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Multiple bosons undergoing coherent evolution in a coupled network of sites constitute a so-called quantum
walk system. The simplest example of such a two-particle interference is the celebrated Hong-Ou-Mandel
interference. When scaling to larger boson numbers, simulating the exact distribution of bosons has been shown,
under reasonable assumptions, to be exponentially hard. We analyze the feasibility and expected performance of
a globally connected superconducting resonator based quantum walk system, using the known characteristics of
state-of-the-art components. We simulate the sensitivity of such a system to decay processes and to perturbations
and compare with coherent input states.
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Superconducting Josephson devices are a remarkable quan-
tum information processing platform, with single and two
qubit coherences close to and even surpassing fault tolerant
thresholds [1,2]. In harmonic superconducting resonators,
various nonclassical states have been formed on-demand
and complex entangled states between such resonators have
also been demonstrated, including NOON states of high
order [3–5]. It is very important to benchmark the quality
of entanglement achieved and to steadily expand the size
of the systems under study. As such entanglement grows
larger, it becomes a resource for potential sensing applications
[6,7] and, more fundamentally, challenges various models of
spontaneous collapse [8,9] or correlated error [10].

A relatively simple (experimentally) platform for such
explorations is the recently reformulated problem of quantum
walks and associated BosonSampling [11]. Indistinguishable
bosons are placed in a coupled array of resonators and allowed
to interfere via the noninteracting coherent quantum walk of
the particles among the resonators. Assuming a closed system
(without gauge fields), the boson network then evolves in time
with the Hamiltonian

H = �

∑
i,j

Jij â
†
i âj (1)

where the summation is over all nodes in the graph, Jij is
the coupling strength between node i and j , and âi is the
ladder operator for resonator i—terms for which i = j can be
included to account for varying resonator oscillation energies
[12].

The resulting distribution of occupation probabilities in the
different resonators is (thought to be) both exponentially hard
to compute and verify classically [11]. This means the problem
belongs to the complexity class #P, which is considered
larger and more difficult than the notorious NP class. Note,
however, that BosonSampling is expected to be nonuniversal
in the computational sense. Universality with a multiparticle
quantum walk hardware was only recently established in the
presence of interactions between the bosons [13].

Although initially this form of quantum simulation was
thought to have no practical applications, it has recently been
shown to be capable of simulating the vibronic spectra of
molecules, if a nontrivial initial state can be created [14], in

contrast, however, with the simple single photon inputs of
BosonSampling.

Experimental implementations of such multiboson interfer-
ence experiments have been carried out mostly in optical qubit
experiments by several groups [15–18]. The main limiting
factor in these experiments is the exponential overhead in
generating the input few-particle state, due to the lack of
a deterministic generation of photons. Low collection and
detection efficiencies also limit the rate and scaling. Phonon
evolution in ion trap arrays have also been implemented
for quantum walks, but the geometry and coupling in this
system limit the scaling of what is achieved to only a few
particles. A theoretical proposal for gated implementation of
BosonSampling for microwave photons in a linear array of
superconducting resonators was also recently presented [19],
followed by a proof of its supremacy [20].

In this Rapid Communication, we numerically analyze
the potential of a superconducting qubit and resonator
BosonSampling implementation with current state-of-the-art
coherence times and known coupling and readout capabilities.
A schematic design and layout of such a system is shown in
Fig. 1. We analyze both sensitivity to relaxation and dephasing
processes and compare the interferometric sensitivity of the
network given either coherent states or single photons as
inputs.

In our proposed quantum walk system, single microwave
excitations (‘bosons’) are loaded into interface qubits and
transferred coherently into the resonator network [23]. The
qubits are tuned away from coupling resonance during the
quantum walk evolution of the coupled network. The boson
occupation numbers in each resonator are subsequently deter-
mined by dispersive microwave measurements on the qubits
[24] after swapping them back at a predetermined time.

