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From quantum ladder climbing to classical autoresonance
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The autoresonance phenomenon allows excitation of a classical, oscillatory nonlinear system to high ener-
gies by using a weak, chirped frequency forcing. Ladder climbing is its counterpart in quantum mechanics.
Here, for the first time to our knowledge, conditions for the transition from the quantum to the classical
regimes are outlined. The similarities and differences between the two approaches are presented.
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[. INTRODUCTION destroys the resonance as the energy of oscillations in-
creases, limiting the response amplitudeéX:*?), wheree
The ability to place an atom or a molecule in a specificis the driving amplitude. In order to overcome this limitation

state is of great importance in spectroscopy and chemicaine could start in resonance and later change the driving
dynamicd1]. Direct excitation of high vibrational levels in a frequency, so that it continuously matches the instantaneous
molecule by monochromatic radiation is inefficient, due tofrequency of the driven system. Such a feedback approach
the small value of the transition dipole moment between thallows one to stay in resonance for longer times, but fre-
initial and final state$2]. An alternative is to create a cas- quency chirping by itself is not sufficient for ensuring con-
cading transition from the initial to the final state through atinuing energy flow into the system. One also needs to cor-
series of intermediate levels by using a chirped light pulseelate the phase of the drive to guarantee the stability of the
having a continuously varying frequency. Several authordgime varying, phase-locked excited state. Furthermore, in mi-
have addressed this problem, both classically and ircroscopic systems such as atoms and molecules, it is usually
guantum-mechanical ternfhf2—6]. In quantum mechanics the difficult to both track and control the phase. Can we avoid
method is usually referred to as ladder climbing, while inusing the feedback mechanism for strong excitation? The
classical mechanics the term dynamic autoresonance is usethswer to this question is positive, and the idea is based on
Studying the problem of molecular excitation by a chirpedslow passage through the linear resonance in the system,
pulse via classical mechanics yields a significant simplificainstead of starting in resonance. One can show in this case
tion and tractability of the details of the dynamics during thethat trapping into resonance followed by a continuing and
excitation[4,5]. However, the question of whether the clas- stable self-phase-locking with the drive is guaranteed, pro-
sical approach is applicable in this case to quantum systemaded the driving frequency chirp rate is small enough. This
such as molecules is still open. In the present work we disslow passage through and capture into resonance yields effi-
cuss the differences and similarities between the two apeient control of the energy of the driven system, as it auto-
proaches and study the transition from ladder climbing tamatically (without external feedbagladjusts its state to stay
dynamic autoresonance, where classical mechanics can beresonance with the chirped frequency drive. This is the
applied. We review the autoresonance and ladder climbingssence of the dynamic autoresonance in the system.
concepts in Secs. Il and Ill. The two regimes are compared For illustrating the AR in a simple case, consider a weakly
in Sec. IV, while numerical illustrations of our analysis are nonlinear oscillator described by
given in Sec. V. Finally, Sec. VI presents a summary of our
results. U+ o3u+ (cu?+du®)/m=0. (1)

By decomposing the solution into harmonicg~a,

+a, cosft)+a, cos(AU)+- - - and viewing the amplituda;
Dynamic autoresonand@R) is a method of exciting an &S small, one can calculate the natural response frequency of

oscillatory nonlinear system to high energies by a weak drivthe oscillator to second order &y [15]:

ing oscillation, as well as controlling the excited state by )

changing the driving frequency. This method is general and O~ wo(1-pBca), )

has been applied in many fields of physics, such as particle

accelerator$7], fluid dynamics[8], plasmag9,10], nonlin-  Where

ear waveg 11,12, and planetary dynamid4.3,14]. For bet- 5

ter understanding of the classical AR and, later, the ladder 3 _3(_c Vo 5 d

climbing (LC) phenomena, let us address the general prob- ¢ 8\mws 12mwj’ .

lem of controllable excitation of a nonlinear oscillatory sys-

tem from rest in classical terms. One can apply a resonanfow, consider a weakly driven oscillator

driving force for excitation, i.e., tune the drive frequensy

to the unperturbed system’s natural response frequency

Nevertheless, in most cases, the nonlinear frequency shift

Il. CLASSICAL DYNAMIC AUTORESONANCE

utt+w§u+(cu2+du3)/m=(s/m)cos{j w(t)dt}, 3
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where w= wy(1— at), and both the chirp rate ande are  which, upon differentiation and use of E@ta), yields
small. To solve Eq(3), we again expand in harmonicsu )

