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Abstract

In recent years, there has been a growing interest in controllable quantum systems, both
for studying fundamental decoherence physics and for possibly making useful compu-
tational devices.
Our lab focuses on a solid-state implementation, based on superconducting Josephson
circuits. These circuits are fabricated by modern lithography and deposition techniques
borrowed from the semi-conductor industry. Superconducting circuits have the remark-
able property of being non-dissipative, which is a key ingredient for observing quantum
effects in a physical system.
The quantum harmonic oscillator behaves like its classical counterpart when it is in a
coherent state. In fact, this is exactly what we get when exciting a resonator by classical
means. However, producing non-classical states by classical means requires a nonlinear
element in the circuit. Such element enables anharmonic behaviour. The Josephson
junction is an element having this property.
Anharmonic oscillators exhibit a unique response to a driving force with a continuously
decreasing frequency (chirped drive), referred to as autoresonance or ladder climb-
ing in the classical or quantum regimes, respectively. The system’s response, in both
regimes, typically involves a bifurcation of the oscillation amplitude depending both on
the strength of the drive and on the system’s anharmonicity. In this parameter space,
the threshold of bifurcation exhibits a transition between sequential state excitation
(quantum ladder climbing) and the population of coherent-like states (classical au-
toresonance). Previous attempts to experimentally map the bifurcation have only been
done in either classical or quantum conditions, but not in the intermediate regime.
The main goal of this work was to experimentally map these two regimes including
the intermediate. Superconducting Josephson phase circuits enable us to do so in the
same system, due to their tunable anharmonicity. We show a measurement of the bi-
furcation phenomena in this system over a large parameter space where the expected
transition is observed. We compare the results to numerical simulations and to theo-
retical analysis and we find a good match between them.

The second goal was to develop coherent control methods. In this work we simulated



and applied a reset technique, which uses a chirped drive rather than the more tradi-
tional resonant drive (7 pulse). This reset technique was found to be more robust than
the resonant drive.

In this work we also set out to create a significant analytical and numerical analysis for
a realistic simulation of superconducting circuits, specifically the flux-bias Josephson
phase circuit.

This thesis includes five chapters. The first chapter presents a brief background as an
introduction to this work (1.1), followed by detailed theoretical and numerical analyses,
that I have summarized, edited and developed (1.2-1.3). The second chapter describes
the research objectives. The third chapter presents the system’s structure (3.1), the
system components which were made by me (3.3) and the system setup (3.4). Chapter
four displays the experimental results and discusses them. Chapter five summarizes

this work with some closing remarks.
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Chapter 1

Theoretical Background

1.1 Introduction

The theoretical introduction starts with a brief description of the superconductivity
phenomenon including the BCS theory and the Josephson relations (1.1.1), which is
based on [1]. Then, the main types of the Josephson circuits are described, with an
emphasis on phase circuits (1.1.2). This last part of the introduction describes the effect

of decoherence in Josephson circuits (1.1.3).

1.1.1 Superconductivity: flux quantization and Josephson tun-

nelling

Superconductors enable atomic- scale phenomena to be observed at the macroscopic
level [2]. The reason, as explained elegantly by the theory of Bardeen, Cooper and
Schrieffer [3], is that in the presence of an attractive potential and at sufficiently low
temperatures, electrons near the Fermi surface become unstable against the forma-
tion of Cooper pairs. These have spin zero that enables them to form a large Bose-
Einstein condensate (like bosonic particles) that is characterized by a single macroscopic
state. This state is described by a wavefunction W(r,¢) (where r is the spatial variable
and ¢ is time). Like all quantum-mechanical wavefunctions, W(r,t) can be written as
|W(r,t)]exp [ip(r,t)]: that is, as the product of an amplitude and a factor involving
the phase ¢. Furthermore, in ’conventional’ superconductors such as Nb, Pb and Al,
the quasiparticles (electron-like and hole-like excitations) are separated in energy from
the condensate by an energy gap A (T) = 1.76 kgT (where kg is the Boltzmann con-
stant and T is the superconducting transition temperature). Thus, at temperatures
T < T, the density of quasiparticles becomes exponentially small, as does the intrinsic

dissipation for frequencies of less than 2A,(0)/h (where h is Planck’s constant), roughly
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The macroscopic wavefunction leads to two phenomena that are essential for qubits.
The first phenomenon is flux quantization [4]. When a closed ring is cooled through
its superconducting transition temperature in a magnetic field and the field is then
switched off, the magnetic flux in the ring, maintained by a circulating supercurrent,
is quantized in integer values of flux quantum ®, = h/2e ~ 2.07 x 1071° T'm?2. This
quantization arises from the requirement that W(r,¢) be single valued.

The second phenomenon is Josephson tunnelling [4]. A Josephson junction consists of
two superconductors separated by an insulating barrier of appropriate thickness, typ-
ically 1-2 nm, through which Cooper pairs can tunnel coherently. Brian Josephson
showed [5]| that the supercurrent I through the barrier is related to the gauge-invariant
phase difference (t) between the phases of the two superconductors by the current —

phase relationship
I(p) = Ipsin(y). (1.1)

Here Ij is the maximum supercurrent that the junction can sustain (that is, the critical
current). This phase difference is an electrodynamic variable that, in the presence of a

potential difference V' between the superconductors, evolves in time as
ho = hws = 26V, (1.2)

where h = h/27 and w; is the angular frequency at which the supercurrent oscillates.
The variables have, so far, been regarded as being classical, but to show quantum-
mechanical behavior, these variables must be replaced by operators. The two rele-
vant operators are that for ¢, which is associated with the Josephson coupling energy
E; = Iy®/27, and that for the Cooper-pair number difference N across the capaci-
tance, which is associated with the charging energy Ec = (2¢)?/2C, where C' is the
junction capacitance.

Furthermore, just like the familiar position and momentum operators’ X and P,, the
operators for ¢ and for the charge on the capacitor ) are canonically conjugate, as
expressed by the commutator bracket [, Q)] = i2e. The fact that ¢ and @ are sub-
ject to Heisenberg’s uncertainty principle has far-reaching consequences. On the one
hand, when E;/Ec > 1, ¢ is well defined, and @ has large quantum fluctuations;
therefore, the Josephson behavior of the junction dominates. On the other hand, when
E;/Ec < 1, Q is well defined, and ¢ has large quantum fluctuations; therefore, the
charging behavior of the capacitor dominates. Using these ideas, the parameters of

superconducting quantum circuits can be designed [6].

IThe hat sign “’ (regularly used for operators) is not used in this ducument.



1.1.2 Types of Josephson circuits

The need to reduce sensitivity of the device to noise has led to the development of three
basic types of qubits. In some qubits it is possible to create states with energy that is
to first order insensitive to some parameter.

Flux and phase qubits have large ratios of E;/E¢ (defined above). For these systems
the energy is insensitive to charge fluctuations because the flux/phase is a well defined
variable and thus the charge, being the conjugated variable has large quantum fluctua-
tions. In this case random fluctuations in the offset charge are made negligible relative
to charge fluctuations and thus eliminate its effect on the energy. In addition, flux
qubits are flux biased to a symmetric potential point where the qubit energies are in-
sensitive to flux fluctuations to first order. While phase qubits (to be discussed further
hereafter) do not have such an optimal point, they have the advantage of being more
tunable [7]. Charge qubits work in the opposite limit Ec/FE; > 1, where they are
immune to current fluctuations. In addition, the qubit states have energies that are
symmetric with respect to charge and thus to first order insensitive to charge fluctua-
tions [7].

Newer qubits, promising greater immunity to low frequency noise are still being de-
veloped, the most prominent of them being the transmon [8]. This is a charge-phase
hybrid, working in the intermediate regime E; ~ FEc. As it turns out, in this regime
energy-charge dispersion reduces exponentially with F;/Ec, while (surprisingly) the
relative anharmonicity, (w3 — wia) /w12, reduces only algebraically, making it possible
to further reduce sensitivity to charge noise in charge qubits while still being able to

perform gates in relatively short times.

1.1.2.1 The current-biased Josephson junction

The Hamiltonian? of a current-biased Josephson junction is given by

207 P
H = % — Ejcos(p) — 2—72]% (1.3)

where () is the excess charge on the junction capacitance. The dynamics of a current
biased Josephson junction are easily understood by looking at its effective potential
U(p), plotted in Fig. 1.1(a-c). We can picture the state of the junction as being
described by a fictitious particle (being composed of a macroscopic number of particles)
of mass C (®y/27)?, moving in a one-dimensional tilted washboard potential [4].

In contrast to a linear inductor for which ® = LI holds (® is the total flux through

2The energy is derived from the sum of electrostatic energy and the integrated power U = [ "Ivat
using the Josephson relations.



the loop, L the inductance), the Josephson element satisfies I ~ sin(®;/®Pg), where
®; = pPy. Although ®; is not necessarily associated with a real magnetic flux, it is
apparent from the above relation that this element behaves like a nonlinear inductor. In
addition, every Josephson junction has a finite capacitance in parallel to its inductance.
Thus at small current bias (I < Ip) it behaves like a harmonic oscillator having a
resonance frequency wyo = 1/v/LjC called the plasma frequency, where Lo = ®o/2m I,
is its inductance at zero current bias [9]. At finite current bias, the frequency of classical

oscillations is current dependent and we get:

1/4

oy = [1 - (1—[0)2] | (1.4)

At finite current bias I < I the particle is trapped within one of the wells. After a
characteristic relaxation time, during which it oscillates at the frequency w,, the phase
stabilizes into a steady state value and the total current through the junction goes to
Zero.

If we bias the junction near its critical point I ~ I, the particle can escape by thermal
activation or tunneling processes. When the particle escapes from the well, the aver-
age phase increases with time and a voltage develops across the junction according to
equation (1.2). At this point the junction switches to its resistive regime, dominated
by its normal resistance R,,.

