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The formation and control of stable multiphase space hole structures and the associated Bernstein–
Greene–Kruskal modes in trapped pure ion plasmas driven by an oscillating, chirped frequency
perturbation are considered. The holes are formed by passing kinetic bounce resonances �d

=n�u /L in the system, u and L are the longitudinal velocity of the plasma species and the length
of the trap, and n is the multiplicity of the resonance �the number of the phase space holes�. An
adiabatic, quasi-one-dimensional water bag model of this excitation for an initially flat-top
distribution of the ions in the trap is suggested, based on the isomorphism with a related problem in
infinite quasineutral plasmas. A multiwater bag approach allows us to generalize the theory to other
initial distributions. Numerical simulations yield a very good agreement with the theory until the
coherent phase space structure is destroyed due to the resonance overlap when the decreasing
driving frequency passes a critical value estimated within the water bag theory. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2969738�

I. INTRODUCTION

Excitation and control of large amplitude waves is one of
the important goals in plasma physics. For example, care-
fully shaped electrostatic waves in plasmas can be used for
charged particle acceleration1 or pulse amplification via Ra-
man scattering.2 In many such applications a nonlinear fluid-
type description of the waves in plasmas is sufficient. Nev-
ertheless, when a wave resonates with a part of the velocity
distribution of the plasma species, one must use the kinetic
theory. An important class of such kinetic waves was discov-
ered by Bernstein, Greene, and Kruskal �BGK�, who pre-
dicted the existence of dissipationless nonlinear electrostatic
modes in plasmas3 with resonant particles playing an impor-
tant role. Controlled generation of these waves is the main
subject of this work. The BGK modes can be obtained as a
final state of large amplitude electrostatic perturbations after
relaxation via Landau dumping.4 These modes were ob-
served in trapped pure electron plasma experiments5 and in a
quasineutral plasma.6 Phase space hole structures seen in the
magnetosphere7,8 and in the solar wind9 have been also in-
terpreted as BGK modes.10,11 A relativistic BGK-type model
was suggested in studying electron acceleration by super-
nova remnant electrostatic shocks waves.12 Numerical simu-
lations suggested that stable one-dimensional �1D� BGK
modes can be also formed dynamically via a two-stream
instability,13 while 3D BGK structures were studied in
Ref. 14.

A typical approach to generating BGK modes in afore-
mentioned studies was a decay of a large electrostatic exci-
tation to some BGK equilibrium. More recently, BGK modes
in pure electron plasmas in a Penning–Malmberg trap were
excited adiabatically15 by driving the plasma by an external,
oscillating, chirped frequency potential. The approach used
the idea of autoresonance �AR� �see Ref. 16, and references

therein�, where the excited wave remained in resonance with
the drive continuously despite the time variation of the driv-
ing frequency. In the case of driven BGK modes in the trap,
this self-phase locking allowed efficient control of the wave
amplitude by varying the external parameter. The theory of
such autoresonant BGK modes was outlined in Ref. 17 using
a kinetic approach, with an ad hoc assumption on the form of
the electron distribution function in the resonant region. Au-
toresonant BGK modes can be also generated and controlled
in infinite quasineutral plasmas via a persistent Cherenkov-
type resonance.18 An adiabatic, water bag-type theory of
driven phase space holes �a particular case of BGK modes�
in quasineutral plasmas was developed in Ref. 19. The water
bag idea was introduced for studying coherent phase space
structures in collisionless plasmas by Bertrand20 and Berk.21

The simplest version of the water bag theory describes a
uniform �flat-top� distribution of particles in phase space
confined between sharp boundaries �limiting trajectories�. In
this case, the knowledge of the dynamics of the limiting
trajectories is sufficient for describing the evolution of the
whole phase space structure, since the distribution function
in the interior of the region bounded by the limiting trajec-
tories remains constant. In more complex situation one views
the phase space distribution function of the plasma particles
as a superposition of elementary flat-top distributions, each
described by the water bag model. A theory of excitation of
BGK modes in infinite quasineutral plasmas via such a mul-
tiwater bag approach was developed in Ref. 19.