The advantages of superconducting BosonSampling lie in
the on-demand state preparation and high fidelity readout [25]
at ∼99%. Another striking strong point of this implementation
is the possibility to arbitrarily couple many or even all the
resonators to each other and not just along a one-dimensional
array [19,26].

In order to numerically analyze this proposal we have
simulated the state preparation (boson loading) fidelity and the
subsequent evolution fidelity. The Hilbert space of N bosons
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FIG. 1. A scheme for implementing BosonSampling. The res-
onators are loaded from qubits (here represented as the green
schematic xmons [21]), and their final state is dispersively measured
from readout resonators (magenta) at the desired time when qubits
are brought back into resonance with their respective resonators
(blue). The resonators are capacitively coupled to each other (black
waveguides) with capacitance Cij , and this graph is made possible by
air bridges [22] (arcs on control lines and graph coupling lines) that
add a negligible and known capacitive coupling between lines.

evolving in M resonators (including all decay channels) is
of dimension D = (

N+M

M

)
, so D ≈ 3 × 107 for N = 10 and

M = 20, and as the system evolves in time full matrices
must be used with ≈1015 entries per time step. Some features
can be approximated by contour integrals methods [27], but
not all. Thus, a sufficiently high fidelity BosonSampling
machine simulation will quickly grow beyond the simulation
capabilities of classical computers. Furthermore, as an open
physical system it will also be exposed to errors (in particular
decoherence effects and perturbations to network couplings).
It is the main purpose of this paper to quantify the errors
accumulated, subsequently defining the limits of performance
for the proposed BosonSampling device.

In order to reach this goal, we must first determine the
necessary simulation duration in order to produce nontrivial
results. This is the time period needed for a single boson
evolving in the array to establish significant density matrix
components throughout (∼25 ns in this case), and we term
this value the “Richness Time.” Hence, a sufficiently complex
boson pattern is expected since all the particles have a
significant chance of meeting throughout the array, with
subsequent multiparticle interference. We define the richness
time in terms of the variance of the expected occupations of
all possible states accessible to the system by the requirement

V ar(Pi(Trich)) = 1/M2, (2)

where Pi(t) is the occupation probability of each state as a
function of time t .

In Fig. 2 we plot the evolution of the normalized variance
for a single boson coherently diffusing in the network for
two different network sizes (M = 10 and M = 250). We
have found Trich to decrease slowly with the number of
resonators. This can be intuitively understood—as the number
of resonators coupled to the initially populated resonator
grows, we expect the initial mode to be depleted more quickly.
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FIG. 2. Normalized variance of the occupation probabilities for a
single boson in the network V ar(〈Pi(t)〉)M for M = 10 (red line
for M = 250) randomly and globally connected resonators. The
horizontal line ( 1

M
for M = 10) intersects the blue curve at Trich.

Note that the normalized variance can rise again over 1/M as there
is no decay in this simulation. For 250 resonators the richness time is
reduced to ∼5 ns.

Having established the evolution time necessary for suf-
ficient mixing of the multiparticle walk, we now turn to
the main results of this work. In all numerical experiments,
we calculate only a moderate exponential increase in the
distribution distance �(ρ(t),σ (t)) over time, where ρ(t) and
σ (t) are the density matrices after coherent and decohered time
evolutions, respectively. The distribution distance is defined
�(ρ,σ ) = ‖Dρ − Dσ‖1, i.e., the 1-norm distance between the
vectors Dρ and Dσ , which represent probability distributions
in ρ and σ (the matrix diagonals). We find this quantity to fit
the phenomenological formula:

�(ρ(t),σ (t)) = 2
(
1 − e

− Nt
3 ( 5

2
1
T1

+ 1
Tφ

))
, (3)

where T1 and Tφ are the energy relaxation and pure dephasing
times of the resonators. High quality, planar, state-of-the-art
superconducting resonators and qubits have demonstrated
energy decay times T1 of ≈50 μs and Tφ , the dephasing time,
is here conservatively assumed to be ≈50 μs [28].

