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Collisional Decay of a Strongly Driven Bose-Einstein Condensate
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We study the collisional decay of a strongly driven Bose-Einstein condensate oscillating between two
momentum modes. The resulting products of the decay are found to strongly deviate from the usual
s-wave halo. Using a stochastically seeded classical field method we simulate the collisional manifold.
These results are also explained by a model of colliding Bloch states.
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The decay of many-body states coupled to a quasicon-
tinuum of collisional products is a topic of great experi-
mental and theoretical interest [1,2]. By strongly
modulating the system this decay can be dramatically
modified by splitting the spectrum [as in the well-known
Mollow splitting [3] ] and coupling to different spectral
regions of the quasicontinuum [4]. Experimental Bose-
Einstein condensation (BEC) allows us to investigate this
decay in detail by use of highly controlled optical lattice
potentials. Both the coherent evolution of the condensate in
the lattice and the nature of the quasicontinuum can be
manipulated and quantified [5].

The finite lifetime of perturbative bulk excitations in
BEC, namely, Beliaev and Landau damping, has been
extensively studied [6–9] and is rather well understood.
These studies were extended recently to the ground state of
a BEC in an optical lattice, and weak excitations over such
a state, using band theory formulation [10–12].

Coherent Rabi oscillations of the condensate between
two (or more) macroscopically populated momentum
states can be driven by a strong moving optical lattice
potential. These oscillations are described as beating be-
tween Bloch states belonging to different bands of the
lattice [13,14]. Because of interaction nonlinearity, a su-
perposition of two such beating Bloch states no longer
solves the time-dependent Schrödinger equation, and thus
the expected spectra and dynamics are richer than for a
single Bloch state [15]. The decay of these excited states
cannot be described by mean-field theory nor as an inter-
action between perturbative Bogoliubov quasiparticles
[16] as in the Beliaev formalism.

In this Letter we study the collisional decay of such a
strongly driven BEC undergoing coherent Rabi oscillations
between momentum states by a resonant two-photon Bragg
process [17]. We measure a clear deviation of the colli-
sional products from the s-wave halo observed for colli-
sions of a weak excitation with the BEC [1]. Using a
stochastically seeded classical field Gross-Pitaevkii equa-
tion (GPE) simulation [18], we observe similar decay
dynamics. These results are then explained by a model
which includes collisions between Bloch states of the
optical lattice as a perturbation.
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As in [19], our nearly pure (�95%) BEC of N �
1:6��0:5� � 105 87Rb atoms in the jF;mfi � j2; 2i ground
state is formed in a magnetic trap with radial and axial
trapping frequencies of !r � 2�� 226 Hz and !z �
2�� 26:5 Hz, respectively, leading to a healing length
� � 0:23 �m. The condensate is driven by a pair of strong
Bragg beams counterpropagating along the axial direction
ẑ, with wave numbers kd1 � �kL, and kd2 � kL, with
kL � 2�=780 nm. The laser frequency is red detuned
44 GHz from the 87Rb D2 transition in order to avoid
spontaneous emission. The depth of the resulting optical
lattice potential is characterized by the two-photon Rabi
frequency �d. By tuning the frequency difference between
the beams, we can control the velocity at which the optical
lattice potential moves through the condensate and the
subsequent energy of the created excitations. For perturba-
tive excitations the resonance is found to be shifted by the
mean-field interaction [2]. However, for strong excitations
this shift averages to zero [14] and hence the frequency
difference between the beams (in the laboratory frame) is
set to �d � 2�� 15 kHz, the free-particle resonance. This
leads to Rabi-like oscillations between the momentum
states k � 0 and k � 2kL.

The oscillation in the momentum of the atoms is appar-
ent in Fig. 1, where we plot the measured average momen-
tum per particle in the ẑ direction as a function of time,
extracted from time-of-flight images. The oscillation fre-
quency, as obtained by a decaying sinusoidal fit, is
�d=2� � 8:6 kHz.

In the strongly driven condensate, both finite-size broad-
ening and inhomogeneous density broadening are greatly
suppressed [14]. Therefore, the decay of the oscillations is
mostly due to the collisions between atoms in momentum
modes 0 and 2@kL. The products of such a collision have an
average momentum of @kL, and do not, in general, oscillate
any more in momentum space. For a Bogoliubov excita-
tion, which is a weak excitation of momentum 2@kL over a
large condensate of zero momentum, the collisional prod-
ucts are known to be located on a shell in momentum
space, known as the s-wave halo. This shell is the surface
in momentum space, conserving both energy and momen-
tum for the collision. Because of the Bogoliubov disper-
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FIG. 2 (color). (a), (b) Absorption images after ttof � 38 ms
time of flight following a resonant dressing pulse. (a) Strong
pulse �d=2��8:6 kHz, pulse width t�660�s. (b) Weak pulse
�d=2�< 2 kHz, pulse width t � 370 �s. Dotted circles repre-
sent the predicted s-wave shell. xr � @kL=M� ttof is the ballis-
tic expansion distance of an atom with wave number kL (in lat-
tice frame of reference). The collisional manifold for the strong
pulse is clearly shifted inwards as compared to that of the weak
pulse, which agrees with the expected s-wave shell. (c) The den-
sity distribution along the y axis obtained by computerized to-
mography [20] of the data in (a), (b) averaged over a slice
marked by the vertical dashed lines. The solid line is for the
strongly driven BEC of (a), and the dotted line is for the weakly
excited BEC (b). The collisional products of the strongly driven
BEC are clearly driven towards the center, while those of the
weakly driven BEC are concentrated on the s-wave sphere
(y � xr).