~ap(t) +a,(t)cod 6(t)]+ay(t)cog 26(t)]+- - but now view Gy~—Ssind—a, )
both a;(t) and the frequency of oscillationf3(t)=d6é/dt as ~ -
slow functions of time. Inserting this expansion into E8). Where Z=&/Mwg, Bc=woBc, and S(t)=%[B.a;
and keeping resonant terms only yields the following slow+#/(4a3)] is a slow function of time. Equatio(8) repre-
evolution equations: sents an effective adiabatic pendulum problem for the vari-

able ®. It shows that in the phase-locked statepscillates

) around some average, provided the effective tilted cosine

sin®, (48 potential

ap=-—
1t meo

Veii= a® — Scosd (9

O=woBa’— at— cosd, (4b)

2mwga, governing the dynamics @b has potential minima. The con-
dition for existence of minima i§>«. On the other hand,

where ®(t) = 0— [w(t)dt is the phase mismatch arfdl;  the function S as a function ofa; has a minimums,,

stand ford[ ]/dtilet this sta_gfa, we introduce th(la dimension- _ 5,5z 4/37 5/3 ata,,= 1/2(5/73C) 3 Then the requirement for
less time 7=a™“t, the driving parametem=35(e/Mwg)

12 a4 . having effective potential minima at all stages of evolution,
X(woBc)'“a™ >, and the rescaled complex dependent vari-,

i = 3147 12_ 3147112
able ¥ = (woB.) Y2a~Ya, exp(®). This allows us to con- ll'i Stm> L'Yt,h' ylelfds 8>(2ai3.) tfc _12738: Be "
vert our two real equationgla and (4b) into one complex th us,b o wi mt(_':\ ev; Fr:arcehn I(Ijn ed‘?th Icient, we recover
equation for¥, with u being asingle parameter in the prob- e above-mentioned threshold conditi@).

lem:
11l. QUANTUM-MECHANICAL LADDER CLIMBING

. 2 _
o+ n)P=p. ®) The LC phenomenon is, in some sense, the quantum ana-

log of the classical dynamic AR. The quantum energy levels

Equation(5) has two nonvanishing asymptotic solutions atof the nonlinear oscilator described by Ha) are[17]

7—+%. One is the bounded solutiolf =a, exp(—i7/2),
where the phase mismatch=arg¥=—i7/2 is growing E ~hod (Nt 1/2)— B(n+1/2)2 10
continuously. The second solutionds= 72, where the am- n~feol( )= Bdl "), (19
plitude a; = 72 is growing in time, but the phase mismatch where B,= (/Mawq) B .

remains zero. The transition between the bounded and un- This distribution of levels can be viewed as a ladder in

bounded solutions for a given initial conditian =0 at 7  \which the distance between adjacent steps decreases as one
——o (the oscillator is at rest initiallyis controlled by  climbs to higher energy. In order to continue from one step in
single parameteg in Eq. (5). One finds numerically that the the ladder to another, one has to adjust the driving frequency
bifurcation occurs afin~0.41. Above this value, the phase so that initially it matches&,—E,)/% and, after the prob-
locking persists and the amplitude grows continuously, whileapility of finding the system in level one reaches unity,
below uy, the excitation dephases from the drive and satuthange the driving frequency to matcB,(—E,)/%, and so

rates. By returning to the original parameters, we find theon. Equation(10) defines the transition frequency:
threshold forcing amplitude

CUn,nJrl:(En+1_En)/ﬁ:C')OI:]-_ZIBq(r"’_:I-)]- (12)
ein=0.82m(wo/B) 2a® (6)
Therefore, at every step, one has to change the driving fre-
for having continuing phase lockin@utoresonangen the  quency by 20084, Wait a certain time until the probability
system. Alternatively, given the driving amplitudgone can  for transition from leveln to level n+1 approaches unity
achieve phase locking and growing amplitude excitation(but not more than this time, since otherwise the probability
provided the driving frequency chirp rate is sufficiently of returning to leveln starts to increage and change the
small, drive frequency again. This is a very different strategy as
B 3 o3 compared to the classical AR, where the frequency is varied
a<ayp=1.303e/m)"(Bc/wo) ™. continuously without any feedback information being neces-