The resistive characteristics of the junction can be taken into account by adding a phe-
nomenological resistor R in parallel to the junction. In the low damping limit, where
Qf = w,RC > 1 (Qy is the quality factor) the energy levels of the circuit become much
narrower than their separation and we expect quantum effects to become visible. In-
deed, several groundbreaking experiments have demonstrated energy level quantization
[10, 11] and macroscopic quantum tunneling [12] in this system over two decades ago.
Practically, this limit is usually achieved at low temperatures, kg1 < A, where the

A/ksT - Nevertheless, various

shunting resistance gets extremely large, since R ~ R,e
effects additional to equilibrium quasiparticles in a superconductor contribute to dissi-
pation, and thus to a reduction of the total quality factor of the circuit. In the section
1.1.3 we describe these processes and their origin.

Assuming that the system is at 7" = 0 and completely isolated from the environment.
When the Josephson energy is dominant, £, < £, the phase is a well defined variable,
and therefore, it is more convenient to solve for the energy and eigenstates in the phase
basis. For that reason we call this system a phase circuit. Inside each well we find
quantized energy levels (Fig. 1.1(d)), where the lowest two being commonly used as a

qubit. In the next section we will describe a modern version of the phase circuit that



we use in our research.
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Figure 1.1: Effective potential of the current-biased Josephson junction with (a) no
bias, (b) bias lower than the critical current and (c) bias equal to the critical current.
(d) The quantum energy levels of a high-Q isolated system.

1.1.2.2 The flux biased Josephson phase circuit

The flux-biased phase circuit is a transformed version of the current-biased phase circuit
described above, and the one that is currently being used in our work. In this circuit,
instead of directly connecting the current source we used an induced current generated
by a flux transformer (see Fig. 1.2(a)). This design has the advantage of providing
high impedance (greater than 1M instead of 50(2) between the circuit and current
source at a relatively broad frequency range [13]. Another advantage is the creation of
finite number of potential wells, resulting from the quadratic potential (see Fig. 1.4).
In addition, it implements a built-in single shot measurement that reduces heating of
the junction and thus reduces the generation of quasiparticles. The Hamiltonian of this

circuit is given by:

2Q2 Iy 1 P ?
=< (P — 20 1.
H=g = cos(@) 4 op ( Pem — (1.5)

The potential energy is plotted in Fig. 1.2(b) for a typical operating point where the
flux bias (®..;) equals nearly an integer multiple of ®,. At this point, a small number
of energy levels exist in the left well, where the two lowest are usually used as the qubit.
Although, in this research we also use multiple levels within this well.

Controlling the state of this circuit is achieved by introducing microwave currents
through a small capacitor connected to the loop. The microwave signals (typically
between 5 to 15 GHz) are resonant with the qubit transition and thus can be used to
create arbitrary superposition of states. The microwave current is analogous to the AC

magnetic field in NMR, and the evolution of the state under this signal is described
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by the Bloch theory as well [14]. In a nonlinear multi-level system each transition has
its own resonant frequency. Therefore, arbitrary superposition can be generated using
number of different resonant frequencies.

Similar to the current-biased circuit, we measure the state by applying a short flux bias
pulse that adiabatically lowers the potential barrier up to a point where the upper level
is preferentially tunneled out of the well. However, unlike the current biased circuit, in
this case the phase is trapped within the next well if it tunnels out and thus no DC
voltage drops across the junction. Because of the fundamental relation between the
phase difference across the junction and the total flux through the loop, the phase can

be measured later by an on-chip superconducting quantum interference device (SQUID).

(a) U(p) (b)

. Flux SQUID bias \
Microwaves .
bias & measurement ‘3>
A

T _
i N\ 4 N -
| NS '

| |
z;; - @,

Phase circuit SQUID < > gp

N
N\

Figure 1.2: The flux-biased phase circuit. (a) circuit schematics, where x stands for a
pure Josephson element. (b) effective potential with energy levels

1.1.3 Decoherence mechanisms in Josephson circuits

One of the great advantages of superconducting circuits as a tool for experimentally
studying quantum effects and as quantum information processors is their macroscopic
size. As macroscopic objects they are easily coupled to other circuits, but at the same
time they are also more strongly coupled to their environment. The latter generally

results in energy being lost from the system, and consequently in the loss of coherence.

1.1.3.1 Relaxation

Apart from equilibrium quasiparticles that exist in a superconductor at finite tempera-

ture, various processes such as thermal radiation propagating along the coax lines can
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contribute to non-equilibrium excitations of quasiparticles (QPs) and thus to energy
decay by resistive losses in the wires or by QPs tunneling through the junction [15].
Dielectric materials in the Josephson junction and substrate have a finite loss tangent,
thus serving as a decay bath for photons in their vicinity. While low-loss materials such
as ¢-Si and c-Al,O3 can be used as substrates, there is no easy method of achieving
low-loss dielectrics inside junctions. In Al-Al;O3-Al junctions, it has been found that
microscopic defects resonantly couple to the circuit and exchange energy with it during
measurement |16]. Reduction of the junction area results in a smaller number of these
defects, but also in reduced capacitance which has to be compensated for with a shunt-
ing capacitor having a finite loss tangent.

Control and measurement circuitry coupled to the device can dissipate its energy
through current or voltage fluctuations. In a simple model, the effect of dissipation
from the external circuitry can be accounted for by looking at the real part of the
admittance seen by the system through an impedance transformer [17]. Using the
fluctuation-dissipation theorem, a simple relation between these quantities can be de-
rived - ReYyys(w) = |d]sys/dlef,jt\2 ReY..i(w). The bottom line here is that if fluctuation
in some variable (current, voltage) of the external circuit causes fluctuation of this vari-
able in the system, the opposite process will happen as well and this fluctuation out of

equilibrium can dissipate in the external circuit.

1.1.3.2 Decoherence

Relaxation processes lead to the loss of coherence. According to the Bloch theory [14],
in a two level system the dephasing rate resulting from energy relaxation is given by
I', =T/2, 'y being the decay rate.

Quantum interaction between the system and the environment lead to non-classical
correlations between the state of the system and the degrees of freedom in the environ-
ment (entanglement). As a result, the system is no longer described by a pure state
having a density matrix p = |) (¢| but rather by a mixed-state having a density matrix

p(t) = > pi(t) [1;) (] (formally we get this by tracing out the environment from the

combined ;ystem—environment density matrix) [18]. Even in the absence of relaxation
processes, the off-diagonal terms in the density matrix (accounting for the coherence)
can decay in time. For example, two-level defects inside the junction (mentioned above)
interacting with the qubit can contribute to this type of decoherence.

A fundamentally different contribution to the loss of coherence comes from low-frequency
fluctuations. The energy levels in the circuit are set by several parameters (depending
on the type of circuit), such as the current bias, and critical current in the current-

biased circuit. When these parameters fluctuate, a random phase is accumulated
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o(t) = ftw(t’)dt’, and thus the state dephases relative to the control pulses which
(ideally) retain phase correlation between themselves. It should be emphasized that
this kind of dephasing is classical, since it results from noise in a classical parameter of
the system.

In flux and phase qubits, the large loop inductance leads to great sensitivity to flux. In
current phase qubits, flux fluctuations were found to be the dominant cause for dephas-
ing [19]. In a separate work it was found that flux fluctuations result from magnetic
defects - presumably in the native oxide covering the superconducting wires [20]. In
charge qubits, fluctuations in the offset charge are more deleterious and result from
local charges in the junction, quasiparticles tunneling across the junction and Johnson-
Nyquist noise at finite temperature. In both cases the noise scales with frequency as
1/f so there is a significant dephasing at long times, making it harder to perform long
experiments or increase the measurement statistics by repeating the experiment many

times.

1.2 Analytical analysis

This section contains the detailed theoretical and numerical analysis that has been done
in the framwork of this research. In 1.2.1 the Hamiltonian of the flux-bias Josephson
phase circuit is mapped to that of the current-bias circuit, which allows use of the
standard current bias theory for the case of the flux bias. Then, 1.2.2 shows the trans-
formation between the phase basis of the Hamiltonian to its finite dimensional subspace,
followed by the general dynamics of two level systems (1.2.3), based on [21]. It continues
with a detailed discussion of a chirped pulse perturbation dynamics in two level systems
(1.2.4), based on [22]. The second part ends with the special case of decreasing chirped
pulse in multi level systems considering classical or quantum conditions, referred to as
autoresonance or ladder climbing, respectively. The conditions for the transition from

the quantum to the classical regimes are outlined [23].

1.2.1 Mapping of flux-bias to current-bias circuits in a phase
qubit

The theory of the phase qubit is typically modeled with a current-bias circuit. There-
fore, mapping the flux-bias circuit to a current-bias circuit allows use of the standard
current bias theory for the case of the flux biased junction [24]. This is done by modi-
fying the effective junction critical current and bias current. In Fig. 1.3 (A) the circuit

of the current-biased Josephson junction is shown. The potential describing this circuit
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Figure 1.3: (A) Circuit diagram for the current-biased Josephson junction. (B) Circuit
for the flux-biased junction. (C) Thevenin equivalent circuit of (B).

with bias source I.,; and junction critical current I is:

Ucurrent(‘ﬂ) = - o COS Y — _nga (16)

The magnitude of the potential barrier approaches zero as the bias approaches the

critical bias, which can be defind as the critical phase pgwhere

2
PUeurrent(P) | _ [OUeuwrrem(@) | _ (1.7)
8802 ©o 890 %0

The second derivative of Ueyrrent (@) is zero at the critical phase ¢y = 7/2. This require-
ment is also fulfilled at ¢ = ¢y + mn, which reflects the potential period, 27, and the
freedom to choose the direction (sign) of the current bias. For positive current bias the
inflection point near the edge of the well occurs at its right side, which corresponds to
© = o+ 7(2n), and for negative current bias it occurs the left side, which corresponds
to o = o + 7(2n + 1). Expanding the potential around ¢ with ¢ = ¢y + ¢’, and
ignoring constant terms we find
P

Uéurrent((p,) = % []0 sin 90/ - IQO/] . (18)

Fig. 1.3(A) shows the circuit for the flux-biased Josephson junction. The potential for

this circuit with a loop inductance L is

Iy ®q 1 0Dy
— — e, — 220 1.
Uflux(gp) 27T COSSO + 2L |: ext 27]' ( 9)
The second derivative of U, () is zero at a critical phase ¢y = —Ljo/L, where

Ljo = ®g/2m1y is the Josephson inductance of the junction at zero bias. Expanding the

potential around ¢y with ¢ = ¢y + ¢, and ignoring constant, terms we find

/ , P . o
Uflu:(:(gp) = = (IO S 990) sind’ — ( (110)

. q)ezt - 50(1)0/27T>(p/:| )
T

L
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Now we can notice that this equation is identical to the potential for the current-biased

Josephson junction Eq.1.8, but with the “renormalization” of parameters,

(I)ext - 900(1)0/271-
I .

