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We report on a measurement of splitting in the excitation spectrum of a condensate driven by an optical
traveling wave. Experimental results are compared to a numerical solution of the Gross-Pitaevskii equation,
and analyzed by a simple two-level model and by the more complete band theory, treating the driving beams
as an optical lattice. In this picture, the splitting is a manifestation of the energy gap between neighboring
bands that opens on the boundary of the Brillouin zone.
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Perturbative bulk excitations over the ground state of a
weakly interacting Bose Einstein condensate �BEC� have
been extensively studied using two-photon Bragg transitions
�1–4�. Their spectrum �5�, dynamics �6�, and decay �7� are
rather well understood. However, Bragg processes can also
strongly excite the condensate, generating nonperturbative
dynamics, such as Rabi oscillations between two �or more�
macroscopically populated momentum states �8–10�. Rapid
oscillations have been found to suppress various inhomoge-
neous broadening mechanisms, thus increasing the coherence
time of the system �9�.

Since the Bragg process may be viewed as the diffraction
of an atomic wave packet from a nearly perfect optical lat-
tice, band theory may be employed for the study of such
systems. A BEC in an optical lattice has proved to be an
excellent system for the investigation of effects predicted
long ago in solid state physics such as Bloch oscillations and
Landau-Zener intraband tunneling �8,11–13�, and the Mott-
insulator phase transition �14�. Much progress has been made
in understanding the ground state of a BEC in an optical
lattice, its weak excitations, and the effects of interactions
�15,16�. However strong excitations involve two beating
macroscopically occupied modes, and lead to Rabi-like os-
cillations. Thus they cannot be described as a Bogoliubov-
like excitation over a single Bloch state.

In this paper we study the spectrum of a BEC driven by a
strong resonant Bragg pulse, which leads to coherent Rabi
oscillations between momentum states. We observe these os-
cillations in the time domain and a splitting between the
energy bands in the frequency domain. The splitting is mea-
sured experimentally with Bragg spectroscopy, using an ad-
ditional Bragg beam pair as a weak probe, and found to
agree with numerical solution of the time-dependent Gross-
Pitaevskii equation �GPE�. The splitting is also predicted by
a simplified two-level dressed-state model. However some
features are explained only by the more complete band
theory. These theories do not include inhomogeneous and
finite-size effects, nor interactions, but are in reasonable
agreement with our experimental results.

The energy spectrum of a linear system is related to the
time dynamics via Fourier transform. Therefore the oscilla-
tions in the time domain are translated to splitting in the
spectrum, and the decay of the time-correlation function re-

sults in broadening of the spectral peaks �17�. In our experi-
ment the chemical potential, which characterizes the nonlin-
earity, is smaller than the Rabi frequency, but of the same
order of magnitude. Hence this linear description is only ap-
proximately true for our system.

Our experimental apparatus is described in �5�. Briefly, a
nearly pure ��90% � BEC of �5±1��104 87Rb atoms in the
�F ,mf�= �2,2� ground state, is formed in a magnetic trap with
radial and axial trapping frequencies of �r=2��226 Hz and
�z=2��26.5 Hz, respectively. The condensate is driven by
a pair of strong counterpropagating Bragg beams with wave
vectors kLẑ and −kLẑ generating an optical lattice potential
along the axial direction with a depth characterized by a Rabi
frequency �d. The laser frequency is red detuned 44 GHz
from the 87Rb D2 transition in order to avoid spontaneous
emission. As shown in �9�, in the Rabi regime the mean-field
shift is largely suppressed, hence the frequency difference
between the driving Bragg beams �in the laboratory frame� is
set to �d=2��15 kHz, the free-particle resonance.

After driving pulses of varying duration, the magnetic

FIG. 1. �Color online� Time-of-flight images of BEC undergoing
strong Rabi oscillations. �a� BEC evolved in the presence of driving
Bragg beams alone. The pulse of duration 320 �s is just over
3� /�d, leaving almost all population in −2kL momentum state. �b�
Both driving Bragg beams and probe Bragg beams are on for
600 �s. Driving pulse is close to 6� /�d leaving the state −2kL

almost unoccupied.
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trap is rapidly turned off. A typical absorption image after
38 ms time-of-flight expansion is shown in Fig. 1�a�. The
wave packets with wave number −2kL and k=0 are clearly
separated. In this image, �dt�3�, hence most atoms are in
the −2kL wave packet. The number of atoms in each wave
packet is measured by integration over the density in an area
determined by a Gaussian fit to the absorption image. We
thus define N−2kL

and N0 as the number of atoms in the wave
packets with wave numbers −2kL and 0, respectively.

