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Three-Wave Mixing of Bogoliubov Quasiparticles in a Bose-Einstein Condensate
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A dressed basis is used to calculate the dynamics of three-wave mixing between Bogoliubov
quasiparticles in a Bose condensate. Because of the observed oscillations between different momentum
modes, an energy splitting, analogous to the optical Mollow triplet, appears in the Beliaev damping
spectrum of the excitations from the oscillating modes.
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ing the 3WM dynamics, as transfer between dressed state
manifolds. Thus, the effects of 3WM on the damping

ing, and is analogous to photonic down-conversion [15].
Akq is the many-body suppression factor
Since the experimental realization of Bose-Einstein
condensation in trapped atomic gases, which serves as a
monoenergetic and dense atomic source, experiments in
nonlinear atom optics have become feasible. Atomic four-
wave mixing (4WM) [1], superradiance [2], and matter-
wave amplification [3] are all examples of nonlinear atom
optics, which involve the mixing of several atomic fields
or the mixing of atomic and electromagnetic fields.

In the case of atomic 4WM, bosonic amplification
directs one of the products of a collision between an
excitation atom and a condensate atom into an, initially,
largely populated mode [1,4,5]. Thus, a new mode is
macroscopically populated through the second collision
product. When the energy, "k, of an excitation mode k is
low compared to the condensate chemical potential, the
excitation can no longer be described as a free atom
moving with momentum k, but rather as a collective
phonon excitation, which involves a large number of
atoms [6]. Atomic 4WM is therefore inadequate for the
description of phonon decay. Phonon excitations are de-
scribed in the framework of Bogoliubov theory [7]. As
Bogoliubov excitations are bosons, bosonic amplification
will also direct one of the damping products of a phonon
into an, initially, largely populated mode, leading to
three-wave mixing (3WM) of Bogoliubov quasiparticles.

In this Letter we introduce a basis of states which are
dressed by the interaction between three, largely popu-
lated, modes of Bogoliubov quasiparticles in a Bose-
Einstein condensate at zero temperature. Using this basis
of quantum states we calculate the time evolution of the
system, which exhibits nonlinear oscillations between the
different momentum modes. In contrast to other theoret-
ical approaches to wave mixing, which lead to nonlinear
differential equations [4,8], the dressed state approach
turns the problem into a linear one, for which propagation
in time is trivial. We show that, due to relative number
squeezing, the variance in the number difference between
the two low momentum modes remains constant.

In analogy to the treatment of spontaneous photon
scattering in the atom-laser dressed system [9], we treat
damping into the quasicontinuum of empty modes, dur-
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process are calculated. The damping energy spectrum is
presented. A transition from elastic to inelastic damping
is observed, which, in analogy to the optical Mollow
triplet, leads to a splitting of the spectrum into a doublet
of resonance energies.

Previously, nonlinear mixing of quasiparticles in a
Bose condensate was studied, between the two lowest
energy excitation modes in the discrete regime, where
the energy of the excited mode is of the order of the
energy separation between modes [8,10,11].

Our model system is a homogenous condensate of finite
volume V, with N0 atoms in the ground state. The
Hamiltonian for the system in the Bogoliubov basis,
taken to the

������
N0

p
order, is given by [12]

H � H0 �Hint; (1)

where H0 �
1
2 gnN0 �

P
k "kv

2
k �

P
k "kb

�
k bk is the

part of H which is diagonalized by the Bogoliubov
transformation. N0 is the number of atoms in the k � 0

mode. "k �
����������������������������
"0k�"

0
k � 2gn�

q
is the recently measured

Bogoliubov energy [13] and "0k is the free particle energy
"0k � �h2k2=2m. g � 4� �h2a=m is the coupling constant, a
is the s-wave scattering length, and m is the mass of the
atoms. b�k and bk are the creation and annihilation oper-
ators, respectively, of quasiparticle excitations with
momentum k. vk and uk are the Bogoliubov quasiparticle
amplitudes. This part of the Hamiltonian describes
excitations in the condensate with momentum k and
energy "k.
Hint is the part of the Hamiltonian which is responsible

for the interaction between excitations

Hint �
g
2V

������
N0

p X
k;q

Akq�b�k bqbk�q � b�q b�k�qbk�: (2)