In this work we will apply the adiabatic water-bag ap-
proach to driven BGK modes in a single species plasma in
Penning–Malmberg traps. This will remove limitations and
ad hoc assumptions of the previous theory17 and yield a de-
scription of the phenomenon with no adjustable parameters.
In Sec. II we will illustrate formation of alternating-current-
driven phase space holes in simulations in the case of a pure
ion plasma trapped in a square well potential. In Sec. III wea�Electronic mail: lazar@vms.huji.ac.il.
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will show that the governing equations in this case are iso-
morphic to those for a driven, infinite quasineutral plasma
with an additional symmetry condition preserved by the
Vlasov–Poisson dynamics. Later in Sec. III we will use this
isomorphism in formulating the water bag theory of driven
phase space holes in trapped pure ion plasmas and compare
the results of our simulations with the theory for initially
flat-top or Maxwellian distributions. Finally, Sec. IV will
present our conclusions.

II. TRAPPED PHASE SPACE HOLES IN SIMULATIONS

Consider a driven, pure ion plasma column of length L
and radius R, trapped in a square well potential. We describe
this system by the following Vlasov–Poisson system:

f t + ufx − ��x + �x
d�fu = 0, �1�

�xx − �2� = �2�1 − �
−�

�

f�u,x,t�du� , �2�

where various variables and parameters are dimensionless,
i.e., the longitudinal velocity u is expressed in units of the
characteristic �thermal� velocity vth of the particles, the co-
ordinate x is replaced by x /L, the time t by vtht /L, and the
distribution function is normalized as �0

1dx�−�
� f�u ,x , t�du=1.

The self-potential ��x , t� and the external driving potentials
�d�x , t� in Eqs. �1� and �2� are expressed in units of mvth

2 /e,
while �=L /�D, �D is the Debye length. We assume that the
plasma is confined inside a grounded cylindrical wall and,
for simplicity, adopt a quasi-one-dimensional theory, where
the radial decay of the self-potential is modeled by the
screening term �2� in the Poisson equation with parameter �
scaling as �	L /R�1 �small aspect ratio case�. The square
trapping potential well implies bouncing of the ions in the
interval x� �0,1� and perfect reflection from the edges, i.e.,

f�u,0,t� = f�− u,0,t�, f�u,1,t� = f�− u,1,t� , �3�

guaranteeing conservation of the number of ions in the trap.
Note that the governing Vlasov–Poisson system for a pure
electron plasma in a square well potential is the same as
above with � ,�d replaced by −� ,−�d. With this replace-
ment, Eqs. �1� and �2� also describe the oscillatory part of the
electron distribution function �and the associated self-
potential� in a quasineutral plasma with frozen ion species
�see Sec. III�.

We will assume a flat-top initial phase space distribution
of the ions in the trap in our simulations below, i.e.,
f�u ,x , t�=1 /2 for u� �−1,1� and f�u ,x , t�=0 for 
u
	1. We
will also assume that the plasma is driven by a small ampli-
tude standing wave-type potential

�d = 2
 cos�kx�cos��d� , �4�

where the driving frequency, �d�t�=d�d /dt, is a slowly de-
creasing function of time, passing through the bounce reso-
nances �d=ku with different plasma particles, where k=n�,
n is an integer. We illustrate formation of phase-space holes
and the associated growing amplitude BGK mode as ob-
tained in simulations in this system in Figs. 1 and 2. A stan-
dard pseudospectral method22 was used in the simulations.

For avoiding numerical difficulties characteristic of Vlasov
codes for distributions having large phase-space gradients,
we have introduced an artificial high frequency filters at grid
scales in x and u. We used parameters �=10, �=5, and n
=3 �this yields formation of three holes in phase space� in
our numerical example. The amplitude of the external driv-
ing potential was 
=0.01, the initial driving wave phase ve-
locity ud�0�=�d�0� /k=1.7 was outside the initial ion distri-
bution and the driving frequency decreased at uniform chirp
rate of �=0.06. The characteristic physical parameters of the
trapped plasma in this example could model the case of L
=10 cm, R=1 cm, and �D=2 cm.