IS = Iysin g, 1977 = (1.11)

The magnitude of the potential barrier approaches zero as I¢// approaches Igff. This

yields the critical flux ®¢,
P

Qe = —(po — tanpy). (1.12)
2
0.31
—Flux bias
P T N Mapping to current bias
& 0.1
]
=
wl o
-0.1
020 T
2 0 2 4 & 8 10
p=0/D 0

Figure 1.4: The potential of the flux bias circuit is approxmated to the potential of the
current bias circuit around the inflection point, ¢q.

1.2.2 From the continuous phase basis to the finite dimensional

eigenbasis

In order to understand the dynamics of the states in the qubit well (which is the
most shallow well of the potential), one could first approximate the potential to a
simpler form, and than diagonalize the Hamiltonian in the phase space. The resulting
eigenvalues and eigenvectors are the energies and eigenfunctions, respectively. The
number of levels in the well that are taking into account, n, determines the dimension

of the Hamiltonian subspace.

Hy = ) (1.13)
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In the current bias phase circuit, when the bias current is slightly smaller than the criti-
cal current, I.,; < I, the potential, Eq.(1.6), can be accurately approximated by a cubic
potential U(y), parametrized by a barrier height AU(I) = (2v/21y®,/37) [L — I/1,]*?
and a quadratic curvature at the bottom of the well that gives a classical oscilla-
tion frequency wp(l) = 244 (27 ly/®oC) " [1 — I/16]"* [9]. The commutation relation
[0, Q] = i2e leads to quantized energy levels in the cubic potential [25]. Microwave bias
currents induce transitions between levels at a frequency wy,, = Epnn/h = (E, — E,) /R,

where E, is the energy of state |n). The two lowest transitions have frequencies

5 hCL)P

Wo1 =X wWp (1 — %A—U> s (114)
10 hO.Jp

W12 = Wp (1 — %A_U) . (115)

The ratio AU/hwp parametrizes the anharmonicity of the cubic potential with regard
to the qubit states, and gives an estimate of the number of states in the well. In the
presence of a forcing drive with small driving amplitude I,,,, and a driving frequency

wq, the Hamiltonian takes the form

" Olelo) Olglt) .. (O
By o
= —j—ﬂ[mw(t)cos(/wd(t)dt) mf‘o) (1) |
E, (n|¢|0) (n] ¢ |n)
(1.16)

where the first term on the right side of the equal sign is the unperturbed Hamiltonian,
and the second term is the perturbation term. According to calculations in the non
perturbed system when the cubic potential is valid, the elements (n| ¢ |m) are calculated
[25]. The elements along the first upper and lower diagonals increase approximately as
~ y/n (similar to harmonic oscillator). In the next section we will consider the case of

a two dimensional Hamiltonian.

1.2.3 Dynamics of two level systems

In this section we will show the dynamics of two level systems. This can be suitable for
either real two level systems or for highly nonlinear multi level systems, in which the

resonance frequencies are significantly separated.
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Figure 1.5: The Bloch sphere: Points on the sphere correspond to the quantum state
|4); in particular, the north and south poles correspond to the basis states |0) and |1);
superposition cat-states 1)) = |0) + € |1)are situated on the equator.

1.2.3.1 The state evolution on the Bloch sphere

A quantum bit (qubit), is a two-level quantum system described by the state vector
0 0
|¢)) = cos 5 |0) + sin 3¢ 1) (1.17)

1 0
Expressing |0) and [1) in terms of the eigenvectors of the Pauli matrix o, = ( 0 1 ) ;

\0)5(3),\1)5(2). (1.18)

this can be described as a rotation from the north pole of the |0) state.

1 0 cosg sing 1
— , 1.19
W}) ( 0 e ) ( sing cosg 0 ( )

The state vector can be represented as a unitary vector on the Bloch sphere, as shown
in Fig. 1.5. Notice that the Bloch sphere is twice the angle of the Dirac notation. The
dynamics on the Bloch sphere is conveniently described in terms of the density matrix.

For a pure quantum state,

p=[¥) (V| (1.20)

This is a 2 x 2 Hermitian matrix whose diagonal elements p;; and ps9s define occupation
probabilities of the basis states, hence satisfying the normalization condition: pj1+pee =
1, while the off-diagonal elements give information about the phase. The density matrix

can be mapped on a real 3-vector by means of the standard expansion in terms of o-
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, 01 0 —i 10
matrices: o, = yoy =1 . and o, = ;
1 0 70 0 —1

(14 prow + pyoy + p202) , (1.21)

N | —

p:

A : 1
introduced in Fig. 1.5 (1 is the identity matrix 1 = ). Direct calculation of

the density matrix Eq.(1.20) using Eq.(1.17) and comparing with Eq.(1.21) shows that
the vector p = (py, py, p.) coincides with the Bloch vector,

p = (sind cos ¢, sin O sin ¢, cos 0) (1.22)

In the same o- matrix basis, the general two-level Hamiltonian takes the form3

H = (H,0, + Hyo, + H,0.), (1.23)

giving a 3-vector representation for the Hamiltonian,

H=(H, H, H.). (1.24)

The time evolution of the density matrix is given by the Liouville equation,

ihoy = [H, p|. (1.25)

The vector form of this equation is readily derived by inserting Eqs.(1.21)-(1.24) into
Eq. (1.25) and using the commutation relations among the Pauli matrices,
1
Op =+ (H x p) (1.26)
This equation coincides with the Bloch equation for a magnetic moment evolving in a
magnetic field. The role of the magnetic moment being played by the Bloch vector p
which rotates around the effective "magnetic field” H—associated with the Hamiltonian

of the qubit (plus any driving fields).

1.2.3.2 DC-pulses

To control the dynamics of the qubit system, one method is to apply dc (square) pulses
which suddenly change the Hamiltonian and, consequently, the time evolution operator.

Sudden pulse switching means that the time-dependent Hamiltonian is changed so fast

3In this form the constant element of the Hamiltonian proportional to the Unit operator is excluded
because it only displaces the energy levels, but doesn’t affect the state evolution.
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on the time scale of the state vector evolution, that the state vector can be treated
as “frozen” during the switching time interval. Then the state vector begins to evolve
in time under the influence of the new Hamiltonian. A two-level Hamiltonian in the

o-matrix basis has the form?*

H=H,o,+ H,o, (1.27)

Now, let us can consider the stationary case, where H, = n = const and H, = —e =

const. The qubit eigenstates are to be found from the stationary Schrédinger equation

H|y) = E ) (1.28)

To solve this equation we expand the qubit state in the o, eigenstates (1.18),

[¥) = {0l¢) [0) + (1) [1) (1.29)

Then we get the Hamiltonian matrix

i = ( e ) (1.30)
n €

Finally after some straightforward manipulation we get the solutions for the eigenvalues

Eq.(1.28), which are energies and eigenstates,

E1,2 = j: 62 —I— 772 (131)
1 € 1 €
Fy=— |1+ ——0)+ —, |1 — —— |1 1.32
)= > — 0+ — (1.32)
1 € 1 €
F)y=— |l - ——0) — — 1+ ———1 1.33
B) = = — 1)~ 1 (1.33)

The general solution is a combination of the eigenstates with phases corresponding to

their energies.

0’ , 0’ ,
1) = cos o | ) e B | gin 5 [B2) e~ 1Eat/h (1.34)
0’ is obtained from boundary conditions. On the Bloch sphere it describes free precession
around the direction defined by the energy eigenbasis with constant angular speed

(Ey — E) /h. If the system is driven to the degeneracy point € = 0 then for initial

4Without lose of generality, we chose the off diagonal element to be real.
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condition |¢(0)) = |0) the probability of finding the system in state |1) oscillates like
1
Py(t) = (1 ()" = 5 [1 = cos((Ez — E)t/h)] (1.35)

and the precession is around the X-axis.
In principle, using dc- pulses it is possible to reach every state, but the oscillations are

very fast, and therefore are too hard to control.

1.2.3.3 Harmonic perturbation and Rabi oscillations

A particularly interesting and practically important case concerns harmonic perturba-
tion with small amplitude A\ and frequency around the resonant frequency wy. In the

o-matrix basis the Hamiltonian has the form,

H = H,o, + H,o,, (1.36)

where H, = n = Acoswgt and H, = —hw/2 = const. In the eigenbasis of the non-
pertubed qubit, |E;) and |E,) the Hamiltonian will take the form:

—hwy/2  Acoswgt
H= 0/2 Acoswy (1.37)
Acoswgt  Tuwg/2

In spite of the amplitude being small, A\/hwo< 1 , the system will be driven far away
from the initial state because of the resonance. The dynamics of the states is obtained
from the time dependent Schrodinger equation

)

In order to solve it let us switch into a rotating wave frame (RWEF) [14]

) = [¥) = VI]y). (1.39)

The Hamiltonian corresponding to [¢) is

7 t . 8VT
H— H=VHV'—ihV=—. (1.40)
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—iwgt/2
Inserting V' = ( ‘ st /2 ) into Egs. (1.39) and (1.40) we get
e'LUJ

[4) = a(t)e™™ " | Ey) + b(t)e“ | By) (1.41)

A 1.42
Acoswte™dt h(w, — wy)/2 (1.42)

H— ( —h(w, —wg)/2 Acoswte it ) |

Inserting coswgt = (i 4+ e=™d') /2 and wy = wo — § (4 is the detuning) we get,

~ 1 _h(s )\ 0 1)\6—2iwt
H=- + o2 . 1.43
(0 ) (e ) 149

Now we can notice that the first term is constant, while the second one changes very
fast (about twice the resonant frequency), so we can substitute it by its average over a

period, which is zero. This is called the “rotating wave approximation” (RWA) [14].

