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Relaxation of the Larmor magnetic moment by spin-exchange collisions has been shown to diminish

for high alkali densities, resulting from the linear part of the collisional interaction. In contrast, we

demonstrate both experimentally and theoretically the elimination of spin-exchange relaxation of high

magnetic moments (birefringence) in alkali vapor. This elimination originates from the nonlinear part of

the spin-exchange interaction, as a scattering process of the Larmor magnetic moment. We find counter-

intuitively that the threshold magnetic field is the same as in the Larmor case, despite the fact that the

precession frequency is twice as large.
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Atomic relaxation mechanisms in vapor physics limit
the precision and performance of many spectroscopic mea-
surements. For example, the performance of atomic clocks
[1] and sensitive magnetometers [2] is determined by these
relaxations. The dominant ground state relaxation mecha-
nism is induced by spin-exchange collisions of alkali atoms
[3,4]. However, it was found that at high atomic densities
the Larmor (dipolar) coherence, associated with any two
nearest Zeeman splitted levels, improves significantly with
its frequency being slowed down [5,6]. This unique effect
is known as the spin-exchange relaxation free (SERF)
effect since the relaxation due to spin-exchange collisions
is completely suppressed and only next-order relaxation
processes, such as the power broadening of a pumping
laser, become apparent. This effect sets the stage for ultra-
sensitive vapor based magnetometery schemes [7].

Since alkali vapor is essentially a multilevel quantum
system, in many coherent phenomena various orders of
atomic coherence are involved, each describing the cou-
pling strength between one energy level and another. The
use of high orders of coherence introduced phenomena
such as nonlinear magneto-optical rotation [8] and had a
great contribution in improving magnetometery schemes
[9]. Although the high orders of coherence are also relaxed
by spin-exchange collisions, up to this point only the
lowest order coherence (dipolar) was studied experimen-
tally and theoretically at high atomic densities while
the higher orders of coherence in this regime were com-
pletely avoided.

In this Letter we demonstrate experimentally that the
birefringent coherence, associated with any two next-
nearest Zeeman splitted levels, also experiences SERF in
the low magnetic field regime. We further explain both
numerically and analytically the origin of this effect and
deduce the main characteristics of this phenomena such as
its decoherence rate, oscillation frequency, and the
magnetic field threshold of the SERF regime. Magnetic

moment orders higher than the birenfringence are also
treated, exhibiting a cascaded process leading to SERF.
Finally, we show that ultra-sensitive magnetometers, based
on the birefringent coherence, have twice the bandwidth of
the Larmor magnetometer with the same sensitivity.
To measure the Larmor and birefringent coherences a

pump-probe scheme is utilized (Fig. 1), where the pump
polarizes the atomic vapor, and the absorption of the probe
by the atoms is measured. This absorption is described by
the susceptibility of the medium, which is in turn con-
structed by means of the different magnetic moments of the
atomic density matrix. A proper measurement of the differ-
ent moments is designed by choosing the relevant magnetic
orders of the susceptibility.
The different orders of ground state coherence can be

described by expanding the ground state density matrix �
to its different multiplets �LMðFF0Þ [10]. Each multiplet
describes the coherence between the hyperfine levels F and
F0 with L polarization moment distribution. The lowest
three multiplets are the isotropic (L ¼ 0), dipolar (L ¼ 1),
and birefringent (L ¼ 2) multiplets describing the popula-
tion of the hyperfine levels F, F0, the dipole moments, and

FIG. 1 (color online). Experimental setup for the birefringent
measurement. The cell is initially polarized by a �þ pumping
beam. Then, the absorption of a � probe is measured at a free
induction decay of the vapor in the presence of an applied
magnetic field Bz.
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the quadrupole moments of their Zeeman sublevels,
respectively. The M quantum number denotes the energy
level spacing of the Zeeman splitting M@!B, and is asso-
ciated with the natural frequency M!B. This expansion is
of special significance since single-photon interactions,
being described by the complex susceptibility observable
�, involve solely the lowest three atomic multiplets [11].
All coherences satisfy �L � M � L and we identify the
L ¼ jMj ¼ 1 as the Larmor coherence and L ¼ jMj ¼ 2
as the birefringent one. These coherences can be measured
by monitoring Il, the intensity of a weak probe light beam
after it propagates a distance l of alkali vapor [11]

Il ¼ I0 exp

�
� 2�l

X
ij

e�i Imðh�ijiÞej
�
; (1)

where I0 is the probe intensity, ei is the electric polarization
vector of the probe, with

h�iji ¼
X

LMFF0
�ij
LMFF0�LMðFF0Þ: (2)

Here i, j are the spatial Cartesian coordinates and

�ij
LMFF0 are the relative strength coefficients [11,12].

