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When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility
is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically
induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition
between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong
transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing
an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic
and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted
pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a
single electromagnetically induced transparency line.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) is a coher-
ent process, where a strong coupling field creates a narrow
transmission band in the probe spectrum in an otherwise
fully absorptive medium [1,2]. The narrow linewidth of EIT
makes it suitable for applications in many fields such as
extreme slow light [3], quantum storage devices [4], nonlinear
optics [5], and high-sensitivity magnetic sensors [6]. On the
other hand, this narrow linewidth directly limits the bandwidth
of data that can be processed. A signal which has a broader
bandwidth than the EIT linewidth will be filtered such that
only part of the pulse having the EIT linewidth will be
transmitted and delayed [7,8]. In terms of sensing this means
that although a very high sensitivity is possible using EIT, it
is a problem to probe with this sensitivity a broadband field
in a simple way. Possible solutions to this problem may arise
from different approaches. One idea is to use a heterodyne
measurement of the EIT signal with a broadband probe [8]
using the interference of the dispersive part of the EIT [9].
This may offer an increased resolution and broaden the sensing
bandwidth since the dispersive part is decaying in a slower
manner. In order to get a more substantial bandwidth another
idea is to use a multimode EIT system where each EIT line
still has a narrow bandwidth but spreading the signal across
many systems allows for a broader signal. Such systems were
devised spatially [10] and spectrally [11,12] for larger data
capacity as well as for broadband magnetic sensing [13,14]. A
different approach is to use dynamic EIT where the transient
response may have a much broader bandwidth than steady
state EIT. The transient response of an EIT media to a sudden
switching [15–18] as well as for an ac magnetic field [19]
was explored theoretically and experimentally for various
regimes. For a constant detuning the decay of the transients
is dictated by the EIT linewidth, while the frequency of the
transient oscillations equals the two photon detuning [16,18].
The detuning can be larger than the linewidth leading to
an underdamped oscillator response. In the case of a linear
sweep through the resonance the frequency of the transient
is chirped [18] and behaves similarly to a Landau-Zener (LZ)
transition [20,21]. Transients have also been used as a magnetic

sensing technique to measure the Earth’s magnetic field with
1 nT√

Hz
sensitivity [22,23].

In this article we take both the concepts of multimode
spectrum and transient dynamics and combine them to create
a new method for measuring coherent effects. Using a full
mapping of the transient response of an EIT system as a
function of the detuning we observe the transition from an
adiabatic regime to a nonadiabatic regime. We also measure the
complex interference pattern that arises when a magnetic field
is applied. In this case an interference between transients from
three Zeeman sublevels is visible. The problem of three-level
crossing in the context of LZ transitions was addressed both
theoretically and experimentally [24–28]. Here we have the
ability to change the levels’ energy gap experimentally imple-
menting the three-level crossing for variable level detuning.
Moreover, we show that by using this interference combined
with a broadband phase modulation sweep a wideband high-
sensitivity magnetometer can be achieved.

II. THEORY

We now describe the effect a phase-modulated strong
coupling field has upon the temporal shape of a probe pulse
going through an EIT media. The coupling field can be written
as follows:

Ec(t) = Ec0e
[iωct−iφ(t)], (1)

where Ec0 is the amplitude of the coupling field, ωc is
the optical frequency, and φ(t) is the time-dependent phase
modulation. In order to describe the change in the probe field
due to this modulated coupling field the full spatiotemporal
Maxwell-Bloch equations for an EIT system need to be
solved [29]. In the case of long enough interaction media
and perturbative probe intensity the system can reach a
steady state solution. The EIT susceptibility in this case
has only temporal dependence and no spatial dependence.
For a susceptibility with no temporal dependence the probe
transmission amplitude, p(t), is given by the convolution
of the entering signal, Ep(ω), and the susceptibility, χ (ω);
hence p(t) = F[Ep(ω)χ (ω)]. In the case of a modulated field
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the susceptibility is time dependent, and this convolution
is not valid. A possible way of solving this problem is
by taking the spectral decomposition of the susceptibility
χ (ω,t) = ∑∞