) ) sary during the excitation process. The question is how ex-
Finally, we present a more physical argumgnill for  jiation of the quantum nonlinear oscillator proceeds if one

estimating the threshold for autoresonance in the system. A?)'asseshe transition frequencies by continuously varying the

sume a continuing phase locking in the system, so that thgyjying frequency. Prior to discussing this issue, it is useful
phase mismatchb remains bounded and smalP[<m, {5 introduce three relevant time scales in our problem, i.e.,

while the amplitudea1 is a slow function of time. Then EQ. e Rabi time scal@fg, the sweep rate time scaks, and
(4b) can be approximated as the nonlinear transition time scalg,, , which are defined as
~ follows:

~ &
CIDt%,BCai—at— 2—al, (7)

TR: 1/QR: \ thw()/S, (123)
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Ts=1a, (12b) TY(TeTa) <1 (16b)

TaL=2woBq/ =21 B/ ma. (129 means decoupling between th.e adjacent resonances. There-
fore, Egs.(13) and (16b) comprise a set of inequalities de-
From the Landau-Zener theorem we know that efficientining the LC regimefnote that(16b) is a stronger inequality
population transfer by a chirped pulse in two-level systemghan(14) and thus replaces the latter at this stage of discus-
can be achievefll8,19 if 02/2a>1. In terms of the above- sion].

mentioned time scales this condition can be expressed as  Next, we write the classical condition for being in the AR
regime, i.e.,
TR<T_S- (13 £>€th, (169
where the threshold driving amplituds;, is given by Eq.

Note thatTs is the characteristic time for population transfer (6). By using our three characteristic time scalgigc) be-
within the two-level system driven by chirped frequency ra-COmes
diation, while Ty, is the time necessary for the chirped fre-
guency to pass the nonlinear shift between two adjacent en-
ergy levels. Therefore, the condition

T2/(TsTy)<1.48. (160

Remarkably, the Planck constant present gnand Ty, can-
cels in (16d). Thus, conditiong16a and (160 define the
regime of classical AR.

guarantees completion of the population exchange between At this stage, to visualize the different regimes of opera-
two adjacent levels before the varying driving frequencyt© We introduce two dimensionless parametefy
passes the resonance with the next transition. Note that EG, s/ Tr @ndP2=Ty,/Ts. The pair of inequalitie$13) and
(14) is only a necessary condition for being in the LC re- (16b), WhICh guarantee eff|(_:|ent continuing excitation in the
gime, where successive resonant transitions between adjaC r€gime, can be written in terms of these parameters as

cent levels are effectively independent. A stronger, but suffi- P. >3 (17)
cient, condition must take into account what usually is !
referred to as thevidth of the resonance. In other words, t0 gnd
have the LC process, the driving amplitude must be suffi-
ciently small, so that only two adjacent levels are coupled at P,>P;. (19
each given time of chirped excitation. We shall discuss this = ) »

effect and find a stronger inequality to repladed) for the Similarly, the classical autoresonance conditioh6g and

Ts<TnL (14

LC in the following. (16d become
P,<P, (19
IV. TRANSITION FROM LC TO AR
At this stage, we further discuss the LC versus AR re-and
gimes and the transition from one regime to another. First, P,>0.67P2. (20)

we focus on the condition for classicality in our problem.

Application of the classical theory requires mixirigou-  All these inequalities divide the,-P, parameter space into
pling) of many levels at all times. In our case, the driving a number of regions, as shown in Fig. 1. The region corre-
force amplitude is a parameter that can cause such mixing. lsponding to the quantum-mechanical LC is separated from
other words, for classicality, thevidth of the resonance the classical AR region by the shaded transition area. We
should be sufficient to include, in addition t0, .1, the illustrate all these conditions in the next section, by present-
resonance aby, n+ 1, Where f—m) is the number of levels ing quantum-mechanical simulations for two sets of condi-

mixed by the driving force. From a detailed analysis bytions, as one crosses the boundary with either the LC or the
Goggin and Milonni[20], the condition for a simultaneous AR regime.

resonance with the two transitions is Finally, we expect that the usual energy relaxation pro-
5 cesses in molecular systems will not affect the efficiency of
eVhI2Mwo>2fiwoBq(n—m)=. (15  excitation in either the AR on LC regime, provided the du-

- _ _ ration of the excitation process is short compared to the char-
If we set the transition to the classical behavior at-(Mm) acteristic relaxation time scale.