FIG. 1. Average momentum per particle contained in the
atomic cloud as a function of time (in units of 2@kL, in the la-
boratory reference frame). Oscillations are due to a strong mov-
ing optical lattice which is suddenly switched on, leading to Rabi
oscillations between momentum wave packets. The decay in the
oscillations (fit by the dashed line) is mainly due to collisions
which deplete the condensate. The arrow marks the point at
which Fig. 2(a) (and the subsequent theoretical figures) are
taken.
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sion relation, which is quadratic for 2kL� > 1, this shell is
nearly spherical.

In our experiment, however, the condensate is strongly
driven at large momentum 2kL��3:9, and collisions occur
within the lattice potential. Consequently, the Bogoliubov
description is no longer adequate. This is clearly visible in
Fig. 2(a), which shows an absorption image obtained after
a resonant dressing pulse lasting t � 660 �s. Upon com-
parison with the s-wave sphere obtained when two con-
densates collide [Fig. 2(b)], one sees a clear shift of the col-
lided atoms towards the center of the sphere. To quantify
this difference we employ computerized tomography to ex-
tract the radial dependence of the density from the column
density available in the absorption image [20]. In Fig. 2(c)
we plot the radial distribution of atoms over a small slice in
ẑ. This inward shift of collided atoms is robust and is
clearly observed for different values of �d and t.

We qualitatively simulate this collisional decay using
the stochastically seeded classical field method, in 2D, as it
was developed recently for colliding BECs [18]. In this
method the initial seed of fluctuating random amplitudes of
the bosonic field is added to the ground state of the con-
densate in the harmonic trap. Then the moving lattice
potential is switched on suddenly (as in the experiment).
Matter wave mixing between the condensate momentum
wave packets and the seeded quasicontinuum drives the
collisional decay of the oscillations, without any need for
further gross numerical intervention [21]. Figure 3(a)
shows the resulting momentum distributions for collisions
occurring within the lattice, and Fig. 3(b) shows the colli-
sional manifold when only a weak lattice is present. We
note that the overall agreement between the simulation and
experiment takes into account many possible systematic
effects such as the harmonic confinement in the radial
dimension and finite time of the Bragg pulse. We also
22040
see that the essential physics is qualitatively captured
here, even though the simulation is not in 3D. The corre-
lations between counterpropagating momentum wave
packets, clearly visible in the simulation, are not visible
in the experiment due to the fact that the experimental
absorption images integrate over an additional dimension,
making this signal difficult to observe. The mean-field
broadening of the experimental time-of-flight images also
leads to some additional smearing.

To obtain an intuitive model that still captures the es-
sence of these phenomena, we neglect inhomogeneous and
finite-size effects and choose our frame of reference as
moving with the optical lattice of the Bragg lattice beams
at velocity v � �@kL=M along ẑ. Our system is then de-
scribed by the many-body time-independent Hamiltonian
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l âmâk�l�m; (1)

where âyk�âk� is the creation (annihilation) operator of a
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FIG. 3 (color). (a), (b) Momentum distributions generated by
the classical field GPE simulation. (a) Strong pulse �d �
8:6 kHz, pulse width t � 660 �s. (b) Weak pulse �d <
2 kHz, pulse width t � 370 �s. The strong lattice leads to a
clear shift of the collisional products inward as compared to the
weak pulse, and deviates strongly from the s-wave collisional
sphere. Note that the simulation also generates momentum wave
packets with clear number correlations. (c) The density distri-
bution along the y axis of the simulation, averaged over a slice
marked by the vertical dashed lines. The solid line is for the
strongly driven BEC of (a), and the dotted line is for the weakly
excited BEC (b). The inward shift, observed in the experiment
[Fig. 2(c)] of the decay products is even more pronounced here.
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particle with wave vector k, and g is a constant describing
the s-wave interactions. The relative momentum in the
experiment is sufficiently low to avoid higher partial
wave collisional terms [22,23]. Neglecting for the moment
the interaction term, Eq. (1) simplifies into a one-
dimensional single particle Hamiltonian,

H � �
@

2

2M
@2

@z2 � @�d cos�2kLz�: (2)

According to Bloch’s theorem, a state jkiw is only coupled
to states jk� 2pkLiw, where p is an integer. In the moving
frame of reference, the stationary BEC has momentum @kL
and is situated on the Brillouin zone boundary. The initial
kinetic energy of the condensate is therefore in the lattice
energy gap. To calculate the consequent dynamics we span
the state jkLiw by the new basis of Bloch states jnib �P
pan	�2p� 1�kL
j�2p� 1�kLiw, which diagonalize the

Hamiltonian (2) [13], where n is the Bloch band index.
The lattice momentum @q � @kL remains unchanged and
is therefore omitted. The subscript w and b indicate
whether the quantum numbers in the ket describe the
wave number of a plane wave or a Bloch band index.