The first term in parentheses is referred to as Landau
damping and is analogous to photonic up-conversion,
such as second harmonic generation in optics [14],
whereas the second term is referred to as Beliaev damp-
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FIG. 1. The square of the transfer matrix between the exci-
tation Fock state basis and the dressed state basis for N � M �
100. Darker areas correspond to larger probability. The white
dash-dotted line draws the solution to jEjj � 2

���������������������
�N2 � i2�i

p
. The

Fock states are numbered by i. The dressed states are numbered
by j from lowest to highest energy.
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Akq � 2uk�uquk�q � vquk�q � uqvk�q�

� 2vk�vqvk�q � uqvk�q � vquk�q�: (3)

The main damping mechanism from a single, largely
populated mode k will be elastic Beliaev damping of the
excitations into empty modes, which are on a monoener-
getic surface in momentum space [16].

We now consider the case where the condensate is
excited with N excitations of momentum k and M ex-
citations of momentum q, jNk;Mq; 0k�qi, such that k and
q fulfill the Bragg condition, i.e., "k � "q � "k�q. Two-
photon Bragg transitions can be used to excite the
condensate and populate different momentum modes
with a variable number of excitations [13]. The amplitude
given by Hint for Beliaev damping of the k momentum
excitation into two excitations with momenta q and k�
q, j�N � 1�k; �M� 1�q; 1k�qi, will be

����
N

p
or

�����
M

p
fold

larger than any of the other damping channels. This
will result in 3WM into a newly populated k� q mo-
mentum mode. We assume that N0 	 N;M 	 	t0, where
	 is the total Beliaev damping rate of the excitations into
the quasicontinuum of empty modes and t0 is the time
of the experiment. Thus, during the experiment time,
3WM dynamics dominates over damping into empty
modes. In general the set of N � 1 excitation Fock states
j�N � i�k; �M� i�q; ik�qi, where i varies between 0 and
N, spans a degenerate subspace of the eigenstates of H0.
Hint couples between pairs of states in this subspace which
have a difference of 1 in i, and can be represented by the
�N � 1� 
 �N � 1� tridiagonal matrix

hN � s;M� s; sjHintjN � i;M� i; ii

�
g
2V

������
N0

p
Akq�

������������
N � i

p ����������������������
M� i� 1

p �����������
i� 1

p
�i�1;s

�
���������������������
N � i� 1

p �������������
M� i

p ��
i

p
�i�1;s�: (4)

When Hint is diagonalized, we get a new set of N � 1
eigenstates, jji, where j varies between 1 and N � 1, that
are dressed by the interaction. Note that since the dressed
states are superpositions of degenerate eigenstates of H0,
they are eigenstates of the complete Hamiltonian in
Eq. (1).

The degeneracy between the excitation Fock states is
removed by the interaction. The calculated energy
spectrum of the new dressed basis is symmetric around
E � 0. We find the spectrum to be roughly linear, with an
average energy spacing of dE ’ 2:48

����
N

p
in units of

�g
������
N0

p
=2V�Akq [17]. Because of the nonlinearity of the

problem, energy differences between each pair of dressed
states are slightly different, and vary parabolically with a
minimum around the zero energy value.

Figure 1 shows the absolute value squared of the trans-
fer matrix between the bare excitation Fock state basis
and the dressed basis for N � M � 100 [18].