An alternative quantitative estimator of the effects of
decoherence is the trace distance, D(ρ,σ ). Experimentally, the
trace distance is not as easily measured as �(ρ,σ ) but allows
some deeper insight into the evolution of the quantum phases
than �(ρ,σ ). This and other features of the trace distance are
discussed in the Supplemental Material [29].

We observe in our simulations that the number of resonators
does not appear directly to affect the decay and only enters
implicitly through the requirement of achieving the richness
time of fully propagating individual bosons throughout the
array. The reliability of this empirical approximation can be
seen in Fig. 3, as we scan the different parameters of our
simulation and plot Eq. (3). For all panels (unless the parameter
is explicitly scanned in the x axis), we set T1 = 50 μs, Tφ =
50 μs, three excitations, ten resonators, and random global
couplings with a uniform distribution between 20 and 40 MHz.
The same randomly generated coupling graph was used in
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FIG. 3. Distribution distance, �(ρ,σ ) for a decohering (with
relaxation T1 = 50 μs and dephasing Tφ = 50 μs processes) quantum
walk of N = 3 bosons in a 10 site resonator network, simulated up
to Tf = 25 ns. In each panel plot we simulate the outcome of varying
one of the above default values and compare to the phenomenological
Eq. (3). Top left: varying T1, top right: varying Tφ , bottom left: varying
Tf , bottom right: varying N .

all simulations (iterations performed using other randomly
generated graphs with similar energies did not reveal any
remarkable difference). The exponential growth of the required
Hilbert space required extensive runs (over a few hours per run)
on a powerful desktop computer to complete simulations for
N > 4.

Extrapolating to larger resonator arrays and boson numbers,
we observe that the mild effects of dephasing allow realistically
extending to N of order 20 with currently available coherence
times, clearly growing beyond the capabilities of modern
classical supercomputing. We note that the fidelity will not
be limited by decoherence and decay, rather by loading time
for the resonators, initial state fidelity and/or readout fidelity,
which are still being developed.

The mild scaling with N is a somewhat surprising result,
as the dephasing Kraus operators cause an N2 faster loss rate
of fidelity for a superposition of N bosons and the vacuum
state in a single resonator. In this model, however, the initial
state diffuses on a very fast time scale between all the modes
and the overall state seems to be resistant to dephasing. This
is reminiscent of the recent result of Motes et al. where
BosonSampling was investigated in the context of metrology
[30]. In addition, the lack of interactions obviously limits the
exploited phase space and degree of entanglement in such a
system.

We test the sensitivity of our system by randomly perturbing
the couplings between resonators. An ensemble of perturbation
graphs is generated (again with random couplings uniformly
chosen between 20 and 40 MHz) and added to the reference
graph with a pre-factor of 10−3. This procedure establishes a
slightly altered Hamiltonian by which the system evolves—
here without decoherence operators. The subsequent distri-
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FIG. 4. Histogram of the distribution distances, �, for initial
single photons in resonators and coherent states. The simulation was
carried out in a 10 site network, with an ensemble of perturbations,
and N = 3 bosons. The same perturbations were applied for both
kinds of initial states. For the coherent state a classical “amplitude
simulation” was performed, with α = 1 in three resonators in the
initial state.

bution distance between a perturbed and reference evolution
after a simulation of 2Trich is calculated. Specifically, we take
a random-coupling network of 10 resonators and generate
1000 perturbed graphs. The distribution distances yielded by
perturbations in the graphs are now computed for both initial
Fock states (one photon in each of three different resonators)
and initial coherent states (with an average occupation of
one photon in three of the resonators) to distinguish classical
interferometric sensitivity vs many-body effects.

Figure 4 shows the distribution distances for many real-
izations of perturbed couplings, and we observe a definite
difference between the coherent state inputs and single
photons. Both histograms of distribution distances are fit
well by log-normal distributions, but the input Fock state is
less robust to perturbations than the coherent states. This is
promising as it indicates higher interferometric sensitivity for
the quantum walk interferometry vs classical (coherent state)
probing. Surprisingly, the result is the opposite for the trace
distance metric described above [29].