Figure 1 shows snapshots of the phase space distribu-
tions at three different times corresponding to different
stages of evolution of the phase space distribution in the
driven system. The initial excitation stage �Fig. 1�a��, char-
acterized by a wave on the surface of the phase space fluid,
continues as long as the driving phase velocity ud�t�
=�d�t� /k is outside the bulk of the distribution. After passage
of ud through the boundary of the phase space fluid, one
observes formation of trapped phase space holes �Fig. 1�b��.
The holes bounce in the trap resulting in two counterpropa-
gating �the arrows in the figure show the direction of propa-
gation� hole systems in the phase space. The bounce fre-

FIG. 1. �Color online� The formation of autoresonant phase space holes in a
trapped pure-ions plasma at different driving phase velocities: �a� A surface
wave in the phase space fluid at ud=1.16, �b� fully developed phase locked
holes at ud=0.7, and �c� destruction of the holes at ud=0.21 �udud

cr�. The
arrows show the direction of motion of the coherent structures.
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FIG. 2. �Color online� The amplitude 2A of the self-potential of the au-
toresonant BGK mode in the example in Fig. 1 vs the driving phase velocity
ud�t� as given by the water bag theory �solid line� and simulation �circles�.
The dashed line indicates the critical driving velocity ud

cr at which the co-
herent hole structure is destroyed due to the resonance overlap �see Sec. III�.
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quency of the holes is locked to that of the chirped frequency
driving perturbation, a characteristic of autoresonance in the
driven system. As the driving frequency decreases, the dis-
tance between the counterpropagating structures in velocity
space decreases until the holes overlap at certain times �Fig.
1�c��, leading to a rapid phase space mixing and destruction
of the coherent structures. The amplitude of the wave poten-
tial �a BGK mode� associated with the phase space holes is
shown in Fig. 2 versus ud�t�. The solid line in the figure
shows the prediction of our water bag theory �see Sec. III�,
while the open circles are the results of the simulations,
showing a very good agreement. One also observes a con-
tinuing growth of the wave amplitude with the decrease of
ud�t�, until the mode is rapidly destroyed due to the overlap
of the counterpropagating hole structures in phase space �see
Fig. 1�c��. The vertical dashed line in Fig. 2 indicates the
critical driving phase velocity of ud

cr=0.27, when the overlap
and strong interaction of the driven holes in phase space
begins �see our theory below�.

We complete this section by discussing the stability of
the phase space holes. It is known21 that free phase space
holes in an infinite quasineutral plasma interact, yielding a
decay of the associated BGK modes. We have observed the
same phenomenon in our simulations in trapped, pure ion
plasmas. Nevertheless, we have found that driven phase
space holes are stable as illustrated in Fig. 3. Figure 3 shows
the results of a simulation with the same parameters as in
Fig. 1 and the initial driving phase velocity, ud�0�=1.3 �again
outside the bulk of the distribution�. The phase velocity in
the simulation slowly decreased in time reaching the value of
ud

f =0.8 �with fully developed phase space holes at this stage�
and remained fixed at this value at later times. The period of
the driving perturbation in this final quasisteady state was
T=2� /�d

f =2.618. One can see in the figure that the self-field
amplitude decreased by 5% only after more than 600 periods
of oscillation, indicating the stability of the driven phase

space structure. The observed slow decay is probably due to
the above-mentioned artificial viscosity, introduced in simu-
lations for numerical stability. We further studied the stability
of the excited phase space structures by reducing the driving
field after reaching the quasisteady state. The inset in Fig. 3
shows the actual self-potential ��t� in a relatively short time
window in two such simulations. In the first run �the solid
line� we reduced the driving amplitude 
 by half starting at
t /T=100. One can see that the self-potential remained nearly
the same but with small modulations introduced by a sudden
change in the driving amplitude. In the second simulation in
the inset in Fig. 3 �the dotted line� the driving potential was
switched off at t /T=100, resulting in the destruction of the
phase space structure and a rapid �few oscillation periods�
decay of the self-potential. Thus, a sufficiently strong exter-
nal drive can overcome the interaction between the phase
space holes and stabilize the BGK mode at longer times.