The main contribution to the dressed state superposi-
tion of Fock states comes from the two states which
170401-2
solve jEjj � 2
���������������������
�N2 � i2�i

p
. The dash-dotted line in Fig. 1

indicates the solution of this equation. In order for this
equation to have real solutions the resulting spectrum
must satisfy jEjj< 1:24N3=2, and therefore has an average
energy difference between dressed states of dE ’
2:48

����
N

p
, consistent with our numerical observation.

We choose as a model system a condensate of 3
 105
87Rb atoms in the F � 2, mf � 2 ground state. The con-
densate, which is similar to the experimental parameters
of [13], is homogeneous and has a density of 3

1014 atoms=cm3. The k � 0:7 �h=� mode and q � k=

���
2

p

mode, where � is the healing length of the condensate
given by � � �

������������
8�na

p
��1, are populated with 100 excita-

tions each.
We start from the above excitation Fock state, written

as a linear superposition of dressed states. The state of the
system is then readily propagated in time by evolving
each of the dressed states phases according to its energy.
Figure 2 showsNk, the expectation value of the number of
excitations with momentum k, as a function of time.
Excitations oscillate between the k momentum mode
and the q and k� q momenta modes. Inset (a) of Fig. 2
shows Nk during a much longer time. Since the energy
spectrum is not precisely linear, at longer times beating
between the different oscillation frequencies gives rise to
a slow amplitude modulation of the oscillations.

Even though we start from an excitation Fock state, the
system immediately evolves into a superposition of Fock
states. Inset (b) of Fig. 2 shows the standard deviation of
Nk vs time. After a time scale which is set by the non-
linearity of the spectrum, the average value of Nk and its
standard deviation are of similar size. However, the ex-
pectation value of the number difference between mode q
and mode k� q equals M and is constant in time. The
170401-2



FIG. 2. The expectation value Nk, for k � 0:7 �h=� and q �
k=

���
2

p
, as a function of time. N � M � 100, for a condensate

of 3
 105 87Rb atoms in the F � 2, mf � 2 ground state.
The condensate is homogeneous, with a density of 3

1014 atoms=cm3. The oscillation frequency is roughly the aver-
age energy difference in the dressed state spectrum. Insets (a)
and (b) show Nk and the standard deviation of Nk, respectively,
during a longer time.
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standard deviation of that difference always remains zero,
which implies relative number squeezing between the two
modes.
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In analogy to the treatment of spontaneous photon
scattering as a transfer between dressed states manifolds
of the dressed atom-laser system [9], we now consider
scattering into empty modes as a transfer between
dressed state manifolds. Thus, the damping of excitations
from mode k is no longer elastic, but rather carries the
energy difference between the dressed states among
which it occurred.

Evaluating HB � g
2V

������
N0

p P
q0 Akq0 �b

�
q0b�k�q0bk�, be-

tween every pair of states in the two manifolds reveals
the spectral structure of the damping process.We find that
the spectrum of the N0 � N � 1, M0 � N manifold,
which has one less energy eigenvalue, is shifted by
roughly half the energy difference with respect to
the N � M energy spectrum. HB significantly couples
only dressed states with neighboring energies. This
results in a structure of a doublet in the Beliaev damping
spectrum.

The finite lifetime of the dressed state results from the
fact that there is a quasicontinuum of N0 � N � 1, M0 �
N manifolds, all with an identical energy spectrum, to
which a dressed state in the N � M manifold can couple
to via HB. To determine the width of each transition
between two dressed states, we use the Fermi golden
rule. The damping rate between a state jjiN;M in the N,
M manifold and a state jiiN�1;M in the N � 1,M manifold
is then given by
	 �
2�
�h

X
q0

g2N0

2V2 jAkq0 j2jN�1;MhijbkjjiN;Mj2��"k � "0 � "q0 � "k�q0 �; (5)

where "0 is the energy difference between jjiN;M and jiiN�1;M. Using momentum conservation, the energy conservation
� function becomes a geometrical condition on the angle ! between k and q0

cos�!� �
1

2kq0
�k2 � q02 � 1�

�������������������������������������������
�"k � "0 � "q0 �2 � 1

q
�; (6)

where momentum is in units of �h=�, and energy is in units of gn. Equation (5) is then simplified to

