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Materials and methods. The Josephson phase circuit [1] used in the experiment has

the following design parameters: critical current I0 ≈ 1.5µA, capacitance C≈1.3 pF and

inductance L≈940 pH. The qubit has a tunable frequency f01 in the 6-9GHz range [2].

During the experiment the device is thermally coupled to the mixing chamber of a dilution

refrigerator at 30mK, where thermal excitations of the qubit are negligible.

We use a custom built arbitrary waveform generator (AWG) having a fast (1 ns time

resolution), 14-bit digital-to-analog converter to produce both the chirp signal and the mea-

surement pulse. To produce the chirp, we modulate a high-frequency oscillator, having a

frequency fLO, using an IQ-mixer. The modulation signals, produced by the AWG, are fed

into the I and Q ports of the IQ-mixer to give
√
I(t)2 +Q(t)2 cos (2πfLOt+ φ) at its output,

where φ = arctan (Q(t)/I(t)). To produce a frequency shift from the high-frequency oscilla-

tor, we keep the amplitude at the output constant while varying the phase φ linearly in time;

to produce a chirp, we use an accelerating phase: φ = 2πf0t− αt2/2, where f0 = fin − fLO,

fin is the initial frequency of the chirp, and α is the chirp rate.

To properly measure the locking probability Plocked, it is generally desirable to have the

maximal possible chirp bandwidth ∆f = fin−ffin (ffin being the �nal frequency of the chirp)

in order to raise the energy expectation of the locked population higher. This leads to a

better distinguishability between the locked and the unlocked population at the end of the

chirp and correspondingly to an increased measurement �delity of the locking probability,

as illustrated in Fig S1. The AWG's bandwidth limitation results in an error of up to ∼10%

in Plocked at large anharmonicity (Fig. 1a), however it does not a�ect the threshold position

in Fig. 4a. We use the maximal bandwidth (600MHz), varying the modulation frequency

from 300MHz to -300MHz [3], and setting the oscillator frequency fLO 200MHz lower than

the qubit frequency f01. The additional 100MHz of bandwidth beyond the qubit frequency
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Figure S1: Level occupation of a bifurcated state after chirp in simulation, as a function of ampli-

tude. Chirp parameters: (a) βr = 0.023, α/2π = 6MHz/ns and (b) βr = 0.002, α/2π = 12MHz/ns.

∆f = 600MHz and f01 − ffin = 500MHz in both. The locked and unlocked populations are dis-

criminated by a level cuto� nc (dashed lines), which is experimentally realized by a calibrated

measurement pulse (see dashed line in Fig. 3e). At large anharmonicity relative to the chirp band-

width (a), the locked and unlocked populations partially overlap, leading to a maximal error of

∼10% in Plocked for the parameters used in the experiments.

is taken to reduce the sensitivity of the threshold to initial condition [4].

Data processing. To extract the state occupation probabilities Pn, we use the escape

probabilities vs. measurement amplitude data (�escape curve�, Pesc(Imeas)). We �rst measure

the single-level escape curves by preparing the system in an |n〉 state, and then measuring

the escape probability as a function of Imeas (see Fig. S2a). Once the single-level escape

curves P n
esc(Imeas) are at hand, we decompose the measured escape curve of an arbitrary

state into the single-level basis P n
esc(Imeas) by optimizing the solution Pn to the set of J

equations Pesc(I
j
meas) =

∑
n

PnP
n
esc(I

j
meas), where j = 1, .., J . Generating the |n〉 state becomes

increasingly di�cult at a larger n, due to the short lifetime of excited states. The procedure

is even more problematic when the anharmonicity β is small and longer pulses are required

to create the target state with reasonable �delity. In practice, at the small anharmonicity

regime that is used in the state dynamics measurement (see main paper), where β/2π =

18MHz, it becomes impossible to prepare the system in an |n〉 state, even for n > 1. Instead,

we use the �rst excited state escape curve, shifted by δImeas(n) = Imeas(0) − Imeas(n) as

an approximate escape curve. This approximation is supported by WKB calculation (see

below). To determine the position of the escape curves we use the chirp data itself: for a

given state, the measured escape curve contains information about the position of the single
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level escape curves. As seen in Fig. S2a, the position of these escape curves (de�ned as the

point where the single-level escape curve increases to 0.5 of its maximal value) is determined

from the positions of the peaks in the derivative ∂Pesc(Imeas)/∂t. Due to the �nite width of

the single level escape curves, the peak corresponding to a certain level is visible only when

the level occupation is su�ciently large. To �nd Imeas(n) for all the relevant levels, we sum

the derivative over all the times along the chirp, as illustrated in Fig. S2b. The extracted

Imeas(n) values are plotted in Fig. S2c (red circles).

