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We measure the response of an elongated Bose-Einstein condensate to a two-photon Bragg pulse. If
the duration of the pulse is long, the total momentum transferred to the condensate exhibits a nontrivial
behavior which reflects the structure of the underlying Bogoliubov spectrum. It is thus possible to
perform a spectroscopic analysis in which axial phonons with a different number of radial nodes are
resolved. The local density approximation is shown to fail in this regime, while the observed data agree
well with the results of simulations based on the numerical solution of the Gross-Pitaevskii equation.
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the radial direction. By using Bragg pulses longer than in
previous measurements [2,4], we resolve this multibranch
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The crossover between phonon and single-particle ex-
citations in the Bogoliubov spectrum of a weakly inter-
acting Bose gas [1] is one of the main ‘‘textbook’’
concepts that can be directly tested in the case of trapped
Bose-Einstein condensed gases. Bogoliubov quasipar-
ticles have been already produced in elongated conden-
sates by using two-photon Bragg scattering [2–5]. For
excitations with frequency ! and wave vector k, the
phononic character has been checked by observing that
the static structure factor S�k� is less than 1 [2,4], by
measuring the quasiparticle amplitudes uk and vk [3,6],
and by showing that the dispersion relation !�k� is linear
at low k [4,5].

In all of these cases, the local density approximation
(LDA) has been used to adapt the Bogoliubov theory of
uniform gases to the actual inhomogeneous condensates.
This approach is expected to be accurate for large con-
densates, where the density profile varies smoothly on the
scale of the excitation wavelength and the system behaves
locally as a piece of uniform gas with a local Bogoliubov
spectrum [7,8]. This applies, for instance, to axial exci-
tations of elongated condensates, when the wavelength of
the excited states is much smaller than the size of the
system along the major axis. These excitations can then be
classified with a continuous wave vector k. However, the
finite transverse size of the condensate also produces a
discreteness of the spectrum, which is ignored in LDA
(see [9] for a recent classification of normal modes in
anisotropic condensates and [10,11] for the limiting case
of an infinite cylinder).

In this Letter we show that the response of the con-
densate to a Bragg pulse is indeed significantly affected
by the radial degrees of freedom. In particular, if the
duration of the pulse is longer than the radial trapping
period, the condensate responds resonantly at the fre-
quencies !nr�k� of axial quasiparticles with nr nodes in
0031-9007=03=90(6)=060404(4)$20.00 
spectrum, finding good agreement with the predictions of
the Gross-Pitaevskii (GP) theory.

As described in Ref. [4], our condensate consists of
N � 105 atoms of 87Rb, with a thermal fraction of 5% or
less. The radial and axial trapping frequencies are !? �
2	�220 Hz� and!z � 2	�25 Hz�, respectively. The radial
and axial Thomas-Fermi radii of the condensate are R �
3:1 m and Z � 27:1 m.

We excite the condensate by using two Bragg beams
with approximately parallel polarization, separated by an
angle �. The Bragg beams illuminate the entire conden-
sate for a time tB. The beams have a frequency difference
! determined by two acousto-optic modulators. If a
photon is absorbed from the higher-frequency beam and
emitted into the other, an excitation is produced with
energy h! and momentum hk, where k � 2kp sin��=2�,
and kp is the photon wave number. The wave vector k is
adjusted to be along the z axis. To measure a single point
on the excitation spectrum !�k�, k is fixed by �, and ! is
varied.

The measured quantity is the total momentum trans-
ferred to the condensate along z. This is obtained by
switching off the trapping potential after the Bragg pulse
and taking absorption images of the density distribution
of the expanding condensate. In Fig. 1 we show typical
results for short Bragg pulses of duration tB � 1 msec.
The observed momentum Pz is plotted as a function of !
for three different values of k. In Ref. [4] we made
Gaussian fits to these types of curves, taking the position
of the maximum to be the quasiparticle dispersion !�k�
and showing that this dispersion was consistent with the
Bogoliubov spectrum in the LDA.

A deeper analysis of the same results can be performed
by numerically solving the GP equation for the order
parameter of the condensate ��r; t� [12]:
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FIG. 2. The time dependence of the momentum transferred
during the Bragg pulse, for k � 3:1 m�1. Solid curves are the
results of GP simulations with VB � 0:2 h!? plotted at various
times. Starting with the lowest solid curve, tB � 1; 2; 3; 4; 5,
and 6 msec. The dashed curves are the corresponding LDA
predictions. The arrows indicate the GP predictions for the
frequencies of the normal modes of the condensate, having 0,
1, and 2 radial nodes and the same axial wave vector k.