The higher sensitivity of the Fock states is enhanced as the
number of bosons increases. To quantify this effect, we define
the “distribution overlap:”

S =
∫

dx
√

fFockfcoh, (4)

where fFock and fcoh are the probability distributions emerging
from iterations with initial Fock states and coherent states,
respectively, as those in Fig. 4. S equals unity, when the two
distributions are identical. Figure 5 shows the decrease of S
with growing N .

Another important aspect of the analysis is to address
the problem of BosonSampling verification. Obviously the
classical computer simulation can serve for verifying the
proper distribution and correlations in small boson number
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FIG. 5. The distribution overlap, S as defined in Eq. 4 vs N , the
number of bosons, decreases, as N grows. Inserts visualize S and this
effect as the shaded region for N = 1 and N = 5.

implementations. For large boson numbers, the system may be
treated classically [31]. However, in the intermediate regime
quantum effects dominate, and a classical computer will fail.

We note also connections to the extensively investigated
Anderson localization phenomena; disorder causes a transition

from ballistic propagation to localization of particles traveling
in a lattice. This has been demonstrated with photons traveling
in a two-dimensional coupled lattice of waveguides, a system
closely related to our proposal [32,33].

For our fully connected graph, symmetry and interference
of the propagating excitations create the exact opposite effect.
When disorder is removed from the system and all couplings
are made equal, the excitations become confined to their initial
resonators since they are detuned from the dressed reservoir
of other sites—it is the disorder in interaction strengths that
releases them. This effect becomes more pronounced as the
number of resonators is increased, starting with simple slosh-
ing between two modes. For the same reasons, when initially
placing an equal amount of excitations in each resonator, there
is no change in the occupation of the resonators. This is of
course true even with disorder.

Our results bode well for a continuous quantum walk imple-
mentation of BosonSampling on superconducting Josephson
devices with currently achievable lifetimes. From the above
analysis, it seems that building a BosonSampling device
capable of calculations beyond the abilities of classical
computers is within reach.

We acknowledge Yaron Bromberg for fruitful discussions.
This work is supported by the Lady Davis Foundation and the
European Research Council Project No. 335933.

[1] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T.
White, J. Mutus, A. Fowler, B. Campbell et al., Nature (London)
508, 500 (2014).

[2] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B.
Vlastakis, Y. Liu, L. Frunzio, S. Girvin, L. Jiang et al., Nature
(London) 536, 441 (2016).

[3] F. W. Strauch, D. Onyango, K. Jacobs, and R. W. Simmonds,
Phys. Rev. A 85, 022335 (2012).

[4] C. Lang, C. Eichler, L. Steffen, J. Fink, M. Woolley, A. Blais,
and A. Wallraff, Nat. Phys. 9, 345 (2013).

[5] H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E.
Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J.
Wenner et al., Phys. Rev. Lett. 106, 060401 (2011).

[6] B. Yurke, Phys. Rev. Lett. 56, 1515 (1986).
[7] J. A. Jones, S. D. Karlen, J. Fitzsimons, A. Ardavan, S. C.

Benjamin, G. A. D. Briggs, and J. J. L. Morton, Science 324,
1166 (2009).

[8] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon,
Phys. Rev. Lett. 44, 1323 (1980).

[9] M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N.
Zagury, Phys. Rev. A 45, 5193 (1992).

[10] J. Preskill, Proc. R. Soc. London A 454, 469 (1998).
[11] S. Aaronson and A. Arkhipov, Quantum Inf. Comput. 14, 1383

(2014).
[12] V. Tamma and S. Laibacher, Phys. Rev. Lett. 114, 243601

(2015).
[13] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[14] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, and A.

Aspuru-Guzik, Nat. Photon. 9, 615 (2015).
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