—ho A
Hpwa = 3 ( v B ) (1.44)

The Hamiltonian in this basis (the “dressed states” basis) is time independent so we can
use the solutions from the previous paragraph, Eqgs.(1.31), (1.32), (1.33). The energy
spacing and the coupling are replaced by the detuning and the driving amplitude in the
following way: € = hd/2 and n = \/2.

Ei_i A2+ (ho)? (1.45)

|EL) = \/—\/ \/—\/ hé) "' | Ey) (1.46)

The general solution is a combination of the eigenstates with phases corresponding to

their energies.

/

0 , 4 A
1)) = cos 3 |E) e B+t gin By |E_) e7tE-t/n (1.47)

0’ is obtained from boundary conditions. On the Bloch sphere, in the RWF, it describes
free precession around the direction defined by the energy eigenbasis. The rotation
frequency is Q.o = (Fr + E_) /h = /A2 + (hd)?/h, where Q4 < wy. For instance,
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if =0 the rotation is around the X axis and the rotation frequency is ,..5; = A/h, which
is the rate of the population transfer between ground and excited states. The probability
of being in one of the states oscillates as a function of time. These oscillations are called
Rabi oscillations and the oscillations frequency is called Rabi frequency. If we apply a
drive pulse of a duration such that €,..,;(t —ty) = 7 the populations of the ground state
and the excited state will flip - such a pulse is called a m-pulse. Another useful pulse is

the Z-pulse which brings the ground state to the “equator”.

1.2.4 Chirped drive perturbation in two level systems

Chirped pulse perturbation concerns a small harmonic perturbation with a dynamically
changed frequency w,(t) = wo—d(t), which is a generalization of the Rabi perturbation,
discussed above. This is also a generalization of the Landau-Zener model [26] for a
constant coupling of a finite duration. The exact evolution matrix is expressed in terms
of sums of by-products of parabolic cylinder functions estimated at the turn-on time
and at the turn-off time of the coupling. Various approximations in terms of simpler
functions are derived and applied to several physically distinct cases. They allow us
to study the dependence of the transition probability on the interaction parameters:
coupling strength, coupling duration, and detuning slope. The discussion is based
mainly on the article [22]. In the previous paragraph we saw that using the RWA, the
problem of two constant energy levels with harmonic perturbation can be mapped to a
two level system with an energy gap equal to the detuning and a coupling term equal
to the driving amplitude. In particular, a linear chirp §(¢) = at where « is a constant

chirp rate, can be mapped to a linear change in the energy gap. The Hamiltonian in
the RWF after the RWA takes the form:

H= h( —AWE) Q) > : (1.48)
Q@) At

Relating to previous notation, Eq.1.44, A(t) = §(¢)/2 and Q(t) = A/h2. We consider

the case of a linearly chirped pulse with a constant coupling of a finite duration:
Qt) = T A} =0, (1.49)

with v? = a/2. The chirp sequence is shown in Fig. 1.6.
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Figure 1.6: Chirp sequence: Top-detuning; Middle- symmetric coupling duration;
Bottom- asymmetric coupling duration

The time dependent Schrédinger equation for the probability amplitudes C(¢) and
Cz(t) is:

i%(]l(t) — _ABGIE) + Q) (1.50)
i%C’g(t) — QUCH) + AR, (1.51)

1.2.4.1 Exact solution for finite Landau-Zener model

The solution for Eqgs.(1.50,1.51) in expressed in new variables: T = vt and A = Q/v,
which are dimensionless time and coupling strength. The probability amplitudes C;(77)
and Cy(Ty) at the final time T are connected to their values C}(T;) and Cy(T;) at the
initial time 7; by the evolution matrix U(T},T;):

C\(1y) = U(Ty, 1) (T2, (1.52)

(T

where 8(T) = ( C’léT; ) is probability amplitudes vector. The elements of U(T},T;)
2

are:

I(1— 5iA?
Un(Ty,T;) = U % (T, T;) = {g} y

V2T
[DiAQ/Q (Tf\/ﬁefm/zl)DiA?/zfl (Ti \/§€i37r/4) + DiA2/271 (Tf\/ﬁemﬂM)Di/\?/Qq (Tz \/ﬁefiﬂ/zl)]
(1.53)

(1 — 1A%
U12(Tf>Tz‘) = —Uy % (Tf,TZ-) = [ ( 2 )

A/

eiw/41 <
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—Dinzjo(T5V2e ™) Dyp2 o (TiV/2€3™/4) + Dipz o (T v/ 263/ *) Dipe o (T \/ie—”/‘*)]
(1.54)
This solution is general, and applies to any initial condition. If the system is initialized

to the ground state,

the exact transition probability is

1

Pea:ac T,/_TZ = ————— X
3 7 T3) 2smh%7rA2

, ) , 2
_DiA2/2 (Tf\/ie_m—ﬂl) X DiAZ/Q(Eﬂel&T/Al) -+ DiA2/2 (Tf\/§€3ﬂ—/4> X DiA2/2(,_TZ'\/§€_m—/4) .
(1.56)

D are the parabolic cylinder functions, which solve the Weber equation [27].

Approximations to the transition probability In this part we are going to con-
sider different approximations to the transition probability that are valid in different
ranges of the chirp parameters. The first one is the classical Landau-Zener (LZ) model
that is a particular case where T; and T are infinitely large. The second one is the
adiabatic-following approximation, which is valid when either the coupling strength is
large, or the chirp rate is slow. The last one is the weak coupling approximation which
is valid for small amplitudes. The exact solution and the approximations are shown in
Fig. 1.7.

1.2.4.2 Classical Landau-Zener model

The Classical LZ model is an exact solution in the limits 7; — —oo and T} — +4o00.
Zener [26] made a similar analysis to the one shown in the previous paragraph, and
found the particular parabolic cylinder functions that solve the Weber equation for
infinitely large times under the boundary conditions (1.55), which gives the known

solution °

-Ptrans =1- exp(—7r§22/v2) (157)

This solution is valid for large 7; and T%, and arbitrary €.

5That is the Zener formula, while Landau has obtained a similar formula having a too small exponent
by a factor of 27 [26].

24



Q= ram/ Exact solution

14 200
12 6
S; 10 5 150
3 8 4 0
g' £ 100
= 4 2 50
2 1
0 —
05 1 15 2 0. 5 1 15 2
Qrab| MHZ rab| (MHZ)
Weak coupling: T >>Q, 1 Adiabatic following: Q/(2(Q?+T2))*? << 1
200 200 1
150 ’ 150
m 0.6 .
< 100 £ 100
= . -
50 50
0 e 0
1.5 2
Q (MHZ)

rabl

Figure 1.7: Finite LZ. Top-left: relevant parameters; Top-right: exact solution; Bottom:
weak coupling and adiabatic following approximations;

1.2.4.3 Adiabatic-following solution

In the adiabatic limit the Hamiltonian is changed so slowly on the time scale of the state
evolution, that the state “follows” the dynamic Hamiltonian (in the temporary eigenbasis
it is almost diagonal). That means that no transitions are induced, and the system stays
in the same energy level (although the state changes). The adiabatic solution can be
obtained by transforming Egs.(1.50),(1.51) into the adiabatic representation by the

unitary transformation

C(T) = R(T)A(T), (1.58)

where A(T) is the probability amplitudes vector, and R(T") is the rotation matrix,

R(T) cosO(T) sinf(T) (1.59)
—sind(T) cosf(T) | '

The Hamiltonian transforms to the RWF according to

~ T
H=RHR' — mRai. (1.60)
ot
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Inserting Eqgs. (1.48) and 1.59into Eq.(1.60), we get

(1.61)

ﬁ:h<_ A2(T) + Q2 +i0/(T) )7
—i6/(T) —/A2(T) + Q2

Where §(T) = —1 arctan(Q/A(T)) and 0'(T) = +502Q/(A*(T) + Q?).
When the diagonal elements are much larger than the off diagonal ones, we get the

condition for the adiabatic following approximation

A
2(A2 + T2)3/2
That applies for A > 1 and for T" > A. The time dependent Schrédinger equation

< 1. (1.62)

(Eq.1.38) for the Hamiltonian in the adiabatic following approximation is

8A —/A2(T) + Q? 0
_ (T)+ A (1.63)
“or 0 —/A2(T) + Q2
The solution is:
A(Tf) - Ua(Tfa E>A<ﬂ>, (164)
where U, (1%, T;) is the time evolution matrix in the adiabatic basis.
e~ 16a(T;.Ty) 0
Ua(Ty, 1) = . HCTT)) (1.65)
where
2 Tf ‘I— A /TJ? ‘I— A2
CulTy, T; VT? 4+ AN2dT = = <T,/T2+A2 T\/T2+A2) :
d / ! VT
(1.66)
The evolution matrix in the original diabatic representation is:
U(T}, ) = R(T))Ua (T3, TR (T)). (1.67)

Thus, we find the adiabatic-following solution for the transition probability
Padmbatzc(Tf7 ) |U21(Tf7 T) |7

T, Ty B A?
20(T2+A2) (T2 +A%) 2,/(T2 + A?) (T} + A?)

1
Padiabatic(Tf7 ,I‘z) ~ §+ COs 2Ca(Tf7 —E)
(1.68)
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For a symmetric case Ty = —T; =T we get

2

PaiaaicTa_T =1—-

cos® (,(T, T), (1.69)

One can notice that taking the limits of infinitely large times we get the classical

L.Z solution.

1.2.4.4 Weak-coupling asymptotics

The transition probability for asymmetric crossing in the weak - coupling approxima-
tion, that is valid when T'> w and T > w is:

2A
Pucar(T, =T) ~ 1 — e ™ — ?e_”Az/Q\/l — =™ cos &5 (T), (1.70)

where £, (T) = £ 1272 + T2 + T + arg (1 — 1A?).