From Eqs. (1) and (2) the absorption of a linear probe
decays exponentially in time, with a decay rate propor-
tional to the birefringent multiplet �22.

We measure the birefringent coherence by monitoring
the absorption of a linear probe and the Larmor coherence
with a circular probe. We use a 173 mm3 cubic cell with
87Rb, heated to temperature T ¼ 111:5� (atomic density
�1013 cm�3). We reduce the collision rate with the cell
walls by introducing 90 torr of N2 buffer gas. We control
the applied magnetic field by shielding the cell with
�-metal cylinders and three perpendicular Helmholtz
coils. A collimated distributed feedback laser beam with
a wide Gaussian profile (23 mmwidth) optically pumps the
atoms with circularly polarized light and effective pump-
ing power (0.97 mW) much lower than the saturation
intensity. Then, the pumping beam is switched off and a
magnetic field Bẑ is applied. As a result, the alkali spins
start to precess around the magnetic field. This precession
decays due to the different relaxation mechanisms. We
probe this precession by measuring the absorption of a
weak narrow beam (3 mm width with a power of
2:5 �W). The Larmor coherence is probed in the Fg ¼ 2

to Fe ¼ 1 D1 transition. To minimize the isotropic (T1)
probed part from the birefringent part we 1 GHz red-detune
the probe. The pressure of the buffer gas was chosen such
that the excited-state hyperfine levels are still resolved, and

the birefringent strengths �ij
2MFF are observable [13].

A typical � absorption (birefringent) measurement is
shown in Fig. 2 for an applied magnetic field of 28 nT in
the low magnetic field regime. A measurement of the
Larmor absorption for the same parameters is shown for
reference. The measured birefringent signal oscillates with
frequency !br which is twice the frequency of the

measured Larmor signal !lr. The decoherence rates and
frequencies were determined by fitting each signal to the

simple model f ¼ Ae�ðt=T1Þ þ Ce��0t cosð!0tÞ, assuming
that both !0 and �0 are time independent (a negligible
dependence less than 8% was observed). The fit was
performed for times longer than t0 ¼ 300 � sec satisfy-
ing t0 � R�1

SE , where RSE � 100 � sec is the mean

spin-exchange rate [6], to eliminate other rapidly
decaying moments.
We find that the birefringent decoherence rate �br

0 ðBÞ
decreases significantly by the decrease of the magnetic
field as shown qualitatively in Fig. 3 and quantitatively in
Fig. 4. These graphs indicate the effect of rapid spin-
exchange collisions on both the Larmor and the birefrin-
gent coherences. At high magnetic fields, the decoherence
rate is limited by the high spin-exchange collision rate RSE

and approaches a constant value. By decreasing the mag-
netic field, the decoherence rate associated with spin-
exchange collisions decreases, approaching quadratically
to the lower plateau in the low magnetic field regime. The
lower plateau is determined by other polarization (T1)
decoherence processes such as the diffusion time of the
atoms to the cell walls. In that sense, the decoherence rate
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FIG. 2 (color online). A typical measurement of the oscillation
and decay of the Larmor and birefringent coherences (500
averages). The birefringent signal oscillates at twice the
Larmor frequency and decays twice as fast. The fit to each of
the signals is shown (dotted curve).
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FIG. 3 (color online). Measurement of the transition into
the SERF regime of the birefringent coherence. The decoher-
ence rate decreases significantly by decreasing the applied
magnetic field.
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is now T1 limited and the spin-exchange relaxation is
eliminated. In this regime it is found that �br

0 ðBÞ satisfies
�br
0 ðBÞ ffi 2�lr

0 ðBÞ (3)

yielding a scaled SERF narrowing for the birefringent
decoherence rate �br

0 ðBÞ relative to the Larmor decoher-

ence rate �lr
0 ðBÞ. Since the measured birefringent signal is

associated with the second harmonic of the Larmor
frequency, we identify this process as a nonlinear one
[14] and will later explain its nature. We thus conclude
that the birefringent coherence experiences the nonlinear
SERF effect at the same magnetic field threshold of the
Larmor coherence with its frequency and decoherence
rate doubled.

To verify that the model of spin-exchange relaxations is
valid for the measurements, numerical ground state simu-
lations are performed, considering the following Liouville
equation [7]

d�

dt
¼ Ahfs

½I 	 S; �

i@

þ!B

½Sz; �

i@

þ RSEð4�ShSi �A 	 SÞ
� RSDA 	 S; (4)

where I and S are the nuclear and electronic spin observ-
ables, Ahfs is the hyperfine coupling constant of 87Rb, !B

is the bare electron precession frequency and RSD is the
spin-destructing collision rate. The operators � and A are
the nuclear and electronic parts of the density matrix
� ¼ �þA 	 S [6]. Hyperfine coherences (F � F0) are
neglected to improve the simulation runtime [15].