n=−∞ein�tχn(ω). Now the transmission is just
p(t) = ∑∞

n=−∞ein�tF[Ep(ω)χn(ω)] [29]. We use a sinusoidal
modulation; hence φ(t) = M sin(�ct), where M is the modu-
lation depth and �c = 2πfc is the modulation frequency. The
spectrum of such a modulated field can be described as a sum
of Bessel functions:

e−iφ =
∞∑

n=−∞
ein�ctJn(−M). (2)

The spectrum of this modulation has narrow peaks sepa-
rated by the frequency �c. The Bessel functions’ amplitude
drops sharply for n � M , thus creating a full modulation span
of 2M�c. The transfer function in this case is just an infinite
comb of single EIT lines [1] weighted by Bessel functions:

χ (t) =
∞∑

n=−∞
iα

Jn(−M)ein�ct

� − i(	 − n�c) + R2
c

γ12−i(δ−n�c)

. (3)

Here α = Nμ2

ε0�
is the two-level absorption coefficient, with

N being the density of the atoms and μ being the transition
dipole moment; � is the homogeneous decay rate; γ12 is the
decoherence rate of the two ground states; Rc = μEc0

�
is the

Rabi frequency of the coupling field which is phase modulated;
	 is the one-photon detuning of the probe field; and δ is the
two-photon detuning.

In the case of the D1 line of warm 87Rb vapor with buffer
gas the full width at half maximum EIT linewidth is [30]

γEIT = 2(γ12 + R2
c

�D+�
), where �D is the Doppler broadening.

This linewidth is usually a few kHz, which is much narrower
than the pressure-broadened homogeneous linewidth (� ∼
100 MHz) and the Doppler broadening (�D ∼ 500 MHz); thus
the probe two level susceptibility is effectively constant for the
full modulation bandwidth as long as M�c � �.

Applying a magnetic field removes the Zeeman degeneracy
and the energy levels of the hyperfine levels will create a ladder
according to the Zeeman splitting of the two lower levels with
the Larmor frequency μBB(gF mF − gF ′mF ′). B here is the
magnetic field, μB is the Bohr magneton, and gF is the Landé
coefficient of the hyperfine level. We can write the transfer
function in this case as follows:

χ (t) =
∞∑

n=−∞

F∑
mF =−F

F ′∑
mF ′ =−F ′

iα

× Jn(−M)ein�ct

� − i(	 − n�c) + R2
c

γ12−i[δ−n�c−μBB(gF mF −gF ′ mF ′ )]

.

(4)

The EIT susceptibility is similar to that of Eq. (3) with the
exception of a splitting to several EIT peaks having a certain
phase between them according to the Zeeman frequency
splitting.

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. For an EIT

 scheme we use the hyperfine transitions of the D1 line of

FIG. 1. (Color online) The experimental setup. DFB, distributed
feedback laser; PBS, polarizing beam splitter; AP, aperture; AOM,
acousto-optic modulator; EOM, electro-optic modulator; GT, Glan-
Taylor polarizer; μMS, μ-metal shield; BD, beam dump; PD,
photodiode; SL, solenoid.

87Rb. A DFB laser locked to the F = 2 → F ′ = 2 transition
is split into probe and coupling beams using a polarizing beam
splitter. The phase modulation over the coupling field as well
as the pulse creation of the probe is done using acousto-optic
modulators. In order to bring the probe to resonance with
the F = 1 → F ′ = 2 transition an electro-optic modulator
is used. The beams (orthogonal polarization) are combined
using a Glan-Taylor polarizer and pass through a 7.5-cm cell
containing an isotopically pure 87Rb (>95%) with 10 Torr Ne
as the buffer gas heated to ∼40 ◦C. The cell is shielded against
an outside magnetic field using three layers of μ metal. An
axial magnetic field is created using a uniform solenoid. After
the cell another polarizer is used in order to filter the coupling
field while the probe is detected using an amplified photodiode.