III. THE WATER BAG MODEL FOR TRAPPED PURE
ION PLASMAS

Our theory of the driven, trapped phase-space holes in
pure ion plasmas uses the isomorphism allowing application
of the results of the water bag description of driven BGK
modes in quasineutral plasmas19 in the trapped single species
system. Consider an infinite, quasineutral plasma, where the
ions are stationary, while the electron distribution function
and the oscillatory part of the self-potential are described by
Eqs. �1� and �2� �with a change of sign of the potentials as
mentioned above�. Assume that the driving potential �d, as
well as f�u ,x , t� and ��x , t� are spatially periodic, i.e., �d�x
−1, t�=�d�x+1, t� and, similarly, for f and �. Assume also
that f and � in this system satisfy the following symmetry
conditions:

f�u,x,t� = f�− u,− x,t� , �5�

��x,t� = ��− x,t� . �6�

Then, one can show that these f and � in the interval x
� �0,1� are also solutions for a single species system �taking
into account the sign of the charge� trapped in a square well
potential. Indeed, the main difference between the two sys-
tems is in using the periodic boundary conditions in the un-
bounded plasma case instead of the reflecting boundary con-
ditions for a trapped, single species plasma. However, the
combination of the symmetry and periodicity conditions
compensate for this difference. Indeed, by substitution of x
=0 and x=1 in the symmetry conditions �5� we obtain
f�u ,0 , t�= f�−u ,0 , t�, and f�u ,1 , t�= f�−u ,−1 , t�= f�−u ,1 , t�,
i.e., the desired boundary conditions. Similarly, the symme-
try condition �6� on � applied at x=1, yields ��1, t�
=��−1, t�, which is consistent with the periodicity condition.
Finally, for applications of this isomorphism argument, one
must show that solutions satisfying the above-mentioned pe-
riodicity and symmetry condition exist in the unbounded
quasineutral plasma case. Indeed, such solutions can be con-
structed by choosing the initial conditions �f�u ,x ,0� and
��x ,0�� and the external driving potential �d�x , t� all satisfy-
ing the symmetry and the periodicity conditions. Then, since
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FIG. 3. �Color online� Stability of driven trapped BGK modes. The ampli-
tude 2A of the self-potential in simulations �dots� vs normalized time for
driving frequency fixed at t /T	100. The inset shows the evolution of the
self-potential ��t� in a small time window around t /T=100 in two cases:
The driving amplitude is reduced by half to �=0.005 �dashed line� or to zero
�solid line� at t /T=100. The driven structure is destroyed in the latter case.

082110-3 A water bag model of driven phase space holes… Phys. Plasmas 15, 082110 �2008�

Downloaded 17 Aug 2008 to 132.64.1.37. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



the Vlasov–Poisson system preserves the reflection symme-
try, the solutions f�u ,x , t� and ��x , t� at later times will also
satisfy the additional symmetry conditions and, therefore,
evaluated in the interval x� �0,1�, will also solve our origi-
nal trapped, non-neutral plasma problem.

At this stage, we take advantage of the above-mentioned
isomorphism and apply the water bag model for infinite
quasineutral plasmas �see the Appendix� to our trapped pure
ion plasma case. We recall that the pure ion plasma in a
square potential well is described by the Vlasov–Poisson sys-
tems �1� and �2� with a perfect reflection boundary condi-
tions �3� and is driven by a chirped frequency standing wave
equation �4�. Since f�u ,x , t� and �d�x , t� in this case satisfy
conditions �5� and �6�, we can use the isomorphism to solve
the trapped plasma problem in the interval x� �0,1� by con-
structing the Vlasov–Poisson solution in the interval x
� �−1,1� for the corresponding infinite, quasineutral plasma
with periodic boundary conditions. The goal is achieved by
writing the driving potential in the infinite plasma as a sum
of two traveling waves �d=�+

d +�+
d, where ��

d

=
 cos�kx��d�. The Poisson equation �2� is linear, hence,
one can write the self-potential as a sum of two potentials,
�=�++�−, each associated with the driving waves �+

d and
�−

d, respectively. The interaction between these two waves in
the Poisson equation is indirect via the density n�x , t�
=�fdu described by the �nonlinear� Vlasov equation �1�.
However, since each of the driven counterpropagating hole
structures is phase-locked �see below� to a different driving
component ��

d , as long as the corresponding phase velocities
ud= ��d /k are well separated, this interaction is nonreso-
nant. As a result, if the driving velocity ud=�d /k is suffi-
ciently large �ud	ud

cr, see below�, we can write the total
self-potential as a sum of the two independent contributions,
�=�++�−, each induced by its driving potential ��

d ,
Eq. �A1�.

