that in spite of the fast acceleration of the 
electrons in the cases of extreme fields, the  number of new slow electrons  created in 
ionisations is sufficiently large.  Therefore  the bulk of the  electrons in the  avalanche is 
characterised by relatively  small  energies, usually below the  energy of the maximum in 
the inelastic  cross  sections E,. Thus  the  linear  (or  quadratic)  approximation of the cross 
sections  remains  valid. On  the  other  hand  the validity range is limited  from below by 
values of E / p  for which the  one-dimensional  scattering  model  becomes wrong and  from 
above by such  values of E / p  for which an  electron is accelerated to energies  larger  than 
E ,  and  creates  on  average,  during its acceleration  time, less than  one new electron.  For 
these  values of E / p ,  the  runaway effects  become important  and  our  approximation  for 
the cross  section  becomes  invalid.  Within  these  limits  the  theory  described  should  be 
applicable  also  in  cases of molecular  gases.  Consideration of these  cases,  however, was 
beyond  the  scope of the  present  work. 
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