Figure 2 shows the time dynamics of the BEC exposed to
the driving Bragg beams. The solid squares are data points,
measuring the fraction of atoms in −2kL cloud as a function
of the duration of the driving pulse. The BEC undergoes
oscillations at a frequency of 2�� �5.3±0.1� kHz as found
from a sinusoidal fit to data. The hollow points are numerical
solutions of the GPE including finite time and spatial inho-
mogeneity with �d as the only fit parameter �18�. The Rabi
frequency that yields the correct oscillation frequency is
found to be �d=2��5.5 kHz. The oscillation frequency is
slightly less than �d due to interactions. This is because the
higher density in the valleys of the optical potential creates a
mean-field lattice potential opposing the optical one �11,16�.

Next, we probe the spectrum of the oscillating BEC, with
another pair of Bragg beams �turned on simultaneously with
the driving Bragg beams�, generating a weak lattice with a
Rabi frequency �p. The probe beams, also counterpropagat-
ing along the axial direction, are linearly polarized perpen-
dicular to the driving beams. The frequency difference be-
tween probe beams �p is always kept such that the zero-
momentum wave packet is diffracted by the probe lattice to a
2kL-momentum wave packet, whereas for the −2kL wave
packet, the Bragg frequency of the probe beams is always
Doppler shifted away from resonance. For the same reason,
the driving beams are Doppler shifted from the 2kL state. A
characteristic time-of-flight image is shown in Fig. 1�b�.
Here in addition to the clouds in states −2kL and 0, there are
also atoms with wave number 2kL. The measured relative
population of this momentum state N2kL

/ �N−2kL
+N0+N2kL

�
as a function of the probe frequency difference �p forms the
probe Bragg spectrum, which is plotted in Fig. 3 �black

squares�. The duration of the beams is set so the driving
pulse will be close to an even multiple of �, in order to
minimize collisions in the time-of-flight expansion.

The probe spectrum without the driving beams ��d=0� is
similar to the well-known Bogoliubov spectrum �Fig. 3�a��.
The probe is weak in the sense that �p��d /8, but since the
probe pulse is greater than � /2 we observe a suppression in
the mean-field shift �9�. The probe spectrum in the presence
of the driving beams �Fig. 3�b�� shows a clear splitting in the
spectrum of the oscillating condensate. The dotted line is a
double-Lorentzian fit to the experimental data, with a dis-
tance between the peaks of �E /h=4.7±0.2 kHz, comparable
to but larger than the chemical potential � /h=1.6 kHz. The
solid line is the full GPE simulation of the experiment, which
gives a splitting of �E /h=5.5 kHz. We note this is not the
frequency of oscillations in Fig. 2, but rather the Rabi fre-
quency of the lattice itself. The mismatch between experi-
mental and simulation results, is probably due to a drift in
the intensity and the detuning of the laser. This drift is esti-
mated to cause a 10–20 % drift in the Rabi frequency.

The width of the spectrum without driving �Fig. 3�a�� fits
the GPE simulation, and is mostly due to the finite time of
the experiment. However, the experimental peaks in Fig. 3�b�
are substantially broader than predicted by the GPE. This
broadening is robust and is observed for different values of
�d, indicating broadening mechanisms which are beyond
mean field. One such mechanism for a homogeneous con-
densate is due to uncertainty in the dressed-state decomposi-

FIG. 2. Rabi oscillations between modes with wave numbers 0
and −2kL �in the laboratory frame of reference�. The solid line is a
sinusoidal fit to the data which gives an oscillation frequency of
2��5.34 kHz. The open circles are the GPE simulation with
�d=2��5.5 kHz whose sinusoidal fit gives the same oscillation
frequency. The oscillation frequency is less than �d due to interac-
tions, which in effect lower the depth of the optical lattice.