The formation and subsequent evolution of phase space
holes by a single chirped frequency traveling wave in a
quasineutral plasma was discussed in Ref. 19 by using an
adiabatic water bag model. Here we adopt the same approach
and briefly describe it in the Appendix for completeness. The
approach uses the perfect phase-locking assumption and the
adiabatic invariance of the action integrals associated with
limiting trajectories bounding the flat-top distribution in
phase space for calculating the resonant Fourier component
amplitude A of the driven self-potential in the problem �see
Eqs. �A3�, �A7�, and �A8��. In our case, we simultaneously
apply two driving waves, each resulting in the same self-
potential amplitudes A of the corresponding noninteracting
BGK structures ��, because the two structures differ in the
direction of propagation only, having no effect on the Fourier
amplitude A, Eq. �A3�. Then, the amplitude of the self-
potential in the corresponding trapped pure ion plasma is
simply 
�
max= 
�++�−
max=2A. The solid line in Fig. 2
shows the results of the water bag theory for 
�
max. One can
see that the theory is in a very good agreement with simula-
tions until the interaction between the counterpropagating
hole structures becomes important, as the driving frequency
decreases and reaches some critical value ud

cr indicated by the
vertical dashed line in the figure. We estimate this critical

velocity by calculating the half-width �u of the phase space
holes in the velocity space and setting ud

cr=�u. The overlap
of the resonances associated with the two driving waves at
this driving velocity leads to the violation of the single reso-
nance approximation in the theory. The overlap leads to a
complex interaction of the holes in phase space, resulting in
a rapid phase space mixing and subsequent decay of the self-
potential. Within the single resonance approximation, the
boundary u0 �limiting trajectory� of a single hole in phase
space is given by Eq. �A6� and its maximum half-width is

�u=�2�H0+A�, where H0 is the energy of the limiting tra-
jectory. Our water bag model yields �u=0.27 �dashed line in
Fig. 2� in the example in Fig. 1, which is in good agreement
with the simulation results.

We complete our discussion of driven, trapped BGK
modes in pure ion plasmas by comparing the theory and
simulations for the case of initially Maxwellian distribution
f�u ,x , t=0�= �2��−1/2 exp�−u2 /2� of the ions in the potential
well. The theory in this case uses the multiwater bag
approach,19 which views the initial distribution as a collec-
tion of many small height flat-top layers in phase-space. The
dynamics of the phase space structures in each of these el-
ementary flat-top distributions is the same as described
above, but with the coupling via the self-potential governed
by the Poisson equation. The results of these calculations for
the amplitude of the self-potential are shown in Fig. 4 by the
solid line for the same parameters as in Figs. 1 and 2, but
with 
=0.0036, while the simulation results are shown by
open circles. In the same figure, for comparison, we show the
results of simulations from Fig. 2 for the flat-top distribution
�dotted line�. One can observe a slower growth of the ampli-
tude in the Maxwellian distribution case, but a similar decay
of the field at smaller driving phase velocity due to the reso-
nance overlap.
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FIG. 4. �Color online� The amplitude 2A of the trapped autoresonant BGK
mode vs the driving phase velocity ud for �a� the Maxwellian distribution in
simulations �open circles� and via the multiwater bag theory �solid line�; �b�
the simulation results for the flat-top initial distribution �from Fig. 2�.
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IV. CONCLUSIONS

�a� We have studied the formation and control of phase
space holes of a pure ion plasma confined in a square
well potential. The goal was achieved by applying an
oscillating, external driving potential with a slowly
down-chirped frequency resonating in the tail of the
ion distribution initially. The number of the particles
captured into resonance remains nearly constant during
the excitation process, yielding an almost empty phase
locked resonant buckets in phase space. The associate
self-field does not exhibit Landau damping and, thus
can be viewed as a BGK mode. When the chirped driv-
ing frequency becomes small, the excited phase space
structure is destroyed due to the resonance overlap in
the problem.