1.2.5 Chirped drive perturbation in multi level systems

The analysis of our system in the presence of a chirped drive perturbation is complicated.
However, there are two distinct cases in which we can simplify the analysis: the classical
autoresonance model and the quantum ladder climbing model. The autoresonance
phenomenon allows excitation of a classical oscillatory nonlinear system by using a weak
chirped frequency force. The analog phenomenon in quantum mechanics is the ladder
climbing. Conditions for the transition from the quantum to the classical regimes are
described in [22]. These two phenomena involve a bifurcation of the states occupation.
When a driven force is applied on a system initially in the ground state, for low enough
amplitudes the states occupation is not affected. As the amplitude is increased peak
separation begins. At very high amplitudes the entire occupation is phase-locked with
the chirped drive and moves with the chirp rate in the energy space. The difference
between auto-resonance and ladder climbing can be measured using the expectation
value of the systems energy (H) . For auto-resonance the movement is continuous
while for ladder climbing it is discrete. At intermediate amplitudes, the occupation is
divided between the lower and higher energy peaks. The lower energy peak behaves
as a system feeling a small driving force (low amplitude), i.e. remains in the ground
state. The higher energy peak behaves as a system feeling a strong driving force (high
amplitude), i.e. moves along with the chirp rate. Therefore, during the process we
can observe an increase in the peak separation. This energy gap between the peaks
increases with the chirp rate. When the amplitude of the chirp drive is increased the

higher energy peak fraction increases, and accordingly the lower energy peak fraction
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decreases. The bifurcation process is the separation of the occupation into the two
peaks. We define the bifurcation threshold as the curve in the chirp parameters space
for which the population is divided equally between the peaks. The bifurcation cutoff
is defined as the middle of the energy gap between the peaks. The states above the
cutoff are called “latched”, although this definition can be ambiguous in the case of an

incomplete bifurcation.

1.2.5.1 Classical dynamic autoresonance

Dynamic autoresonance (AR) is a method of exciting an oscillatory nonlinear system
to high energies by a weak driving oscillation, as well as controlling the excited state
by changing the driving frequency. In the absence of noise there are two mathemati-
cal solutions, bounded and unbounded ones. The transition between these solutions is

3/4 where ¢ is the driving amplitude and o« is

controlled by single parameter u = ¢/«
the chirp rate. It was found numerically that p, = 0.41 is the threshold value in which
above it the phase locking persists and the amplitude grows continuously, while below
it the excitation dephases from the drive and saturates. The critical amplitude follows

3/4. Considering the presence of thermal noise, this threshold ex-

a power low: &, o «
pands and we get a finite width bifurcation threshold [28]. The width of the bifurcation
at low temperatures is also limited by quantum noise of the ground state, due to the

uncertainty principle.

1.2.5.2 Quantum mechanical ladder climbing

As a result of the anharmonicity of the potential well the energy differences between
neighboring levels, £, — F,,_; = w,_1, decreases at higher energy levels, and so cor-
respond to decreasing resonant frequencies, where w,_1, > w,n,4+1. These resonant
frequencies in the quantum mechanical regime are very distant from each other, and
have no overlap between them. Therefore, an external drive (having one frequency)
can only be in resonance with one of the transitions and so the dynamics of the sys-
tem can be approximated to that of a two level system, with the other levels staying
unaffected. Therefore, applying a decreasing chirped drive (having a continuously de-
creasing frequency) to the system initialized to the ground can lead to a cascade of
discrete transitions from the initial to the final state through a series of intermediate
levels. This process can be illustrated as ladder climbing in the energy space. The
climbing from one ladder step to another is done in a LLZ manner, meaning that the
system occupies a certain energy level until it reaches a resonance frequency and then
a short transition to the neighboring level occurs. Due to the discreteness of the ladder

climbing, the population fraction which is phase locked to the drive and moving along
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with the chirp rate is localized mainly in the highest (significantly) occupied energy
level. Therefore in this regime the occupation of this energy level can show the bifur-
cation phenomenon, where occupation of 50% is defined as the bifurcation threshold.
The effective coupling of neighboring energy levels increases as the square root of the
state number +/n, like in a harmonic oscillator. Considering a two level system, the
probability of staying in the initial state after a LZ perturbation (as mentioned in
1.2.4.2), is

Priabatic(n) = exp(—7wQ /1*) = exp(—n(Qy/n)?/17) (1.71)

The probability of consecutive transitions from |0) to|N > 1) is

Prans(N> 1) =[[0-¢") =(1-¢"V1-)(1—-¢").. #1—q— ¢+ O(¢°), (1.72)

n=1

with ¢ = 1 — Pyiaparic(1). Therefore, requiring P gns(N > 1) = % leads to the condition
of the bifurcation threshold,

Q% =1, (1.73)

where 70%/v% > 1 means that larger occupation fraction is “latched” by the chirped

drive.

1.2.5.3 Transition from LC to AR

The perturbation of a linearly decreasing chirped drive in non-linear systems has three
relevant time scales: the Rabi time scale T, the sweep rate time scale T, and the

nonlinear transition time scale Twr. These time scales are defined as follows:

TR:]_/QR, TS: 1/\/|CY|, TNLZQWQBQ/|(I| (174)

where Qp is the Rabi angular frequency, o = 212 is the chirp rate and wyf3, = wo1 — w12

. In these terms, the ladder climbing threshold can be expressed as
The autoresonance threshold can be expressed as

T7/(TsTyy) = 1.48. (1.76)
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Figure 1.8: Transition between ladder climbing and autoresonance

The number of levels mixed by the driving force distinguishes between the classical and

the quantum regimes. The classical - quantum limit is expressed as:
T3/(TrTwy) =1 (1.77)

It is comfortable to visualize the different regimes in the two dimensionless parameters
[23]:
P1 :Ts/TR end P2 :TNL/TS' (178)

Eqs.(1.75-1.77) are transformed to the three following equations:

P, =0.79, (1.79)
P, = P, (1.80)
P, = 0.67/P;. (1.81)

Fig. 1.8 presents the critical curves is the dimensionless parameter space in a log-log

scale.
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1.3 Numerical analysis

1.3.1 Calculating the energies and eigenstates from the system
parameters
The first part of the simulation involves receiving the parameters of the circuit and

translating them into the energies and eigenvectors of the qudit. The Hamiltonian of

the flux biased Josephson phase circuit is given by

IO¢O 1 ¢0 2 2 2
H=—— a7 [Pext — 5 -~ )
on 0P T g 0e — 0 T+ F0

where 6 and () are the superconducting phase difference across the junction and the
charge, respectively. C, L, ¢,y and [y are parameters of the circuit representing the

junction capacitance, loop inductance, flux bias and critical current, respectively. ¢g =
h
2e
The simulation works in the phase basis, and first chooses a discrete grid for the phase.

is the superconducting flux quantum.

When the Hamiltonian is written as an operator in the phase basis, the potential is
diagonalized because it’s already in the phase basis. The kinetic energy, on the other

hand, is in the charge basis. Due to the commutation relation, [y, Q] = 2ei, the charge

is represented as a derivative in the phase basis, () = —267J%, SO Q2 corresponds to
a second derivative, which in a discrete approximation becomes a term in the 3 main
diagonals,
f(z1) e f(z1)
f(x1) -2 1 f(x1)
d? : 1 1 =2 1
— ~ (1.82)
dx? : (Az)? 1 -2 1
: 1 -2 " :
| flaw) i oo L flaw)

The energies are the eigenvalues of the Hamiltonian matrix that are calculated by using
advanced numerical methods.

Once the energies are found, the simulation chooses the energies within the desired
potential well, and calculates their corresponding eigenvectors (eigen functions) numer-
ically. Among them we are looking for the “trapped” eigenfunctions, whose expected
value is a phase within the well, (¢;(¢) || ¥:i(¢)) < o, Where g is the Inflection point
close to the edge of the well. Then we choose the number of levels we want to con-

sider, n (the level of the qudit), so we get the n lowest energies and their corresponding
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eigenvectors.

1.3.2 The Hamiltonian in the RWA

Now that we have the energies and eigenvectors of the Hamiltonian - we basically have
the Hamiltonian of the n-level system as a diagonal matrix. To this Hamiltonian, we
add a drive element representing a time varying external current that flows into the
circuit. With this addition the Hamiltonian takes the form:

Ey (0[]0} (O[¢[1) ... (0]¢[n)
Ht) = o ) —me(t)cos(/w@)dtm)f—; Helo (et
E, (n]¢0) (n]n)

Where 1,,,,(t) is the envelope of the external current with a dynamic frequency w and

initial phase ¢. The Hamiltonian is transformed into the frame rotating clockwise with
1
iwt
frequency w, where the transformation matrix is: V., =
eimut
The transformation is similar to 1.40. At this point we neglect elements that vary with
iwt

time like €' or faster, this approximation is called the rotating wave approximation

(RWA). The Hamiltonian after the approximation takes the form:

0 0 @Olew 0
A e~ 0
HRWA(t) _ 01 | —i—I(t)f—O ¥10 |
. T ° . Qpn,n—lewj
Aop, 0 On_1n€" " 0

Where Ao, = E, — Ey — kfw and @, = (m| ¢ |n).

If we don’t approximate the Hamiltonian, we will have to use a very small time step (less
than 27/w) since the Hamiltonian varies with frequency w . Moving into the external
and applying the RWA the system doesn’t vary with frequencies of multiplies of w, but

only slow changes depends on the signal’s chirp and shape.

1.3.3 Time evolution operator

After building the Hamiltonian as a function of time, we can construct the time evolu-

tion operator and simulate the evolution of the system. The simulation constructs an
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initial density matrix representing the state at the beginning of the simulation - usually
set to the ground state. Then at every time step it calculates the time evolution operator
as U(t) = e HOAYR and applies it on the density matrix p(t + At) = U(t)p(t)U(¢)'.

1.3.4 Consideration of decoherence

At every time step the simulation also applies the Kraus operators [18] fitting the
selected T} and T5 times for each transition level. The decay times of the first excited
state are measured experimentally. The coupling element of neighboring levels grow
like y/n, n being the state number. The decay times for high levels go like the square of
the coupling element; therefore, they are taken to be n times shorter. Using the time

evolution operator and the Kraus operators, we finally, get the dynamics of the system.
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Chapter 2
Research Objective

The main subject of this work is controllable quantum systems. These systems can
be used for both studying fundamental decoherence physics and towards making useful
computational devices. Our lab focuses on the flux bias Josephson phase circuit, which
is a good candidate due to its tunable anharmonicity, as discussed earlier.