The predictions of the numerical model are plotted in
Fig. 4. We used a single fitting parameter (RSD ¼
147 sec�1), determined by fitting the decoherence rate of
the Larmor coherence at low magnetic fields. The birefrin-
gence is plotted using no free parameters. The simulations
also yield the slight time dependence of the measured
frequencies and decoherence rates, resulting from the re-
laxation of the mean spin polarization. Therefore, the

subscript ‘‘0’’ denotes the values of the decoherence rates
�lr
0 , �br

0 in the low-polarization regime. Evidently, the

simulations verify that all the processes governing
the birefringent coherence are included in Eq. (4).
Furthermore, the main observations of the SERF magnetic
field threshold, the decoherence rate and precession fre-
quency are well described by the simulations.
These results are surprising in two aspects. First, one

would expect the birefringent coherence to experience
SERF at magnetic fields satisfying !br

0 ¼ 2!lr
0 & RSE

while de facto it satisfies the same condition as the
Larmor coherence !lr

0 & RSE. Second, Eq. (3) is rather

surprising since neither a spin vector model [15] nor a
motional narrowing-based model [6] can describe it.
These models are based on the linearized spin-exchange
interaction, neglecting nonlinear terms arising from the
interaction with the mean spin polarization. In the follow-
ing, we show that the dynamics of the birefringent coher-
ence relies entirely on this nonlinear mechanism. To
examine this nonlinearity using perturbation analysis, we
rephrase Eq. (4) using the super-operator formalism [6]

d�

dt
¼ ðW þ Zþ EþQð�ÞÞ�; (5)

where W denotes the hyperfine interaction, Z denotes the
interaction of the external magnetic field with the electron
spin, and E andQð�Þ denote the linear and nonlinear terms
of the spin-exchange relaxation. For simplicity we neglect
the spin destruction interaction. To describe Eq. (5) in the
interaction picture we use the basis of eigenoperators
jLM�i (associated with the magnetic L, M multiplets)
of the linear super-operator W þ Zþ E. These eigenoper-
ators were first calculated in [6] for the multiplets L ¼ 0, 1.
The calculation is extended for L > 1 in [16]. In the linear
theory, � satisfies

�ðtÞjlinear ¼ X
LM�

�LM�ð0Þe�LM
� tjLM�i; (6)

where the magnetic eigenvalues �LM� describe the dynam-
ics of � completely. In the low magnetic field regime
(!0 & RSE) these eigenvalues are given by [16]

�LM� � � ibLM

2cL
!0 � RSEðaL � cLÞ �O

�
!2

0

RSE

�
; (7)

where !0 ¼ !B=ð2I þ 1Þ is the slowed down Larmor
frequency and the coefficients aL, bL, cL are given in [16].
Using the jLM�i basis, we transform Eq. (5) to the

interaction picture to include the nonlinear interaction
Qð�Þ�
�LM�ðtÞ ¼ �LM�ð0Þe�LM

� t þ 2RSE

X
l;m;k;�0

QfkgLM�
lm�0



Z

e�
LM
� ðt�t0Þ�lm�0ðt0ÞhSkidt0; (8)

where the super-operator Q is given in the magnetic mul-
tiplets representation jLM�i by [17]
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FIG. 4 (color online). The measured magnetic field depen-
dence of the decoherence rates �lr

0 ðBÞ (circle) and �br
0 ðBÞ

(plus). It is apparent that both the Larmor and birefringent
signals experience SERF at the same magnetic field threshold.
The birefringent decoherence rate is twice the Larmor decay
rate. The simulated decoherence rates of the Larmor (dashed)
and the birefringent (solid) coherences are shown.
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hLM� jQjlm�0i ¼ 2RSE

X1
k¼�1

QfkgLM�
lm�0 hSki: (9)

Here, k denotes spherical coordinates and the coefficients
QfkgLM�

lm�0 are defined by angular momentum transforma-

tions in [16]. We note that QfkgLM�
lm�0 satisfy the selection

rules implied by the condition

QfkgLM�
lm�0 / Cðl; 1;mk;LMÞð1� �l0Þ; (10)

where C is the Clebsch-Gordan coefficient. By Eq. (9), the
typical rate of Qfkg is 2RSEhSki. Since this rate satisfies
2RSEhSki � RSE, in the low-polarization regime, one can
approximate the contribution of Q by using a time-
dependent perturbation theory. This method is applied by
approximating Qð�Þ � Qð�jlinearÞ in Eq. (8). In the low
magnetic field regime of the linear theory [Eq. (7)], the
only nonvanishing components of �lm� for long times
t � R�1

SE are

�lm�ðtÞjlineart�R�1
SE

! �lmþðt0Þe�lm
þ ðt�t0Þð�l0 þ �l1Þ; (11)

where t0 is some initial time satisfying t0 � R�1
SE .