FIG. 3. Excitation spectra: Fraction of atoms in 2kL state as a
function of the probe frequency difference. �a� No lattice ��d=0�
and �b� �d=5.5 kHz. In �a� the solid line is a GPE simulation with
�p as a single free parameter. In �b� the solid line is a GPE simu-
lation with �p the same as in �a�, and �d determined by Fig. 2. The
dotted line is a Lorentzian fit to the data giving a splitting of
�E=h� �4.7±0.2� kHz. The dashed line is the noninteracting band
model discussed in the text.
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tion of the initial Fock state, which leads to a spectral broad-
ening �19�. For our experimental parameters this broadening
is much less than the widths of the experimental peaks,
which are 3±0.4 and 3.7±0.5 kHz. The 0.5–1 kHz drift in
the Rabi frequency cannot account for the much larger
broadening of the peaks. We do not quantitatively understand
the broadening. The overall response of the system to the
probe is smaller in Fig. 3�b� �with driving beams� than that in
Fig. 3�a� �without driving beams�. This is because the time-
averaged population of the state k=0 in the presence of the
lattice is only half of that of the ground state of the BEC.

The simplest model that explains the splitting in the spec-
trum is a noninteracting model of a closed system with two
momentum states: 0 and −2�kL, coupled to a classical light
potential. Choosing our frame of reference as moving with
the optical lattice of the Bragg driving beams at velocity
v=−kL /M along z yields a time-independent Hamiltonian,

H0 = −
�2

2M

�2

�z2 + ��d cos�2kLz� . �1�

The eigenstates of such a Hamiltonian are dressed states
�20�. The energy difference between the two eigenenenergies
is ��d. This energy difference is manifested both in the split-
ting of the spectrum and in the Rabi oscillations, which are
the coherent beating between the two eigenstates. Since the
initial k=0 state is an equal superposition of the two dressed
states, the two peaks in the spectrum are expected to have the
same heights.

The system is, however, not a closed two-state system, as
there are nonresonant Rabi oscillations with other momen-
tum states. We therefore calculate the eigenstates of the non-
interacting Hamiltonian �1� without the restriction to two
momentum states. According to Bloch’s theorem, due to the
periodicity of the optical lattice, a state �k� with wave number
k is coupled only to states �k+2mkL�, where m is an integer,
and 2kL is the basis of the reciprocal lattice. The Hamiltonian
is diagonalized by the Bloch states

�n,q� = 	
m

an,q�k��q + 2mkL� �2�

where q is the quasimomentum and n is the band index �2�.
In the moving frame of reference, the stationary BEC has
momentum �kL and is situated on the Brillouin zone bound-
ary. The initial kinetic energy of the condensate is in the
energy gap, and by suddenly turning on the light potential,
the initial state �kL� is projected onto the Bloch states
�kL�=	nan�kL��n�, where we have omitted the quantum num-
ber q which is understood to be q=kL.

In the weak-lattice limit, ��d	Er where Er=�2kL
2 /2M is

the single-photon recoil energy, we recover the two-state re-
sult �kL�=1/
2��1�+ �2��, and a splitting of �d. For our pa-
rameters the band structure is obtained by numerical diago-
nalization and presented in Fig. 4. The predicted splitting
between the two lowest bands is indeed within 1% of �d, but
contrary to the weak-lattice approximation, �a3�±kL��
= �a4�±kL���10% of �a3�±3kL��= �a4�±3kL��. This indeed
leads to negligible occupations, but as we show shortly, to
observable interference effects.

With the probe beams, the Hamiltonian governing the
model homogeneous system in the driving lattice frame is
H=H0+Hp with

Hp = ��p cos�2kLz − �pt� = Vpe−i�pt + c.c. �3�

with Vp=��pe2ikLz /2. In the rotating-wave approximation Hp
is a momentum shift operator coupling state �k� to �k+2kL�.
Since �p	�d, it can be treated by the use of first-order
time-dependent perturbation theory, giving probability am-
plitudes for transitions between bands. The momentum trans-
ferred to the condensate by the redistribution of photons in
the probe beams is a multiple of the reciprocal lattice vector
2kL; hence also with the probe beams the initial quasimo-
mentum q=kL is conserved.