IV. RESULTS

Figure 2 demonstrates the transmission temporal response
of a square probe pulse with an intensity of 0.05 mW/cm2

-200 -100 0 100 200

0

0.1

0.2

0.3

0.4

time [μs]

am
p

lit
u

d
e 

[a
rb

. u
n

it
s]

FIG. 2. (Color online) Transient oscillations of the probe ampli-
tude due to coupling modulation with fc = 5 kHz and M = 20. Red
line, δ = 0; green dotted line, δ = 100 kHz.
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FIG. 3. (Color online) Adiabatic to nonadiabatic transition. 2D
mapping of the spectrotemporal response of the probe pulse is
demonstrated in the case of (a) the adiabatic regime, (b) the
intermediate regime, and (c) the nonadiabatic regime. The parameters
of the modulation are (a) fc = 625 Hz and M = 240, (b) fc = 5 kHz
and M = 20, and (c) fc = 25 kHz and M = 6. All the experiments are
done with γEIT = 14 kHz. Plots (d)–(f) show a simulation of the three
regimes that takes into account Eq. (3) with the parameters written
above. Plots (g)–(i) show the spectrum of the transmission taken as the
time integral for each frequency. Green line, experimental spectrum;
red dotted line, simulation spectrum.

due to a phase-modulated coupling field with an intensity of
1 mW/cm2 in an EIT media. Two major features are observed.
One is a train of pulses that is created with a period and
phase that is dependent upon the coupling-field modulation
frequency and the detuning [29]. The second feature is a
transient ringing that is associated with the response of the
media to a sudden change in the susceptibility. This ringing
has a chirped frequency as expected [18]. It decays with a
characteristic time that depends upon 1/γEIT and the chirp
rate through the transition (see Sec. V for more details).
The instantaneous frequency of the coupling field due to the
modulation is ω(t) = ωc + ∂φ

∂t
= ωc + M�c cos(�ct) while

the response has the spectral width of the EIT linewidth; thus
the relation between the modulation frequency and the EIT
width sets the adiabaticity of the response.

Figure 3 shows experimentally and theoretically the tran-
sition between the adiabatic regime where the modulation
frequency is lower than the EIT linewidth (�c � γEIT) and
the nonadiabatic regime where �c � γEIT. For both regimes
the phase of the pulses is determined by the instantaneous
frequency hence we see a sinelike plot as a function of
the detuning with a period 1/�c and an amplitude M�c.
In the adiabatic regime the transients decay fast enough so
they are hardly noticeable, but as the modulation frequency
becomes comparable to the EIT linewidth [Fig. 3(b)] the
transient ringing is clearly observed. In the nonadiabatic
regime the modulation frequency is faster than the decay of the
transient ringing, creating an interference between consecutive
pulses as can be observed in Fig. 3(c). Simulation of these

two-dimensional (2D) patterns using Eq. (3) are depicted in
Figs. 3(c)–3(e), showing a striking similarity to the results. One
aspect this linear response theoretical simulation fails to take
into account is the smearing of the interference pattern when
the probe pulse is turned on as can be visualized particularly
in Fig. 3(c). The cause of this effect is the gradual buildup
of the dark-state polariton and consequently the creation of
the EIT line that has a characteristic time of 1/2πγEIT [16].
Integrating the time domain reveals the steady state spectrum
of the probe light. Figures 3(f)–3(h) show the integrated spectra
of the experimental data (green line) as well as the simulation
(red line) in the adiabatic and nonadiabatic regimes. These
spectra fit to the phase modulation spectrum according to the
Fourier expansion of Eq. (2), meaning a δ function separated
by the modulation frequency, broadened due to the finite EIT
linewidth.

Figure 4 shows a 2D mapping of the temporal response of
the probe for different magnetic fields (The two-photon detun-
ing is on resonance with the magnetic-insensitive transition).