=1, we can write this condition in terms of our characteristic
timesTg, Tg, andTy,_ as follows: V. NUMERICAL SIMULATION

T2 (TRTa)>1 (163 Here we present the results of numerical simulations
which test the above-mentioned predictions. We solved the
The inequality(163 will be the condition for classical be- normalized time dependent ScHinger equation for a par-
havior of the system. The inverse inequality ticle in the Morse potentialU(&)=(D/hwg)[1l—exp
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FIG. 1. P,-P, parameter space. The full circles correspond to  FIG. 3. The results of numerical simulation wittP{,P;)
thresholds found in numerical simulations. Open triangle, square=(0.71,16.3)(open square in Fig.)1P, is below the threshold for
diamond, and circle are points at which detailed simulation resultgfficient LC. The upper graph shows the probabilities of different
are shown in Figs. 3—6 below. The gray area is the transition belevels as a function of time. The lower graph presents the energy of
tween the quantum-mechanical and classical regimes. Note that tfiee oscillator as a function of time, as well as the maximum pos-
linear oscillator limit requires?,—0 and therefore cannot be in sible energy one could reach in the case of complete transfer of
neither LC nor AR regime. population between the levels.

(_—a§)]2 (see the illustration in Fig.)2perturbed by a spa- where C, are the complex amplitudes in the expansion
tially uniform, oscillating, chirped frequency driving force, y(t)=3,C,(t)¢,. We used the initial conditionS,=1 and

so that the perturbing Hamiltonian is H"  C_ =0, n>0, corresponding to the oscillator at rest. No at-
= (eXo/hwy) € sint—0.5at?), wherex,= VA/Mmw,. tempt was made to deal with the continuum of states associ-

We used the well-known Morse functions, of the un-  ated with the dissociation. Figures 3—6 show the results of
perturbed oscillator to calculate the dipole matrix elementur simulation at four different points in the,-P, plane
Hm.n={¥nl &l ¥m) and used this matrix in solving the vector (see Fig. L
equation[17] Figures 3 and 4 illustrate the quantum-mechanical regime

of operation with well-separated transitions between succes-
i ZE H o C 21) siye levels. In contrast,. Figs.'5 and 6 iIIus_trate strong cou-
mo & imnEne pling between many neighboring levels during the excitation
process, indicating the classical behavior.
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FIG. 2. The Morse potential and its energy levels. One can see Time [1/eg) x10

that the distance between adjacent levels decreases as one climbs
into higher energy levels on the ladder. Parameters Rre FIG. 4. The same as Fig. 3 but at poiRy(,P,)=(1.43,16.3)
=6.%wy anda=1. (open diamond in Fig.)L P, is above the threshold for efficient LC.
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FIG. 5. The same as Fig. 3 but at poii,(P,)=(1.49,0.21) FIG. 6. The same as Fig. 3 but at poiR,(,P,)=(2.17,0.21)

(open circle in Fig. 1 P, is below the threshold for classical AR. (open triangle in Fig. L P, is above the threshold for classical AR.

VI. CONCLUSIONS (d) If the condition for classicality is met, a more trans-
parent classical theory can be used instead of the quantum-
(a) We have discussed two adiabatic counterparts yieldingnechanical formalism. This yields significant simplification
efficient excitation of oscillating systems from equilibrium and insight in analyzing the driven system.
by passage through resonance, i.e., quantum-mechanical lad- (e) Finally, two main conditions define the region in
der climbing and classical dynamic autoresonance. P,-P, parameter space for efficient, chirped frequency exci-
(b) We characterized the process of chirped frequencyation in either the LC or AR regime, i.e.,
excitation by three characteristic time scales, Ts, Ty,

i.e., the Rabi, sweep, and nonlinearity time scales. These P.->v3 and P.> 1
three times can be used to conveniently parametrize the ex- 1 anad 0.82 \/P—z
citation process in a dimensionless two-parameter space

=Ts/TrandP, =Ty, /Ts. ACKNOWLEDGMENT
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