FIG. 1. Pz, in arbitrary units, as a function of ! for short
pulses (tB � 1 ms). Bottom, center, and top plots correspond to
different k values. Points with error bars are the measured
values. Solid lines are the results of GP simulations. The dashed
lines are the LDA predictions.
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where g � 4	 h2a=m is determined by the s-wave scatter-
ing length a. The external potential can be taken as the
sum of the harmonic confinement and the Bragg poten-
tial,

V�r; t� �
m
2
�!2

?r
2
? �!2

zz2� � ��t�VB cos�kz�!t�; (2)

where r2? � x2 � y2 and ��t� is equal to 1 in the interval
0< t < tB and 0 outside.

The ground state at t � 0 can be found as the stationary
solution of Eq. (1). Then, the time dependent GP equation
can be solved at t > 0 to simulate the Bragg process
[8,13]. We take advantage of the axial symmetry of V to
map the order parameter into a two-dimensional grid of
points N? 	 Nz (typically, 64	 1024) and evolve it by
means of a Crank-Nicholson differencing method with an
alternating direction implicit algorithm, as in [14].

The momentum transferred to the condensate can
be calculated from � through the definition Pz �
��i h=2�

R
dr�
@z�� c:c: Figure 1 shows good agree-

ment between the results of the GP simulations (solid
lines) and the experimental data, for short pulses. The
strength VB in the GP equation is used as a free parame-
ter, so the comparison is restricted to the position and
shape of the peak. In principle, VB could be determined
by using the experimental parameters for the power, area,
and direction of polarization of the two laser beams,
but this estimate might be affected by a significant
uncertainty.
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The LDA curves (dashed lines in Fig. 1), which are
obtained by using the local Bogoliubov spectrum to
calculate Pz�k;!� in the linear response regime as in
[8], are also reasonably close to the GP predictions. For
shorter tB we checked that the accuracy of the LDA is
even better, as discussed in [8].

A rather different situation is found for longer pulses,
with tB on the order of the radial trapping period (about
4.5 msec) [15]. Figure 2 shows the momentum transferred
in the GP simulations (solid curves) for various time
durations tB. The lowest curve, after 1 msec, is a broad
peak as in Fig. 1, close to the LDA (dashed curves). For
longer times however, a multipeak structure appears,
strongly deviating from LDA. We find a similar behavior
for all values of k in our simulations and for a wide range
of intensities VB.

Figures 3(a) and 3(b) show measurements of Pz for k �
1:4 m�1 and 3:1 m�1, respectively, with long pulses
of duration 10 and 6 msec, respectively. The intensities of
the Bragg beams are adjusted so that the number of
excitations created on resonance is no more than roughly
25% of the number of atoms in the condensate. Each point
in Fig. 3 is an average of about five measurements. The
error bars reflect the statistical error of this averaging.
The results of GP simulations are indicated by the upper
solid curves, which are obtained by choosing VB �
0:35 h!? and 0:2 h!? for Figs. 3(a) and 3(b), respectively.
Both the measurements and the GP simulations show
multiple peaks, due to the excitations of quasiparticles
with different nr.

We verify that the multipeak structure reflects the
fundamental normal modes composing the multibranch
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FIG. 3. Pz in units of N hk, as a function of ! for long Bragg
pulses. For (a) and (b), tB � 10 msec and 6 msec, respectively,
and k � 1:4 m�1 and 3:1 m�1, respectively. The circles are
the measured values. The dashed line is a guide to the eye. The
upper solid curve is the result of GP simulations with VB �
0:35 h!? and 0:2 h!?, for (a) and (b), respectively. The lower
solid curve is the same but with VB 10 times smaller. For the
lower curve, Pz is multiplied by 10 and 20 for (a) and (b),
respectively. The arrows on the ! axes indicate the normal
mode frequencies, as in Fig. 2. (c) is the same as (b), but with
greater intensity. For the GP simulation in (c), VB � 0:26 h!?.
The dotted curves are the LDA predictions.
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spectrum and does not depend significantly on the inten-
sity VB. The lower curves of Figs. 3(a) and 3(b) corre-
spond to the same simulations as the upper curves, but
with VB reduced by a factor of 10. In this case, the system
is excited in the linear response regime. The momentum
transferred is 2 orders of magnitude smaller, but the
resulting curves have peaks at the same locations as for
larger VB. Furthermore in the case of k � 3:1 m�1 we
repeat the measurement and simulation of Fig. 3(b) with
an intensity 30% greater and find peaks again at the same
location, as shown in Fig. 3(c). This means that nonlinear
060404-3
effects are not crucial in our observations. Nevertheless,
they might be interesting. Indeed, looking at Fig. 3(a) one
notices small differences between the lower and upper
curves, for small and large VB, respectively. The curve for
large VB displays two side peaks around the main peak at
0.4 kHz. These side peaks, whose shape significantly
depends on tB, are not visible in the linear regime of
the small VB curve and might be due to nonlinear effects.
Similar effects were found by a one-dimensional simula-
tion in Ref. [16].