In the adiabatic regime [Fig. 4(a)] it is possible to see a
splitting of the sole pulse in B = 0 into three pulses. These
pulses correspond to three EIT lines that are present in the
spectrum. For the D1 line of rubidium, using an arbitrary
magnetic field, up to seven EIT lines may appear [31]. Due
to the vectorial nature of the magnetic interaction, the relative
strength of these lines depends on the angle between the beam
direction and the magnetic field as well as on the polarization
of the pump and probe beams [6]. The specific configuration
we use in our setup is B ‖ k with linear polarization. In this
case only three lines appear in the spectrum [6,32]. As a
complementary measurement we also measure the steady state
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FIG. 4. (Color online) Temporal response of a probe pulse due to
the magnetic field for (a) the adiabatic regime, (b) the intermediate
regime, and (c) the nonadiabatic regime. The parameters of the
modulation are (a) fc = 500 Hz and M = 200, (b) fc = 5 kHz and
M = 40, and (c) fc = 15 kHz and M = 10. Plots (d)–(f) show a
simulation of the three regimes that takes into account Eq. (4) with
the parameters written above.
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FIG. 5. (Color online) Zeeman splitting of EIT resonance due
to axial magnetic field. The spectrums are shifted for clarity. The
observed spectrum is indeed split to three levels.

spectrum of the EIT under variable magnetic field as can be
seen in Fig. 5.

To understand better the behavior of the three pulses a
broad scan of the probe transmission vs the magnetic field
is shown in Fig. 6. We can distinguish clearly the functional
behavior of the three EIT lines for 	m = 0,±2. The 	m = 0
line is not dependent upon the magnetic field; thus its phase is
constant with a pulse every half-cycle. Both 	m = ±2 lines
are sinusoidally modulated with a cycle equal to fc and a phase
of π between them. Each of these two lines behave exactly
like the detuning sweep of one EIT line (with no magnetic
field) under phase modulation (see, for example, Fig. 3). This
feature is understandable, as applying the magnetic field can be
translated to detuning via the Larmor frequency Zeeman shift.

Figures 4(b) and 4(c) show the nonadiabatic regime where
every pulse has an oscillating tail with a certain phase causing
an interference pattern. This interference can be used for
broadband magnetic sensing as described in Sec. VI. A
simulation based on Eq. (4) is shown in Figs. 4(d)–4(f), having
the same basic features as the experimental results.

Adding a constant detuning creates a symmetric shift of
the two sinusoids until reaching a field larger than 2M�

(results not shown). In this case the two sinusoids get separated
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FIG. 6. (Color online) A broad scan both in time and in mag-
netic field sweep. Here fc = 2 kHz and M = 10. (a) Experiment.
(b) Simulation.

and the constant pulse of 	m = 0 disappears. Since the two
sinusoids do not intersect the interference pattern disappears.
The major consequence is that measuring a constant magnetic
field accurately using this method is possible only for magnetic
fields with Larmor frequency smaller than 2M�.

The observed interference may be understood in the
following way. In the case of hyperfine EIT in a buffer
gas and under the condition of γEIT � � it is possible to
treat the two ground states as a degenerate set of effective
two-level systems (TLSs) [33,34]. Adding a magnetic field
removes the degeneracy and splits each TLS according to the
Zeeman frequency [35]. In our case due to the selection rules
stated above the splitting is to three groups with 	m = 0,±2.
As a consequence of this picture it is possible to think of
the magnetic sweep in time as a chirp of the three TLSs
[as depicted by the black dashed lines in Fig. 4(a)]. Thus,
the interference we measure is a direct consequence of a
three-level degeneracy. It is important to notice that in EIT,
due to the strong coupling field, the population remains in the
dark state all the time and the measured interference is not a
three-level LZ population transition but rather a coherence
measurement. A more intuitive way of describing the LZ
dynamics in our system is presented in the following section.