The main goal of this work is to experimentally map classical and quantum regimes

including the intermediate regime. We use the bifurcation phenomena of a driven
anharmonic oscillator since it has unique property for each regime. Sequential state
excitation characterizes the quantum regime (ladder climbing), and the population of
coherent-like states characterize the classical regime (autoresonance). The different
regimes can be characterized by a different bifurcation threshold. Previous attempts
to experimentally map the bifurcation have only been done in either classical [29] or
quantum [30] regimes, but not in the intermediate regime. In our system classical and
quantum behavior can be obtained by changing the anharmonicity of the system (the
flux bias).
We want to find a correlation between experimental results and theoretical predictions
in the classical regime and in the quantum regime. We also want to generate a realistic
simulation that would fit to a continuous transition between classical and quantum
regimes.

Our second goal is to develop working methods, numerical and experimental to
work with anharmonic oscillators. We want to build a simulation that can be used as
a numerical description of realistic anharmonic oscillators, in order to develop control
methods. We want to show that a linearly increasing chirped drive can be used as a
control method for state preparation. We want to show that this method is more robust

than using a resonant drive.
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Chapter 3
Experimental Methods

This chapter is divided into three parts. The first part (3.1) contains the system’s struc-
ture. The second part (3.3) describes the system components which were handmade by

me, and the third part (3.4) discusses the course of the experiment.

3.1 System structure

3.1.1 Device

The device contains the flux bias Josephson phase circuit and the Superconducting
QUantum Interference Device (SQUID) (see Fig. 3.1 also sketched in Fig. 1.2). The
substrate is Sapphire with size (6.25) x (6.25) x (0.5) mm?. The SQUID measures the

phase difference across the Josephson junction.

3.1.2 Sample holder

The sample holder houses the device at its center, and has six entries of coaxial cables
enabling conducting experiments on to two qubits. It is made of Aluminum (which is

known for its low resistance at these temperatures).

3.1.3 Cryogenic system

The cryogenic system — Oxford-Vericold dilution refrigerator, reaches a base tempera-
ture of 10 milli-Kelvins (mK), in which thermal excitation of states in the phase circuit
are suppressed. It contains several concentric height differentiated plates (as can be
seen in Fig. (3.1), right). Each plate has different temperature, the lower the plate the
smaller and cooler it is. The cooling down to 10mK is done using He3/He4 mixture in

a closed cycle. It allows us to perform continuous, long (>month) experiments at low
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Device

Figure 3.1: Left - Top- Optical micrograph of the device used in our measurements.
At the bottom the Josephson junction enlarged. Samples were fabricated at UCSB
(Martinis group); Right - Oxford-Vericold dilution refrigerator without the Mu-metal
covers.

cost and without any outside interference throughout its operation. It is covered by

three concentric Mu-metal cans screening magnetic fields.

3.1.4 Electronics

The system is controlled and measured by electronic devices through the computer.

3.1.4.1 Channels controlling and measuring the System

The flux bias and microwaves channels both control the qudit’s state. The flux bias
channel works at low frequencies and induces a potential bias, while the microwave
channel works at high frequencies (typically between 5 to 15 GHz), inducing transitions
between the states. The third channel is connected to the SQUID and reads the qudit’s

state.

3.1.4.2 Filters

Our system contains a number of filters, aimed to prevent signals in undesired fre-
quencies. Among them: Gaussian filters, copper powder filters, and other low pass
filters.
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Figure 3.2: Experimental apparatus. (a) Fridge wiring and filtering. (b) Control and
measurement electronics. Lower part: Microwave pulse generation.

3.2 System setup

We connect the chip to the coaxial cables through an adjusting, hexagonal shaped, PCB
board having 502 impedance. The connection between the chip and the PCB board
is done using a special wire bonder in the nano center and the connection between the
PCB and the cables is done by soldering.

Then, we connect the sample holder to the coldest plate of the fridge. There are
several filters located in different places of the fridge, between the chip device and the
room temperature electronics, in order to attenuate undesired frequencies and noise.
The fridge wiring and filtering is shown schematically in Fig. 3.2 (a). The fridge
is connected to control and measurement electronics via coaxial cables. The whole
system is connected through the DAC board to the computer, where the output signals
pass also through a preamplifier (see Fig. 3.2 (b)). When the system setup is complete

the experiments are fully controlled and measured through the computer.
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3.3 Self made components

3.3.1 Copper powder filter

This is a low pass filter that sits in the refrigerator in order to prevent undesired thermal
noise entry at high frequencies (GHz) coming from the environment into the refrigerator
through the cables [31].

Filter structure: Since working with high frequencies requires the use of coaxial cables
and SMA connectors, the filter has a coaxial structure, and two SMA connectors, from
both sides.

The filter is composed of the elements shown in Fig. (3.3):

A. Two SMA connectors

B. One copper coil

C. A copper case

D. Epoxy (insulator) copper powder mixture (with tens of microns grain size

We chose to create a box composed of four filters, in order to save space in the refrig-
erator. The structure of this filters device is based upon the work done by Martinis

group from Santa Barbara.

Figure 3.3: Copper powder filter: Left- parts: A. squared SMA connector; B. copper
wire, wound on a screw to create the coil; C. copper case with four filters. Right: The
complete device of four filters.

The copper grains absorb high frequencies by the skin effect.
In Fig. (3.4), you can see the transmission of two samples of four filters, including 10

and 75 microns sized copper powder. Indeed, we achieved the desired behavior of the
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filter. The cut off frequency is around 0.5 GHz. The transmission decreases to -90 dB,
between 3 and 9.5 GHz, and then reaches saturation with value of -50 dB.

Comparision between a batch of 75 and 10 micron Copper powder filters
o T T T T T T T T

75 micran
10 micron

75 micron
10 rnicron

470 | | I ! I L | | |
o 2 4 B ] 1o 12 14 16 18 20
Frequency (GHz)

Figure 3.4: Copper powder filters: upper - reflection; lower - transmission.

From a comparison between filters with grain sizes 75 and 10 microns, we see that
on average, the later show wider range of low transmission (reaches almost 10 GHz),

and after the saturation it is more constant but has a little bit higher transmission.

3.3.2 Sample holder

The sample holder is composed of the following elements, as shown in the Figure below:

Figure 3.5: Sample holder picture and illustrations form two points of view including
the following parts: A. base; B. aluminum plate; C. chip; D. Main part containing 6
SMA connectors; E. PCB ; H. cover
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Sparameters for different positions in the chip holder
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Figure 3.6: blue-0°,green-60°, red-120°, light blue-180°

The transmission and reflection of the device as measured using Network Analyzer

are shown in the following Figure:

3.4 Course of the experiment

This section describes the main steps of the system calibration, the measurement process

and the experiments that have been done in the framework of this research.

3.4.1 Calibration of the System
3.4.1.1 Potential landscape

In order to find the potential landscape we sweep through the biasing flux and measure
the phase state after it relaxes to one of the wells, using the on-chip SQUID. Repeating
such a measurement many times reveals a series of slanted branches (SQUID steps) that
correspond to stable potential wells. At flux biases close to a critical flux @, a certain
well becomes unstable and the phase can escape to a lower energy well by tunneling®.

This happens at a branch edge.

!The conditions in our experiments (bath temperature, characteristic currents and normal resis-
tances) are similar to those reported elsewhere[12], where it was found that thermal activation is
negligible.
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3.4.1.2 Resetting the qubit

Before conducting the experiment, we want to ensure that the phase is localized in the
qubit well at the beginning of each experiment. We do so by sweeping periodically
between flux biases for which the only stable well (branch) throughout the sweep is
the one we wish to localize the phase in (see figure 3.7). The sweep period is taken
to be the time it takes for the current in the loop to relax into steady state (phase
gets trapped within a well), which is typically a few microseconds. After a sufficient
amount of repetitions the phase can be localized in the particular well with probability
that is arbitrarily close to one, depending on the time we’re willing to put into this
procedure. The number of repetitions of the potential tilt depends on the number of
stable potential wells. A smaller number of potential well requires fewer repetitions.
The specific circuit we use has only two stable potential wells, so the reset is quite short.
At smaller flux biases (closer to the center of the branch), the well is deeper and thus
the phase is localized. As the external flux is increased, the well becomes shallower and

tunneling out of the well increases the probability of escape.

3.4.1.3 Qubit spectroscopy

We do spectroscopy measurements on the qubit in order to find its resonant frequency
as a function of ®.,;. This is done by applying a long microwave pulse (Tpuse > 11, 1)
saturating the transition, followed by a measurement of P;. In this case, Bloch theory
for a two level system predicts that the excited state probability should vary with the

detuning as a Lorenzian, given by:

B T\ T2
1+ (0T3)* + Ty Ty02

Pi(0) (3.1)

Where 0 = wyg — woy is the detuning, 77 is the relaxation time, 7% is the homogeneous
dephasing time and €2 is the Rabi frequency.

We find in this sweep multiple peaks corresponding to multi-photon transitions at fre-
quencies corresponding to E,o/nh with up to n = 4. Figure 3.8 shows a spectroscopy
sweep of the one-photon transition, identified by the highest frequency peak in the spec-
trum (we do not observe the direct FEyy transition because it is beyond our frequency
range for the current device).