In the weak lattice limit, we arrive at the two state result
jkLiw � 1=

���
2
p
�j1ib � j2ib� of a two level system under-

going Rabi oscillations with frequency �d. This two mode
picture is still useful even for stronger lattices, since the
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energy separation between the lower two bands to the third
band, on the edge of the Brillouin zone, is typically larger
than the �d’s discussed here. Therefore, the higher bands
are only weakly occupied by the system.

We now consider the mixing of Bloch states due to
atomic interactions. In order to describe collisions, we
include the interaction term in the Hamiltonian (1), which
scatters two atoms from the populated states. We focus on
the processes in which atoms are scattered into the quasi-
continuum of unpopulated states, neglecting scattering into
populated states (forward scattering) [24]. Since collisions
are binary the Hilbert space is reduced to a two particle
space. Hamiltonian (1) can be rewritten in the basis of the
Bloch Hamiltonian (2) as

H �
X
�1;�2

j�1;�2ih�1;�2j	E�1
� E�2
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Here �i stands for all quantum numbers of a Bloch state
ni; qi;ki?. E�i � En;q � �@ki?�2=2M is the energy of the
noninteracting Bloch state, where En;q is an eigenvalue of
the Bloch Hamiltonian (2) and ki? is the part of ki which
is perpendicular to ẑ. The inclusion of the quantum num-
bers k? is necessary since collided atoms gain momentum
which is not along ẑ. We treat the collision term in Eq. (3)
by use of perturbation theory. That is, we assume the
system is undergoing coherent oscillations in time due to
the lattice potential, and study the perturbative collisional
products that are created by the interaction Hamiltonian.

The existence of two macroscopically occupied, distinct
energy states implies several decay routes for the colli-
sional term, and the subsequent energy and momentum
conservation manifold are split. Specifically, splitting
arises from the energy difference between the case where
both colliding atoms are from the n � 1 band and when
both are from the n � 2 band. Because of symmetry,
interband collisions are suppressed by destructive interfer-
ence. The overlap between the symmetric first band and
antisymmetric second band is zero.

The prediction of our model for the momentum distri-
bution of the collisional products is plotted in Fig. 4. The
calculated column density is presented for comparison
with Fig. 2.

The presence of the optical lattice is found to drive the
collided atoms towards the center, as expected from the
inner shell of the splitting. The amplitude of the outer shell
decreases rapidly as �d increases, and is experimentally
unobservable for our parameters. This suppression in the
amplitude of the outer collisional shell can also be under-
stood as a quantum interference of the different collisional
pathways. The antisymmetric momentum components
composing the second band states lead to a small overlap
with the energy-allowed collisional manifold (as observed
both in the simulation and experiment). In the experimental
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FIG. 4 (color). Column momentum distribution for the same
parameters as for Figs. 2(a) and 2(b), respectively, calculated by
our colliding Bloch state model [Eq. (3), only the scattered
atoms are shown]. Dotted line represents the s-wave shell. The
momentum distribution is only roughly equivalent to the spatial
distributions of Fig. 2 due to interactions during expansion,
although the overall shape of the collisional manifold is repro-
duced.
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data, additional effects, such as inhomogeneous broaden-
ing and mean-field expansion effects that are neglected in
this model, tend to broaden the shell of atoms, and blot out
the splitting for smaller �d.

One intriguing prediction of the model is that the decay
rate as a function of time will deviate significantly from
that predicted by the Fermi golden rule. This can be ex-
plained in the time domain by the oscillatory behavior of
the coherent evolution, leading to a complementary oscil-
lation in the rate of production of collided atoms. Another
important result of the model is that as we increase �d, the
overall decay of the coherent evolution is accelerated. This
is due to the large number of additional decay pathways
that are switched on by the presence of a deeper lattice.

In conclusion, we measure the collisional decay of a
driven condensate and show that it deviates from the usual
s-wave sphere. This result is modeled by using the stochas-
tically seeded classical field method applied to the Gross-
Pitaevskii simulation of the experiment. The main features
of the collisional decay manifold are captured by a simple
model, which treats the interactions as binary collisions
between single particle Bloch states. We note that the seeds
for the decay of our system are the original fluctuations of
the many-body ground state, while the spectra and cou-
pling to these fluctuations are determined by the evolution
of the many-body state under the strong driving. By mod-
ifying our system’s spectra and thus coupling to regions of
slower decay [25], it may be possible to control and even
prevent decoherence.
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