Applying the last equation to hSki one obtains
hSkðtÞijlineart�R�1

SE

! hSkðt0Þie�1k
þ ðt�t0Þ: (12)

The L � 1 Zeeman multiplets are given by substituting
the linear solutions [Eqs. (11) and (12)] in Eq. (8).
Performing integration for times t � R�1

SE yields

�LM�ðtÞ �
X1

m;k¼�1

2RSEhSkðt0Þi�1mþðt0Þ
��LM� þ�1mþ þ�1kþ


QfkgLM�
1mþ eð�1m

þ þ�1k
þ Þðt�t0Þ; (13)

where rapid decaying terms (with typical decoherence rate
of � � RSE) are neglected. Considering the Clebsch-
Gordan coefficient in Eq. (10), the selection rule kþm ¼
M is obtained. Introducing this condition to the birefrin-
gent multiplets L ¼ jMj ¼ 2 in Eq. (13) one obtains

�2M�ðtÞ �
�
2hSkðt0Þi�1kþðt0Þ

a2 � c2
Qfkg2M�

1kþ
�
e2�

1k
þ ðt�t0Þ (14)

for k ¼ M=2. Thus, the evolution of the birefringent mul-
tiplets is determined by a single exponent. We can now
identify the new birefringent eigenvalue �2MjnonlinearM¼�2 �
�i!br

0 � �br
0 with

�2MjnonlinearM¼�2 ¼ 2�1Mþ jlinearM¼�1: (15)

Since the Larmor multiplets with eigenvalues
�1kþ jlineark¼�1 ¼ �i!lr

0 � �lr
0 experience SERF, we find that

the birefringent multiplets also experience SERF with
both the frequency and the decoherence rate doubled, in
complete correspondence with the experiment and simula-
tions. However, the mechanism for this spin-exchange
relaxation elimination is completely different from the

elimination introduced by the linear theory. The emergence
of the birefringent M ¼ �2 coherence can be interpreted
as an induced nonlinear scattering of the Larmor coherence
(�1kþ) by the effective mean field potential QðhSkiÞjlinear
[Eq. (8)]. Both the Larmor coherence and the mean elec-
tronic spin hSi experience the linear SERF effect but their
coupling induces the birefringence. Therefore, the birefrin-
gent SERF magnetic threshold R * !lr

0 is the same as the

Larmor threshold. Moreover, the observed birefringent
doubled slowed-down frequency results from the time
dependence of the scattering rate (hSðtÞi) and not from a
statistical mixture of birefringent precession of different
hyperfine levels. This is the reason why this effect cannot
be explained in terms of the linear model and is therefore
designated as the nonlinear SERF effect.
Although resulting from a nonlinear interaction, it

should be noted that these eigenvalues are not � or hSki
dependent, since hSki is mainly dominated by hSkðtÞijlinear.
However, by considering higher order terms in the pertur-
bation expansion [Eq. (8)] beyond the low-polarization
regime, polarization-dependent corrections of the slowing
down factor qðPÞ can be obtained [18]. Furthermore, these
higher order perturbation terms induce the scattering of
higher order moments (L > 2). Following the selection
rules of Q in Eq. (10), any induced moment L is scattered
only by a lower moment L� 1. Thus, by iterating the
perturbative analysis, one can show that these higher
moments follow a cascade of nonlinear SERF scattering.
The measurement of these higher moments is more com-
plicated [13], and will be treated in a future publication.
For a given magnetic field, the birefringent coherence

precesses twice as fast as the Larmor coherence. Thus, a
birefringent based magnetometer will have twice the band-
width of a Larmor-based magnetometer. The fundamental
sensitivity [7] ratio between a birefringent based magne-
tometer and a Larmor-based magnetometer would beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2	brÞ

p
where 	br ¼ Nbr=Nlr is the relative birefringent

number of oscillators with respect to the Larmor number
of oscillators. This can be approximated by 	br �
j�22þ=�11þj. Using Eq. (14), one can estimate 	br � 1
for moderate polarizations. Thus, the fundamental sensi-
tivity of a birefringent based magnetometer will have the
same sensitivity as a Larmor-based magnetometer.
In conclusion, we have demonstrated experimentally

and theoretically that the birefringent coherence experien-
ces nonlinear SERF at low magnetic fields, with the same
magnetic field threshold but with doubled frequency and
decoherence rate. We have shown that the birefringence
coherence originates from a nonlinear scattering of the
Larmor coherence by the mean electronic spin of the vapor,
and that other higher orders of coherence experience a
similar scattering process. Finally, we have shown that
birefringent based magnetometers will have the same
sensitivity as a Larmor based magnetometers with twice
the bandwidth.
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