Simulation. To check the validity of our estimate for the escape curves, we calculate

them numerically using the WKB approximation of the level dependent tunneling rates [5]:

Γn = fnexp(−2iSn/~), (1)

where Sn =
δ3́

δ2

|pn(δ)| dδ is the action, δi are the classical turning points de�ned in Fig. S2d,

pn(δ) =
√

2m (En − U(δ)) is the momentum, En is the energy of the nth level, U(δ) is the

potential energy, fn is the classical attempt frequency, m = C (Φ0/2π)2 is the e�ective mass

and Φ0 = h/2e is a �ux quantum. fn is calculated using the classical oscillation time:

fn = 1/τ , where τ =
¸
dt = 2

δ2́

δ1

dδ
p(δ)/m

. The energies of the system are calculated by

diagonalizing the system Hamiltonian:

Ĥ = −2e2

C

d2

dδ̂2
− I0Φ0

2π
cos δ̂ +

1

2L

(
Φext −

δ̂Φ0

2π

)2

. (2)

The circuit parameters are found by best-�tting the calculated lowest frequencies f01 and

f12 to the measured ones and �xing the number of levels in the well to 50 (the number

of levels in the well is obtained from extrapolating the experimental points in Fig. S2c to

Imeas(Pesc = 0.5) = 0) [6]. The single-level escape curves are then given by, P n
esc(Imeas) =

1−exp(−Γn(Imeas)∆t), where ∆t is the measurement pulse length. The calculated positions

of the single-level escape curves are plotted in Fig. S2c (solid blue line).

We simulate the state dynamics of our N -level system under a frequency-chirped drive

by propagating its density matrix ρ with the time evolution operator U = exp(iHN∆t). The

N -level Hamiltonian is calculated in the rotating frame of the drive, with the rotating wave

approximation [7] applied:
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Figure S2: (a) Left axis: Calculated escape curves of single level states, and of the state |Ψ〉 =

1/
√

5 (|0〉+ |1〉+ |2〉+ |3〉+ |4〉). Right axis: derivative of the escape curve of |Ψ〉. (b) Left panel:

Derivative of the escape curve as a function measurement amplitude and time along the chirp

shown in Fig. 2c. Right panel: Temporal sum of the data shown in the left panel, as a function of

measurement amplitude. (c) Experimental and calculated positions of the escape curve. The WKB

curve is calculated from the level dependent tunneling rates, based on the calculated energies using

the best �tted circuit parameters. (d) Potential energy of the circuit used for WKB calculation,

with classical turning points.
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HN = ~



0 Ω/2 0 0 . . . 0

Ω/2 −∆
√

2Ω/2 0 0

0
√

2Ω/2 ε02 − 2∆
√

3Ω/2 0

0 0
√

3Ω/2 ε03 − 3∆
...

...
. . .

√
NΩ

0 0 0 . . .
√
NΩ ε0,N − (N − 1)∆


, (3)

whereε0,n = 2π (f0,n − nf0,1) is the cumulative anharmonicity at the nth level and ∆ =

∆(t) = 2π (f(t)− f01) is the frequency detuning of the drive and h = 2π~ is Planck's con-

stant. The Rabi amplitude Ω is taken as a real constant during the chirp, and the detuning

is a linearly decreasing function starting at +2π·100MHz and ending at -2π·500MHz, as

done in the experiment. The cumulative anharmonicities ε0,n are calculated from the di-

agonalization of the system Hamiltonian (Eq. 2). The simulation neglects deviations of

matrix elements due to the drive, beyond the harmonic oscillator approximation. Namely,

for m 6= n ± 1, we set
〈
n
∣∣∣δ̂∣∣∣m〉 = 0, and for m = n ± 1 we set

〈
n
∣∣∣δ̂∣∣∣m〉 =

√
n+ 1,

√
n

. We �nd for the �rst order matrix elements (m = n ± 1) a maximal deviation of order

∼ 10−2 at the largest anharmonicity, and highest states. The second order matrix elements

(m = n ± 2) have a maximal value of order ∼ 10−1, relative to the �rst order term at the

same m value. Higher order elements are smaller than ∼ 10−4. For m = n, the contribution

to the energies for the range of drive amplitudes used in the experiment is small compared

with the rotating frame energies. A separate simulation taking into account all the matrix

elements, without the rotating wave approximation, yields identical results in the simula-

tions shown below (see Fig. S3b,d) to within a ∼ 10−2 deviation. Decoherence is taken into

account using quantum operations [8] for amplitude and phase damping.