�b� We have used the isomorphism between trapped non-
neutral and infinite quasineutral plasmas under appro-
priate symmetry conditions. This isomorphism allowed
us to apply a water bag theory developed for a related
problem in quasineutral plasmas to the trapped BGK
modes. The Vlasov–Poisson system in this model is
replaced by a set of algebraic equations for the limiting
trajectories in phase space. We have applied this ap-
proach in calculating the self-potential associated with
the phase space holes for initially flat-top and Max-
wellian initial distribution �via a multiwater bag
theory�, yielding a very good agreement with the re-
sults of the numerical simulations.

�c� The simulations have shown robust stability of the
trapped, driven BGK modes, until the chirped driving
frequency reached some critical value beyond which
the hole structures were destroyed due to the resonance
overlap in the associated dynamics. The water bag
theory allowed us to estimate this critical frequency.

�d� We have found that the phase-locked, driven phase
space structures with more than one hole were stable at
longer times �for over 600 oscillations� with a suffi-
ciently strong driving. Nevertheless, when the drive
was switched off, the excited structure was rapidly de-
stroyed due to the interaction between neighboring
holes.

�e� A theory describing the stability of the trapped, driven
BGK modes must remove the perfect phase locking
assumption of our water bag theory. It also seems in-
teresting to extend the theory to trapping potentials dif-
ferent from a square well.
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APPENDIX: THE DRIVEN WATER BAG MODEL

In this appendix, we present a brief description of the
water bag model introduced in Ref. 19 for a driven, un-
bounded quasineutral plasma with an initially flat-top veloc-
ity distribution. The model allows us to replace the Vlasov–
Poisson system of integro-differential equations by a set of

algebraic equations for the amplitude of the self-potential
and the limiting trajectories bounding the electron distribu-
tion in phase space. Consider infinite, quasineutral, driven
Vlasov–Poisson systems �1� and �2�, where f is the distribu-
tion function of the electrons, while the ions are stationary. In
contrast to the 1D theory of Ref. 19, we use a quasi-1D
plasma model by adding a radial screening term in the Pois-
son equation. We will see that this addition leads to similar
results with a rescaled wave vector in the problem. We as-
sume that the initial distribution is flat-top of height 1 /2 and
confined between u= �1 in the velocity space. For generat-
ing phase space holes in this system we apply a traveling
wave-type external potential,

�d�x,t� = − 
 cos�kx −� �d�t�dt� , �A1�

where k=n�. The driving frequency is chirped, �d�t�=�0

−�t, and we assume that initially, at t=0, the driving wave
does not Cherenkov resonate with the distribution, i.e.,
�0 /k	1. Later, as the driving frequency decreases, the
phase velocity of the driving potential enters the bulk of the
distribution and passes successive Cherenkov resonances
with different plasma electrons in phase space. It was shown
in Ref. 19 that this process results in the formation of elec-
tron phase space holes locked to the chirped frequency drive,
so that the holes drift in the velocity space at the rate of
variation of the driving phase velocity. The self-potential as-
sociated with these holes is a BGK mode. The amplitude of
the mode, as well as the position of the holes in the phase-
space are fully controlled by the external driving frequency.

At all stages of formation of the electron holes in the
water bag model one views the phase space distribution as
confined between slowly moving curves �limiting trajecto-
ries� in phase space, representing the evolving sharp edges of
the distribution. The incompressibility of phase space fluid
ensures that the distribution function remains constant be-
tween these limiting trajectories during the evolution, so the
dynamics of the limiting trajectories only is necessary for
calculating the self-potential in the problem. The theory of
this evolution involves two levels of description. First, one
considers a stationary, traveling driven state, when the driv-
ing frequency is constant. Later, using the adiabatic theory,
one follows the dynamics of the limiting trajectories in the
case of slowly varying parameters ��d and/or 
�. This yields
a complete description of formation and evolution of the
driven, chirped BGK modes in quasineutral plasmas. The
two levels of the theory are briefly described below.