V. DRESSED STATES REPRESENTATION

The ringing observed in Fig. 2 is a manifestation of a
nonadiabatic transition through the EIT resonance. LZ theory
deals with this kind of transition and gives an analytic
prediction to the population transfer between the levels. In the
case of an EIT in buffer gas the best way to describe the system
is using the dressed states picture. Taking the Hamiltonian of
the bare three levels under the rotating wave approximation⎛

⎜⎝
0 0 1

2R∗
p

0 δ 1
2R∗

c (t)
1
2Rp

1
2Rc(t) 	

⎞
⎟⎠ , (5)

where Rc(t) = Rc0e
−iφ(t), Rp are the Rabi frequencies of the

coupling and the probe fields, respectively, δ is a constant two-
photon detuning, and 	 is the one-photon detuning which in
the case relevant to us is 0. In order to elucidate the resemblance
to the LZ model it is instructive to change to a new basis where

|1〉′ = |1〉,
|2〉′ = |2〉e−iφ(t), (6)

|3〉′ = |3〉eiφ(t).

The new Hamiltonian becomes⎛
⎜⎝

0 0 1
2R∗

p

0 δ − 1
2

∂φ

∂t
1
2R∗

c0

1
2Rp

1
2Rc0

1
2

∂φ

∂t

⎞
⎟⎠ . (7)

The 2 × 2 matrix of levels |2′〉 and |3′〉 is a LZ Hamiltonian.
Under EIT conditions Rc � Rp; hence it is possible to
diagonalize this 2 × 2 matrix with two new dressed levels

with eigenvalues ε± = − 1
2δ ± 1

2

√
δ2 + R2

c0 + ( ∂φ

∂t
)2 − 2 ∂φ

∂t
δ.

In the simple case where δ = 0 these states are just
|+〉 = sin θ |2′〉 + cos θ |3′〉 and |−〉 = cos θ |2′〉 − sin θ |3′〉
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FIG. 7. (Color online) Dressed states [on two-photon resonance
(δ = 0)] for (a) no magnetic field and (b) with magnetic field. Red
arrows represent probe transition on resonance.

with tan 2θ = Rc0/∂φ

∂t
[36]. It is important to notice that no actual

population is being transferred between the two levels since
only level |1〉 is populated at all times. This two-dressed-state
dynamics is interrogated by the probe field, meaning that
the transition matrix element |1〉 → |3〉 we are measuring
in the experiment carries the dynamics described above as
depicted in Fig. 7(a). In our experiment a phase modulation
sweep in time causes a periodic crossing between the two
dressed levels.

When a magnetic field is applied the system is split into
three subsystems with three levels in each [35]. Each one of
these subsystems behaves exactly as a single EIT system with
a magnetic Zeeman shift, δB = μBB(gF mF − gF ′mF ′). As a
consequence the energy levels of the subsystems 	m = +2
and 	m = −2 are reversed with respect to the magnetic field
(with δ = 0) while the energy levels of the subsystems 	m = 0
are only shifted by the pump field as depicted in Fig. 7(b).

One interesting characterization of the LZ dynamics is
the transition time. This time can be measured by the
relaxation time of the oscillations after the transition [37].
The two parameters that determine the transition’s properties
are the coupling Rabi frequency and the chirp rate, defined
as ∂2φ/∂t2. In the case of a sinusoidal phase modulation,
where φ(t) = M cos(�t), the maximal chirp rate for δ = 0 is
∂2φ/∂t2 = M�2. It is useful to quantify the transition using
the dimensionless parameter β = Rc√