In Fig. S3 we plot the level populations as a function of time during the chirp shown in Fig.

2, compared with the experimental data. The simulation is calculated with no �t parameters

and includes the e�ect of energy and phase damping. The energies at large anharmonicity

(Fig. S3b) are estimated from spectroscopy data, while for small anharmonicity (Fig. S3d)

they are extracted from the diagonalization of the system Hamiltonian. The experimental

data and simulation agree qualitatively in both regimes. At large anharmonicity, the lengths

of the �steps� are slightly di�erent in the simulation due to the error in determining the bare

transition frequencies (obtained from high power spectroscopy, where shifts and broadenings
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Figure S3: (a) Experimental data and (b) simulation of the dynamics experiment at large anhar-

monicity (β/2π=158MHz) shown in Fig. 2b. (c) Experimental data and (d) simulation of the

dynamics experiment at small anharmonicity (β/2π=18MHz) shown in Fig. 2b.

are signi�cant). At small anharmonicity, we see a smearing of the oscillations at higher states.

This is mainly due to the frequency dependent drive amplitude. In both measurements (and

simulations), we used a frequency dependent drive which decreases along the chirp as
√
n(t)

(where n(t) is the expected average state number as a function of time) to compensate for

the increasing drive coupling at higher states which increases the mixing between the levels.

This, however, does not a�ect the locking condition which is determined from the drive

amplitude at the �rst transition.

We compute the locking probability in the simulation by de�ning a cuto� nc at intermedi-

ate levels: Plocked =
∑
n>nc

ρnn, where the level population vanishes (see Fig. S1). The results of

this simulation are shown in Fig. 4b. All the parameters in the simulation (anharmonicities,

chirp rates, drive amplitudes, and decay times) are those used/measured in the experiment.
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We �nd that the simulation reproduces the main features of the experiment: the position of

the threshold as a function of β/
√
α and consequently the transition between autoresonance

and ladder climbing. The simuation (as well as the experiment), displays slow averaged

features with superimposed fast oscillations. These features represent interference between

adjacent levels in the driven system. We observe that the fast oscillations strongly depend

on initial conditions (the distance from resonance), while the averaged slow oscillations are

characteristic to the transition between the quantum and classical dynamics.

The coherence time T2 only weakly a�ects the threshold in our experiment. This claim is

supported by the fact that the measured threshold follows that of the decoherence free sim-

ulation despite the chirp time being longer than T2. In this simulation , we see that at small

anharmonicity, far o�-diagonal elements of the density matrix (high-order coherence terms)

of a high-amplitude phase-locked wavepacket are negligible and the phase space (Wigner)

representation of the wavepacket is similar to the one calculated for a classical system [9, 10].

At large anharmonicity, we �nd that only the �rst order coherences of the state (ρi,i+1 terms

of the density matrix) are non-zero and they are signi�cantly populated for short times

(compared to the relevant dephasing time), during transitions between neighboring levels.

Theory of held drive. The locking time Tlocked = W−1 (where W is the decay rate

from the locked state of the nonlinear resonance) is calculated by Dykman et al. in the

framework of quantum activation [11]. It is shown that in the case of weak damping and at

low temperatures (kBT � hf01), the locking time is given by:

Tlocked = c exp(ηΩ/2π), (4)

where, η ≈ 4/
√
f01 |ffin − f01| βr, and c is a constant on the order of T1. This result is valid

for intermediate drive amplitudes:

1

2πT1

√
4 |ffin − f01|

βrf01

� Ω/2π � |ffin − f01|

√
4 |ffin − f01|

βrf01

, (5)

as is the case in our experiment, where these conditions translate to 4MHz�

Ω/2π �3.7GHz.

In this theory, the dynamics are considered to be classical while the noise is quantum,

and is associated with zero-point �uctuations. Moreover, the expression for the locking time

coincides with the classical formula for the escape time [12], when the classical temperature
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in [12] is replaced by an e�ective temperature, Te� = (hf01/2kB) coth(hf01/2kBT ). A more

intuitive, but equivalent theory for the locking time is given by Dykman et al. [13] where

the escape time from an e�ective potential well associated with the phase-locked state is

calculated. The potential barrier in this case scales as the drive amplitude.

We �nd good agreement between the simulation of this experiment at several anhar-

monicities and the scaling predicted by Eq. 4. The theoretical prediction of the factor η,

calculated using the experimental parameters (see black dashed line in Fig. 3d) is within

15% from that obtained in the simulation with the same parameters.
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