The center of spectrum at each flux bias is derived from a fit to equation 1.4. The
spectral peaks fit this formula very well. Small deviations seen at the edges are due
to neglecting of the second term in the expression for F1o(®) which is proportional to
hﬁ—;. We see that the transition frequency can be tuned by almost
20 % with the bias changed by less than 0.1 &4 or 0.018 the size of a branch. The only

a small fraction of
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(C) Reset Experiment Measurement

cI)min

ext

Figure 3.7: The experiment sequence start with a reset pulse, continues with the desired
experimental pulse, which is followed by a measurement pulse. An illustration of the
reset sequence showing the flux biases and their corresponding circuit potentials. The
final wells, where the phase gets trapped after the reset are indicated by red circles. All

the stable wells to the left of the encircled well at flux ®™4* become unstable at ®7",

Similarly, all the stable wells to the right of the encircled well at flux ®”" become

ext
unstable at ®7%9*. The only stable well throughout the process is the one indicated.

ext
limit on the tunability comes from the maximal amplitude that we can achieve with our
currently implemented measurement pulse. So we’ll be able to expand the tunability
by using a high frequency broadband amplifier. We also observe splittings as large
as 20 MHz in magnitude, that arise from coupling of the circuit to small defects in the
junction dielectric that are resonant with the qubit at a particular flux bias [16]. During
a measurement pulse, the qubit is tuned in- and off-resonance with several defects which
may absorb its energy, thereby reducing the measurement fidelity. If the pulse is fast
enough, there is a higher probability of “tunneling” through the splittings in a Landau-
Zener process|32|. In small area junctions (such as in this device) their number is greatly
reduced, but they still affect the measurement fidelity|33]. The spectra were measured
at the low-power limit (Q%,,, < ['4I'1) where power broadening is negligible. In this
limit the linewidth is determined only by the dephasing time: Afpwpy = 1/7715,
according to equation 3.1. We find linewidths of size Af ~7MHz taken as the full
width at half maximum, corresponding to a dephasing time of ~50ns which is smaller

than the one we measure in the Ramsey experiment (see below).
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Figure 3.8: Spectroscopy sweep of the |0) — |1) transition. The data is normalized for
each flux bias between 0 and 1 for clarity. Insets showing cross sections of the sweep
near and far from a splitting.

3.4.1.4 Time domain characterization

Next, we characterize the qubit in the time domain to find its relaxation and coherence
times. The following measurements were all performed with zero detuning, and at
the same flux bias (f =11.25 GHz). In figure 3.9(a) we show the probability P, after
applying a 7 pulse and waiting a varying time 7. The decay follows an exponential law,
with a decay time? Ty ~300ns. In figure 3.9(b) we show P, immediately after applying a
pulse with varying length 7. This experiment (Rabi oscillations) demonstrates coherent
oscillations between the |0) and |1) states. The Rabi frequency in this case is 45 MHz,
however Rabi frequencies as high as 400 MHz are attainable with our current pulser. The
decay time of the oscillations obtained from a fit to Ae™""rcos(wt + ¢) is 192 ns. Using
the Torrey solution[14] to the Bloch equations we can deduce the expected homogeneous

dephasing time: At high Rabi frequencies (Q%,,. > I'y,T';) and zero detuning, the Rabi
1
2
dephasing time T} ~180ns. This is much longer than the estimation from the linewidth,

oscillations decay at the average rate I'g = (Ti1 + 7%,), thus we expect a homogeneous
2

as expected and should be compared to a spin echo measurement. Figure 3.9(b) shows

i

2
experiment. The fringes in this experiment decay at a rate I'y = T, ' > I'}/2. A

P immediately after the sequence 7 — 7 — 5 where 7 is varied, a so called Ramsey
fit to the same formula as we used earlier gives a decay time of 70ns. We should
point out that the Ramsey fringes do not decay exponentially. In fact, in the absence

of relaxation we expect a Gaussian decay|34]. Instead, we follow Yoshihara et al.|35]

2An interesting fact we discovered is that the decay time can be reduced if the repetition rate
(the inverse of time between repeated experiments) is too high. We find that adding a 1ms waiting
time after the experiment can extend the lifetime by about 60ns. Further increase does not affect the
lifetime. We suspect that the creation of non-equilibrium quasiparticle excitations[15] during SQUID
switching contributes to this effect, however it requires further investigation.
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Figure 3.9: Time domain characterization of the qubit. (a) Relaxation (7}), (b) Rabi
oscillations, (c) Ramsey fringes. Left: the sequence used for each experiment and the
corresponding evolution of the Bloch vector.

and fit the Ramsey curve to Ae T1/2=(T50%cos(wt + ¢), where T'? is the dephasing rate
due to low frequency energy fluctuations and I'; was fixed at 4.5 MHz from earlier
measurement. We find the total dephasing time to be 80+10ns, which is still higher
than the linewidth estimation. The large difference between the measurements may be
linked to errors we observe at the end of the microwave pulses that result in the Bloch
vector shifted from the equator during the free precession in the Ramsey sequence. The
fringes in this measurement were emulated by sweeping the phase of the second pulse
(relative to the first pulse) along with 7. This demonstrates our control of both phase

and amplitude of the microwave signal.

3.4.2 Measuring the qubit

As explained in 1.1.2.2, the probability of the qubit being at a certain energy level
is mapped into the probability of the phase being ultimately localized in the qubit
well after the short measurement pulse. Since the escape rate extremely dependent
on the potential barrier , we measure the probability of being in the |1) state or in
higher states, P(|1,2,...)) by simply applying a fast (but still adiabatic relative to
the transition frequency) flux bias pulse and measuring the escape probability. In the
calibration measurements, the fast pulse was calibrated to yield a 5 % escape probability
for the |0) state. This is the point where we expect the maximal visibility (the measure
of distinction between the two qubit states)|[33]. We expect a 85 % maximum visibility,

as indicated from later measurements. This is a remarkably high detection visibility for
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Figure 3.10: Tunneling probability vs. measuring pulse amplitude for the three lowest
states and the subtraction between adjacent Scurves. These measurement were done
at for = 6.0GHz, fo1 — fio = 150MHz. We can see, that higher state have steeper
Scurves, and the gap between the Scurves of two adjacent states decreases.

a single photon at microwave frequency - compared to the quantum efficiency of visible
photon detectors, emphasizing the quantum nature of our measurements.

After the general calibration we refine the measurement pulse amplitude (MPA) to yield
the maximal visibility specific to a certain flux bias. In order to measure the probability
of being in the |n) state or in higher states, P(|n,n +1,...)), we have to use a MPA
that lowers the potential barrier up to a point where states |n) and higher escape out
of the well significantly more than states lower than |n). Distinguishing between higher
levels requires a lower MPA. For a general initialization state, when we sweep through
increasing MPA, lower occupied states can escape from the well, increasing the total
escape probability, until we reach the point where the measuring pulse empties the whole
well. Measuring the escape probability as a function of increasing MPA should be an
increasing monotonous function (regardless of resonant tunneling). For an eigenstate it
is “S” shaped, therefore this kind of measurement is called "Scurve". The first step in
finding the states occupation is initializing the system to an eigenstate and measuring
its Scurve. This should be repeated for each eigenstate in the potential well that can
be reached by the drive.

The initialization process of excited eigenstates is obtained by applying a sequential
7 pulses (after the first resetting process described above). In order to reach a certain
state we have to adjust the timing, the driving amplitude and the driving frequency to
fit the consecutive transitions. We don’t want the excitation of higher states, therefore,
we must use low driving amplitudes which requires long pulses. However, long pulses
result in the occupation of lower states as well, due to decoherence. Therefore setting the
system to higher states is more complicated and results lower population in the desired
state. We can overcome this by finding the fractions of lower states occupation, so that
the subtraction of the sum of these fractions times there corresponding Scurves from the

original Scurve, create a reasonable Scurve shape. Then we need to re-normalize this
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Scurve to fit the range between 0 and 1. The conversion between the escape probability
results to the states occupation is done in the following example. We have to solve n

equation in n unknowns. The first equation is: 1 = ZP(|n>), meaning the conservation

n

of probability . The other equations are: P.,.(M P Ai,total) = ZSW (M PAi)x P(|n)),

meaning the conditional probability. For example, in Fig. 3.10, n=3, and the occupation

probabilities follows the equation:

P(|0)) 1 1 1 B 1
P(1)) | = | Pesc(MPAL0)) Pese(MPAL 1)) Pese(MPALI2)) MPA1
P(|2)) Pesc(MPA2,|0))  Pese(MPA2,|1))  Pese(MPA2,(2)) MPA2

Where P,.,.(MPAi,total) is the escape probability in M PA=MPAi, and MPAi is
usually the M PA in the maximal visibility between [i 4+ 1) and|i). S}, (M PAi) is the
Scurve of the eigenstate |n) in M PA=M P Ai. This calculation assumes no excitations
to states higher than |2).

3.4.3 Motivation and description of the experiments

In this research we wanted to explore the effect of linearly chirped drive perturbation
in anharmonic systems. We conducted a linearly increasing chirp experiment in order
to develop a reset technique for preparing the |1) state better than the traditional 7
pulse (Rabi on resonance). The increasing chirp results can be found in Fig. 4.1, and
the Rabi experimental results are shown in Fig. 4.3.

We conducted a linearly decreasing chirp experiment in order to observe the bifurcation
phenomenon, whose threshold is supposed to show a transition between classical and
quantum regimes. This requires several experiments in different non-linearities, as
described in 4.3.
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Chapter 4
Results & Discussion

Figures 4.1, 4.3 and 4.4 show the states populations in the qubit well, as a function of
the driving amplitude and the driving pulse duration, for a constant bandwidth ( 600
MHz). These populations are measured at the end of the perturbation for a relative
non-linearity (fo1 — fi2)/fo1 =~ 2.3% and for a resonance frequency fy; = 6.5 GHz.
The results of each experiment, shown in the figures, are followed by the correspond-
ing numerical simulation. The corresponding simulation was constructed by using the
chirp parameters (detuning frequencies, 0(t) = wy — wez(t)), the 2D sweep parameters
(ranges of pulse duration and amplitude magnitude), and the experimental parameters
(resonance frequencies (fo1, %), decay times (77,75) and the fitted circuit parameters
(Ip,C and L)). In order to find the driving amplitude in Rabi frequency (MHz), we

took the Furrier transform of each vertical column of the Rabi experiment.

4.1 Linearly increasing chirped drive

In Fig. 4.1 (Top), we can see that the linearly increasing chirp is characterized mainly
by the magnitude of the driving amplitude. At low amplitudes, there is no excitation.
High amplitudes result in an excitation to states |2, 3...). In the intermediate range, the
first excited state has islands of high population in . The simulation results (Fig. 4.1-
Bottom) coincide with the experimental results. According to the simulation results,
states higher than |2) are not occupied (not shown in the figure).