In Fig. 3, we see good agreement between the locations
of the peaks in the experimental and GP results, but the
experimental peaks are broader due to noise. The major
source of noise is the sloshing of the condensate in the
trap. Specifically, sloshing of speed vsl in the axial direc-
tion causes a Doppler shift in the light potential of fre-
quency �#sl � kvsl=2	. By measuring the velocity of the
condensate in the trap at the end of the Bragg pulse from
its position in the time-of-flight image, we obtain an
estimate for vsl. The corresponding �#sl has a standard
deviation of 50, 200, and 150 Hz for Figs. 3(a)–3(c),
respectively, which is sufficiently large to account for
the observed broadening of the peaks of Pz.

The broadening can be reduced by explicitly adding
�#sl for each image to the applied ! in the laboratory
frame. This correction requires that the Bragg pulse be
much shorter than the axial trap period (40 msec). This
requirement is sufficiently met by the 6 msec pulses
employed for k � 3:1 m�1. Therefore, the data points
of Fig. 3(b) and 3(c) contain the correction.

A fit of the LDA to the measurements is indicated by a
dotted line in Fig. 3. The LDA is seen to fail to reflect the
multipeak structure of the measurements.

Now we use the GP equation to directly find the
multibranch Bogoliubov spectrum of the condensate.
Specifically, we analyze the oscillations in the condensate
density induced by the Bragg process. In the GP simula-
tion we let the condensate freely oscillate in the trap after
the Bragg pulse and we perform a Fourier analysis of the
density variations. This analysis shows that for each k and
!, the density oscillates as a superposition of modes of
frequency !nr�k�, which are excited by the Bragg poten-
tial in Eq. (2) due to the inhomogeneity of the condensate
in the radial direction. For symmetry reasons, only modes
with azimuthal angular momentum m � 0 are excited.
The calculated frequencies are shown as open circles in
Fig. 4 [17]. The lowest branch corresponds to Bogoliubov
axial modes with no radial nodes. The second branch has
one radial node; it starts at 2!? for k � 0, where it
corresponds to a purely radial breathing mode. The third
branch has two nodes [18].

In the limit of small oscillations, all these states co-
incide with the solutions of the linearized GP equation,
i.e., the generalization of the Bogoliubov equations to
inhomogeneous condensates. For an infinite cylinder
these solutions were calculated in Ref. [10] and, in the
060404-3



FIG. 4. Excitation frequencies vs k for a trapped Bose-
Einstein condensate. The open circles are the frequencies of
the normal modes with nr � 0; 1; 2; . . . nodes in the radial
direction, as calculated from the GP equation. The filled circles
are the position of the maxima of the main peaks in Pz for the
long-pulse measurements of Fig. 3. The dashed lines are the
prediction for an infinite cylinder with k� $�1. The dotted
line indicates the inverse healing length.
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hydrodynamic limit (k much smaller than the inverse
healing length $�1), in Ref. [11]. For k� $�1, our multi-
branch spectrum turns out to be very close to the spec-
trum predicted in Ref. [11], indicated by dashed lines in
Fig. 4 (also see Fig. 1 of Ref. [11]). $�1 is indicated by a
dotted line in Fig. 4.

The calculated normal mode frequencies are shown as
arrows on the! axes in Figs. 2 and 3. Both the theoretical
curves and the experimental results clearly show that the
momentum is resonantly transferred to the condensate
when the Bragg frequency is close to the Bogoliubov
branches.

The locations of the measured peaks of Figs. 3(a) and
3(b) are also shown as filled circles in Fig. 4. These
locations are found by parabolic fits to the peaks. The
good agreement between these measurements and the
simulated spectrum (open circles) identifies the peaks
in the observed spectrum as being axial quasiparticles
with nr radial nodes. Bragg pulses can indeed be used to
perform high-resolution spectroscopy of the multibranch
Bogoliubov spectrum of trapped condensates in a regime
where the LDA is not applicable.
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In conclusion, we have used long Bragg pulses to
spectroscopically measure the first and zeroth order radial
modes in the phonon spectrum of a Bose-Einstein con-
densate. These high-resolution measurements agree well
with simulations of the Gross-Pitaevskii equation. The
local density approximation fails to reproduce these mul-
tiple radial modes.

The technique of long Bragg pulses could also be used
to resolve inherent dissipation mechanisms, such as in-
homogeneous broadening and coupling between modes,
including Beliaev and Landau damping. The technique
could be particularly effective if the inhomogeneous
broadening could be overcome, by means of echo tech-
niques, or the use of nonquadratic optical dipole traps.
Finally, very sensitive GP simulations could be used in
combination with long pulses, to carefully study non-
linear dynamics.
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