1. Stationary driven BGK modes

In the case of constant driving parameters, the dynamics
of an electron on a limiting trajectory is given by

ẍ = − 
k sin�kx − �dt� − �x. �A2�

We make two assumptions in the theory. The first is the ideal
phase locking in the driven system, i.e., that the self-potential
has the same phase as the drive. In addition, we assume the
simple harmonicity of the self-potential,
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� = − A cos�kx − �dt� , �A3�

i.e., neglect the higher harmonics in representing �. Then,
the total potential in the system is

�total = − A� cos�kx − �dt� , �A4�

where A�=A+
 and the limiting trajectory is governed by
the Hamiltonian H= 1

2u2−A� cos�kx−�dt�. Next, it is conve-
nient to use a different canonical set, i.e., u and x�=x−udt
�coordinate in the frame moving with the phase velocity ud

=�d /k of the wave� instead of u and x. The corresponding
Hamiltonian is

H̃�u,x�� = 1
2 �u − ud�2 − A� cos�kx�� , �A5�

which can be used to write the corresponding trajectory in
phase space

u = ud � �2�H̃ + A� cos�kx��� . �A6�

By choosing different energies H̃= H̃i one can specify differ-
ent limiting trajectories ui�x��, while the whole distribution
function is confined between these trajectories. Two different
sets of limiting trajectories are relevant in our case. One set

involves two trajectories, u1,2, with H̃1,2	A� and negative
signs in Eq. �A6�. These two passing trajectories correspond
to the case when the wave phase velocity is outside the bulk
of the distribution, ud	1. The Poisson equation, in this case
within the water bag model yields

A�k2 + �2� = �2�F2 − F1� , �A7�

where F1,2= 1
2�−1

1 u1,2 cos�kx��dx�. This equation allows us to
find �by iterations, for example� the self-field amplitude in
the problem. In the case when the phase space hole is inside
the electron distribution, one chooses three trajectories,

where the two outer trajectories u1,2 are passing, i.e., H̃1,2

	A�, but have different signs at the square root in Eq. �A6�,
while the internal trajectory u0 is bound, H̃0A�, and de-
scribes the boundary of the hole. The Poisson equation �A7�
in this case gives

A�k2 + �2� = �2�F1 + F2 + F0� , �A8�

where F0= �u0 cos�kx��dx�. The process of solution of the
equations for A by iteration simplifies by observing that vari-
ous terms in Eqs. �A7� and �A8� can be expressed via elliptic
integrals,

F1,2 =
2

3�
�2A��g1,2 − 1���g1,2 + 1�K��1,2� − g1,2E��1,2��

�A9�

and, similarly,

F0 =
4

3�
�A��2g0E��0� + �1 − g0�K��0�� , �A10�

where gi= H̃i /A�, �1,2=2 /g1,2−1 and �0=1+g0 /2, and K
and E are the complete elliptic integrals of the first and sec-
ond kind, respectively.

2. Adiabatic driven phase space holes

The transition from the stationary driven water bag equi-
libria described above to the case of slowly varying 
 and �d

can be accomplished by observing that dynamically, we still
have a Hamiltonian picture of the limiting trajectories, where

now the Hamiltonian H̃�u ,x� ;
 ,ud� depends on slow param-
eters. Thus, by the adiabatic theory, each limiting trajectory

possesses an adiabatic invariant, i.e., J1,2�H̃1,2 ,
 ,ud�
= 1

4�−1
1 u1,2dx� and J0�H̃0 ,
 ,ud�= 1

4 �u0dx� remain constant de-
spite variation of parameters. This yields an additional equa-
tion for each limiting trajectory, which, in combination with
the Poisson equations �A7� or �A8�, comprise a complete set
for finding A and H1,2 �or A and H0,1,2 for the holes inside the
distribution� as functions of ud�t�. The detailed discussion of
passage through the distribution boundary in phase space and
formation of the holes can be found in Ref. 19 and is based
on the assumption of a small variation of the self-potential
during the passage through the boundary. This analysis al-
lows us to connect the two stages of evolution �with and
without the holes� in the adiabatic description.
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