∂2φ/∂t2
= Rc√

M�
. Figure 8

shows the relaxation time, τ , as a function of β for our
experimental results (red squares) as well as for our simulation
results (black circles). The relaxation time is found from
an exponential fit to the ringing peaks as depicted in the
inset in Fig. 8. The probability of a LZ transition (without
decoherence) with respect to time is a parabolic cylinder
function that can be approximated in the case of the relaxation
time to a chirped oscillatory function multiplied by some
polynomial decay [37]. Adding decoherence will add an
exponential decay to the LZ relaxation. Our fit is indeed not
to the full function, but to an exponential decay, which allows
a qualitative estimation for the LZ relaxation as a function
of β. We see that in the diabatic limit (low β) the decay
time is nearly constant and converging towards 2/2πγEIT,
meaning LZ relaxation which is much longer than decoherence
relaxation. At the adiabatic limit (high β) the decay is linear
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FIG. 8. (Color online) Decay time of the probe ringing as a
function of β. Black circles, simulation; red squares, experiment.
The decay time is calculated using an exponential fit to the peaks
of the ringing as shown in the inset. Green dashed line, the EIT
decay according to 2/2πγEIT; blue dash dotted line, linear fit for the
adiabatic case. Simulation parameters are similar to the ones in Fig. 3
with variable modulation index and modulation frequency.

with β. Similar theoretical results for the LZ theory have been
reported before [37,38], but with different scaling of β.

VI. MAGNETIC SENSING

The dynamic pattern created by the phase modulation as
depicted in Fig. 4 can be used for broadband magnetic sensing.
Each magnetic field has a certain characteristic pulse timing
associated with it. The phase of the first pulse is a prominent
feature for broad magnetic sensing as the total amplitude of
the modulation is Bmax = M�/	mμBgF . This corresponds
to 142 and 107 mG for Figs. 4(b) and 4(c), respectively.
Moreover, the interference pattern offers a way of measuring
accurately the magnetic field in the area of the interference.
The sensitivity to the magnetic field is dependent upon the
signal (S) to noise (Ñ) ratio and is given by [13]

	B√
	ν

=
√

t

S/Ñ
=

√
tÑ

∂A/∂B
, (8)

where t is the measurement time and ∂A/∂B is the gradient
of the integrated measured amplitude and the magnetic field.
In our case, since the transient ringing is a complex multifre-
quency feature the best way to characterize the transients for
different magnetic fields is by using the correlation between
them. Using this method we measured the noise and the gradi-
ent of the correlation function and estimated our sensitivity to
be 1 nT/

√
Hz for the 5 kHz modulation and 0.2 nT/

√
Hz in the

case of 15 kHz. This sensitivity is similar to the one reported
by Belfi et al. using a modulated coherent population trapping
system [13]. The ultimate sensitivity for a given sensing system

023858-5



DAVID SHWA AND NADAV KATZ PHYSICAL REVIEW A 90, 023858 (2014)

is [39] δB√
Hz

= �

μBgF

√
2πγEIT

NV
, where V is the volume of the

magnetometer. In our case this sensitivity is ∼400 fT/
√

Hz,
well below the observed sensitivity. Better shielding and
electronics are expected to approach this limit. A different
way of evaluating the sensitivity of our method is by analyzing
the interferogram created by the multilevel interference as can
be seen, for example, in Fig. 4(b). Simulation shows that the
width of the central peaks (around B = 0) narrows linearly as
the number of Zeeman levels participating in the interference
grows, meaning higher interferometric sensitivity. A similar
effect of multi Zeeman sublevel interference was measured
in cold atoms yielding a corresponding enhancement in the
sensitivity [40].

VII. CONCLUSIONS

We present a method for measuring broadband coherent
effects using the transient dynamics of a strongly modulated

system. Specifically, we show the transient response of an
EIT media to a phase-modulated pump. This response reveals
explicitly the coherent nature of the EIT susceptibility. In
the nonadiabatic regime where EIT peaks are spectrally
resolved we clearly observe interference between the different
modes. Albeit the interference between these modes does not
contribute to EIT spectral narrowing and as a consequence to
a slower light propagation [12,41], it does create a transient
behavior useful for broadband data transfer. Applying a
magnetic field splits the EIT line into three, allowing us to see
an interference pattern dynamics. Along with the wideband
sweep due to the high modulation index it is shown to be a
useful tool for sensitive wideband magnetometry.
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