These results can be explained by the existence of two competing processes: a transi-
tion between |0) and |1), and a transition between |0) and [2). In a two level system
only first process occurs around the resonant frequency fy; .Under the conditions of
our experiment, the driving frequency passed through the frequency fyo/2 before fi
which can result in a two-photon transition. The latter process is dominant in high

amplitudes, while the first one is dominant in intermediate amplitudes. None of them
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is dominant in low amplitudes.

Applying the linearly increasing chirped drive on the ground state leads to the occupa-
tion of the first excited state. This method is, in fact, a reset technique. At this point,
we would like to compare the chirped drive method to the Rabi - pulse method, which
uses a resonant drive (see Fig. 4.3). We can see that the chirp method is more robust
than the Rabi 7 pulse method, meaning that its sensitivity to changes in the driving
amplitude is significantly lower. On the other hand, because of the two-photon transi-
tion, the population of the first excited state is not high enough. This can be improved
by starting the chirp after the two-photon frequency, as can be seen in the simulation
(Fig. 4.2). There is a large area with quite high population in the first excited state
( 85%), which has a very low sensitivity to changes both in the driving amplitude and in
the pulse duration. We can see that the probability of the second excited state becomes
higher with the increase of the driving amplitude, but still remains very low. According

to the simulation results, states higher than |2) are not occupied.
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Linearly increasing chirped drive - experimental results
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Linearly increasing chirped drive - simulation results
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Figure 4.1: States occupation probabilities vs. driving amplitude and driving duration:
fOl = 65GHZ, f01 — f12 = 150MHZ, 6initial = 0.04w0 and 6final = —0.04w0

4.2 Resonant drive

The Rabi experiment was done for three reasons. The first one is for the calibration
of the system, i.e. repeating a known phenomenon experiment helps us ensure that
the system works properly. The second reason is to find the conversion of the X axis

(the driving pulse amplitude) from arbitrary units to Rabi frequency in MHz. This is
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Asymmetrical linearly increasing chirped drive - simulation results
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Figure 4.2: States occupation probabilities vs. driving amplitude and driving duration:
fOl - 65GHZ, f01 — f12 = 150MHZ, 5initial = OOQQWO and 5final = —0068w0

done by Fourier transform of the Rabi experiment along vertical lines in Fig. 4.3. The
resulting units conversion ratio is: 1 AU = 355 MHz. This conversion ratio is valid
to all measurements that have the same non linearity (flux bias). The third reason
is the comparison between the Rabi oscillations and the increasing chirp as two reset

techniques that prepare the |1).
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Resonant drive - experimental results
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Figure 4.3: States occupation probabilities vs. driving amplitude and driving duration:
fOl = 65GHZ, f01 — f12 = 150MHZ, 5(t) =0

4.3 Linearly decreasing chirped drive

The results of the linearly decreasing chirp experiment (Fig. 4.4, top) show the existence
of a threshold phenomenon. Beyond the threshold, the system is excited to states higher
than |1), while below it there is no significant excitation, as we expected. The simulation

results (Fig. 4.4, bottom) coincide with the experimental results.
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Linearly decreasing chirped drive - experimental results

P(10>)

Pulse Length (ns)
= N W N [¢)] D ~N 0 O
O O O O O o o o o

01 02 03
Rab (AU)

Linearly decreasing

P(10>)

Pulse Length (ns)
= N W N OO O N 00 ©
O O O O O o o o o

40 80 120

Qrabi (MHz)

0.1

90
80
70
60
50
40
30
20
10

02 03
Rab (AU)

P(11>)

80

90
80
70
60
50
40
30
20
10

02 03
Rab (AU)

chirped drive - simulation results

P(23..>)

Figure 4.4: States occupation probabilities vs. driving amplitude and driving duration:
fOl = 65GHZ, f01 — f12 = 150MHZ, 6initial = —0.04CL)O and 6f2'nal = 0.04&.]0

We wanted to map also the more classical regime; therefore we conducted another
set of the linearly decreasing chirp experiments in a lower nonlinearity (Fig. 4.5). This
set of experiments was measured at a specific measuring pulse amplitude (MPA), cal-
ibrated so that the bifurcation cutoff would be at middle of the energy levels that can
be excited by the drive. In this way the escape probability is, in fact, the “latching”
probability. Here, we didn’t measure the states occupation because we it is impossible

to generate the pure eigenstates using sequential 7 pulses in such a nonlinearity. The
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Linearly decreasing chirp- experimental results
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Figure 4.5: The “latching” probability at MPA calibrated to the middle of the relevant
energy range: fo1 = 9.056GHz, fo1 — fi2 = 20MHz, initiar = 0.0375wy and 6 pina =
—0.0375wy;

The conversion of the X axis is more complicated in this low nonlinearity but we can
still see quality measures.

measurements show a threshold phenomenon. Looking at long time intervals, we can
see that the threshold expands and shifts to the right. This can be explained by a
decoherence effect. The critical time is around the coherence time.

The bifurcation phenomenon was examined by measuring the probability of staying in
the branch where the oscillator phase-locks to the chirped drive (the “latching” probabil-
ity). In order to compare experiments conducted under different conditions, we present
our data in the characteristic dimensionless parameter space (P, and P) (discussed in
1.2.5.3), which is a transformation of the experimental parameter space (nonlinearity,
driving amplitude and driving duration).

In the case of the higher nonlinearity we treated the probability of |2,3,...) as the
“latching” probability (as explained in 1.2.5.2). This is a good approximation, since
we can see that |1) is only slightly populated and can serve as the bifurcation cutoff.
Using different definitions for the bifurcation cutoff such as: the measurement pulse
amplitudes of maximal visibilities between adjacent states, MPA1 and MPA2, yields
similar results. The problematic area is around the blob at short times, where the three
different definitions show a discrepancy (not shown in this work). In the case of the
lower nonlinearity we measured the “latching” probability from the beginning. In Fig.

4.6 we can see the “latching” probability of the previous two experiments (4.4 and 4.5).
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When we combine the bifurcation results of the two non-linearities, the threshold of
bifurcation shows a transition between the quantum regime and the classical regime.
In this system there is a difficulty to define exactly where is the right energy cutoff
in which states having higher energy are “latched (phase locked) by the chirped drive,
and the rest are not. The difficulty stems from the fact that the bifurcation is not
always complete at the end of the perturbation. The following experimental limita-
tions contribute to the incomplete bifurcation. The duration of the drive pulse must
be shorter than the coherence time. Our chirp bandwidth is limited (~600MHz) for
technical reasons, as is our driving pulse amplitude.
Another experiment that could enhance our understanding of the bifurcation phe-
nomenon is the chirp dynamics, which tracks the states’ population at different times
along the chirp. This experiment should show the transition between the sequential
state excitation characterizing the ladder climbing and the Poisson distribution of oc-
cupied states (coherent-like states) characterizing the autoresonance. The conduction
of such an experiment requires developing a new method to measure the states occupa-
tion. We believe that the Scurves measurements and their derivatives can be a key to
achieving this goal. Fig. 4.7 is an example of such measurements that have been done

recently.
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“Latching” probability- experimental results
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Figure 4.6: Experimental results in the dimensionless parameter space: Top-Decreasing
chirp for relative nonlinearity=2.3% ; Bottom-Asymmetrical decreasing chirp for rela-
tive nonlinearity—0.2% . The bottom figure has an arbitrary X scale.
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Figure 4.7: A: Scurves of the 5 lowest states. B: Top - Scurves for different measurement
pulse amplitudes having the same pulse length. This is a transection of the 3D Scurve,
meaning, the escape probability for each driving amplitude, driving duration (pulse
length) and measurement pulse amplitude (MPA). Bottom - The minima of the Scurves’
derivatives give an indication of the maximal visibilities.
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Chapter 5
Summary & Outlook

Superconducting Josephson phase circuits act like anharmonic oscillators. Their re-
markable property of tunable nonlinearity enables conducting experiments both in
quantum and in classical regimes. A shallow potential barrier is characterized by high
nonlinearity, which allows the quantum ladder climbing (sequential state excitation) to
be observed. As the potential barrier gets deeper it can no longer be approximated as
cubic potential but is better approximated as quadratic potential, allowing the classical
autoresonance (the population of coherent-like states) to be observed.

In this work we experimentally mapped the classical, quantum and also the interme-
diate regimes of a driven nonlinear oscillator. We examined the bifurcation phenomena
by measuring the probability of staying in the branch where the oscillator phase-locks
to the chirped drive. The measurements are consistent with numerical simulations, and
the bifurcation threshold shows a good match with the theoretical threshold curves of
the quantum ladder climbing and the classical autoresonance. In fact, a continuous
transition between classical and quantum dynamics is obtained.

Our second goal was to develop numerical and experimental methods for working

with anharmonic oscillators. We simulated a realistic anharmonic oscillator, in order to
develop coherent control methods. The simulation fits both theoretical calculations and
experimental results, and therefore we believe it is a good tool for future applications
as well.
Applying a positive chirped drive can be used as a reset technique. The advantage of
this technique is that it shows robustness to changes in the driving amplitude. The
main disadvantage of this technique is that in the non-linearity which we worked, the
multi-photon transition was too dominant, because its frequency was too close to the
resonance frequency. However, going to higher non-linearity should suppress it.

In future research we would like to sharpen the distinction between the quantum and

classical regimes and show a more detailed description of the bifurcation threshold. This
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can be done by refining the bifurcation cutoff, in order to validate it for a broader range
around the expected threshold in the dimensionless parameter space. We want to extend
the experiments so that different overlapping areas in the parameter space will show a
consistent threshold curve. As a result of both the analytical and numerical analysis,
we expect significant oscillations in the intermediate regime (where the theoretical lines
intersect) in a finite LZ manner.

From this work, we can see that the flux bias Josephson circuits give a good ex-
perimental environment for enhancing our understanding of fundamental decoherence

physics. The quantum and classical phenomena can be distinguished and controlled.
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