The dashed line in Fig. 3�b� is the full first-order pertur-
bation theory expectation of the population of state �3kL� in
the moving frame of reference, which is equal to 2kL in the
laboratory frame of reference. Aside from a mean-field shift,
this simple model seems to fit the GPE simulation quite well.

Since the splitting between bands 3 and 4 is negligible,
the splitting in the spectrum of the probe in this noninteract-
ing model is essentially the splitting between the two lowest
bands �see Fig. 4�a��.

There is a clear asymmetry in the peak heights of the
noninteracting model �dashed line in Fig. 3�b��, which is in
good agreement with the GPE simulation. This asymmetry is
due to quantum interferences between pathways of the probe
excitation. The probe couples each of the lower bands �1 and
2� to each of the higher bands �3 and 4� by two paths. In
the weak-lattice approximation there is only the path
�kL�→ �3kL�; however due to the nonvanishing a3�kL� and
a4�kL�, there is also a path �−kL�→ �kL�. These paths are
marked by arrows connecting the relevant amplitudes in Fig.

FIG. 4. Noninteracting band structure for our experimental pa-
rameters. �a� The energy of the four lowest bands as a function of
quasimomentum �solid lines�. The energy gap on the boundary of
the Brillouin zone is 0.99 ��d, while the gap between the third and
fourth bands is two orders of magnitude smaller. The dashed line is
the free-particle energy. �b� The amplitudes of the different momen-
tum states k=kL+2mkL in each Bloch state on the boundary of the
Brillouin zone. Black, dark gray, light gray, and white are bands 1,
2, 3, and 4, respectively. The arrows represent the coupling by the
probe. Note the contamination of each Bloch state by the “unintui-
tive” momentum states.
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4�b�. The interference between both paths is constructive for
transitions from band 2 and destructive for transitions from
band 1. Therefore the lower-energy peak in the splitting, cor-
responding to transitions from band 2 should be larger than
the higher-energy peak, which corresponds to transitions
from band 1.

In the experiment, the frequency difference between the
driving Bragg beams is equal to the free-particle resonance
��d=4ER. For other values of ��d, the Rabi oscillations are
not full. As the detuning from resonance grows, the ampli-

tude of oscillations is reduced and the frequency of oscilla-
tions grows. In the spectral domain the frequency difference
between the two peaks of Fig. 3�b� grow with the detuning
from resonance. The amplitude of one peak grows while its
position in frequency shifts toward the excitation energy of a
free Bogoliubov quasiparticle. The other peak shrinks in size
as the detuning of �d from resonance grows. In Fig. 5 we
plot the values of �p at the peak of the spectrum versus �d,
as obtained by numerically solving the GPE �18� for
�d=5.5 kHz. We compare this to the energy splitting of a
noninteracting two-level system, calculated for the same pa-
rameters, and shifted up by 1.3 kHz. As in the resonant case,
the splitting is in good agreement with the GPE, except for a
constant shift due to interactions. The mean-field shift for a
Bogoliubov excitation using a local density approximation is
1.6 kHz �1�. Since our probed system is not a stationary con-
densate, the shift is somewhat smaller.

In conclusion, we measure a splitting in the Bragg exci-
tation spectrum of a BEC undergoing Rabi oscillations be-
tween two momentum states. The experimental data fit well
with numerical GPE simulations. The main features are cap-
tured by a simple noninteracting model, whereas the main
contribution of interactions is found to be the mean field shift
of the probe spectrum, captured by the GPE, and an increase
in the width which is not captured by the GPE. The splitting
in the spectrum results in a splitting in the energy of the
atoms undergoing incoherent collisions. Experimentally, a
divergence from the known s-wave scattering halo was mea-
sured for a rapidly oscillating BEC. There too, a pronounced
asymmetry was found between the inner collisional shell and
the outer one.
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FIG. 5. The locations of the peaks in the response to the probe,
as a function of the driving beams’ frequency difference �d. Nu-
merical solution of the GPE including finite-size, finite-time, and
mean-field effects �circles�, and the energy levels of a two-level
system shifted up by 1.3 kHz �lines�. The probe wave numbers are
taken as ±kL /3 to distinguish probe excitations from nonresonant
driving excitations.
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