	 �
g

2�3h

Z
jAkq0 j2jN�1;MhijbkjjiN;Mj2

q0

2k

�"k � "0 � "q0 ��������������������������������������������
�"k � "0 � "q0 �

2 � 1
q dq0: (7)
The spectrum of each transition is taken as a Lorenzian
with a width of 	=2�Nk and a normalization of 	=Nk
around "0. Nk is the average occupation of mode k for the
two dressed states involved. Averaging over all of the
possible transitions between the manifolds, Fig. 3 shows
the damping spectrum between the N � M � 5
 103

and the N � 5
 103 � 1, M � 5
 103 manifolds, for
the same model system as in Fig. 2 for k � 3:2 �h=�,
1:6 �h=�, and 0:7 �h=�, and q � k=

���
2

p
[19]. A clear doublet

structure is evident. The inset of Fig. 3 shows the energy-
conserving surfaces for the two center energies of the k �
0:7 �h=� curve (solid line), and the energy-conserving
surface for elastic damping from the same mode (dashed
line).
The separation between the peaks in Fig. 3, which is
equal to the oscillation frequency, decreases with k as
Akq. The decrease in the width of each peak as a function
of k comes from two contributions. First, since damping
into empty modes is incoherent, it decreases as jAkq0 j2.
Second, as k decreases there are less allowed empty
modes on the energy-conserving surface. Therefore, the
doublet structure is more resolved for the lower k values.
Another contribution to the width of the resonance in
Fig. 3 is due to the nonlinearity of the dressed state
spectrum, which gives a slightly different energy for
transitions between different dressed state pairs.

Several other mechanisms contribute to the broadening
of the two peaks which are not included in Fig. 3. The fact
170401-3



FIG. 3. Damping spectrum between the N � M � 5
 103

manifold and the N � 5
 103 � 1, M � 5
 103 manifold,
for the same condensate as in Fig. 2. The three curves are for
k � 3:2 �h=� (dashed line), k � 1:6 �h=� (dotted line), and k �
0:7 �h=� (solid line), where q � k=

���
2

p
. The inset shows the

energy-conserving surfaces for the two center frequencies of
the k � 0:7 �h=� curve (solid line) and the energy-conserving
surface for elastic damping from mode k (dashed line).
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that only the first scattering event occurs between
the N � M � 5
 103 and the N � 5
 103 � 1, M �
5
 103 manifolds will further broaden the resonances.
Since the energy splitting scales as

����
N

p
, in an experiment

where one scatters dN atoms from mode k, this will result
in a relative broadening of dN

2N . According to the same
scaling, an initial coherent, rather than Fock, state will
cause a relative broadening of

���
N

p

2N . The condensate finite
size or inhomogeneous density profile will further con-
tribute to the width of the resonance. We estimate that
for the experimental parameters of [13] a doublet struc-
ture in the Beliaev damping spectrum can be resolved.
Experimentally, the energy doublet can be observed by
computerized tomography analysis of time of flight ab-
sorption images of the 3WM system [20].

In conclusion, we calculate the wave-mixing dynamics
between three, low k, Bogoliubov quasiparticles in a Bose
condensate. The Hamiltonian of this system is diagonal-
ized to the next order in

������
N0

p
. The resulting basis of

dressed states allows for the efficient, linear, propagation
of the system in time. Nonlinear oscillations between the
different momentum modes are observed. Relative num-
ber squeezing between the q and the k� q momentum
modes is shown. Beliaev damping of excitations from
these modes is treated as a transfer between dressed state
manifolds. The damping process is shown to become
inelastic and, similar to the optical Mollow triplet, ex-
170401-4
hibits a doubletlike energy spectrum, which is more
resolved for the low k values.
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