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THEORETICAL MODEL FOR FREQUENCY AND LOSS TANGENT SHIFT

As mentioned in the text, for a small probe field one can describe the TLSs contribution

to the change in the probed mode resonant frequency and loss tangent as

δωpr
ωpr

=
∑
j

g2
j

ωpr

〈Ŝz,j〉
ωj − ωpr + i

T2j

, (1)

with coupling constant gj = ∆0j

h̄ωj

p cos(θj)EN=1,j

h̄
, where EN=1,j is the electric field strength at

the position of TLS j for an average single-photon energy in the resonator. The doubled

negative imaginary part of Eq. (1) determines the loss tangent due to TLSs and the real

part gives the frequency shift. Here the contribution of TLSs to the dielectric constant at

frequency ωpr is examined, TLSs are enumerated by the letter j, pj stands for TLS j dipole

moment and θj is the angle between this dipole moment and the cavity field, ∆0j stands for

the TLS j tunneling amplitude while Ej = h̄ωj is the energy of this TLS, the times T2j and

T1j (T2j = 2T1j) describe TLS relaxation and decoherence rates which can be expressed as

(weak interaction limit corresponding to low temperatures T ∼ 20 mK as in experiment) [1]

1

T1j

=
2

T2j

= A

(
∆0j

h̄ωj

)2 h̄3ω3
j

k3
B

coth

(
h̄ωj

2kBT

)
,

A ∼ 108s−1K−3. (2)

〈Ŝz,j〉 = −∆nj, where ∆nj stands for the population difference between ground and excited

states. For a uniform electric field inside a cavity with volume V we get

δωpr
ωpr

=
∑
j

cos2(θj)p
2
j

2h̄εε0V

(
∆0j

h̄ωj

)2 〈Ŝz,j〉
ωj − ωpr + i

T2j

, (3)

where ε and ε0 are environment and vacuum dielectric constants. If we replace ∆nj with its

equilibrium value

∆nj = tanh

(
h̄ωj

2kBT

)
(4)

Eq. (3) will lead to the standard expressions (see Eq. (9)).

In the case of interest the presence of the second strong (pump) field affects the dielectric

constant modifying population differences as

∆nj = tanh

(
h̄ωj

2kBT

)1−
T1jΩ

2
Rj/T2j

(ωj − ωpump)2 + 1
T 2

2j

(
1 + Ω2

RjT1jT2j

)
 , (5)
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where the TLS Rabi frequency ΩRj is given by

ΩRj =
∆0j

h̄ωj
cos(θj)Ω0,

h̄Ω0 = 2pjFpump, (6)

where Fpump is the pump field. The population difference is found by solving the standard

Bloch equations [2].

The correction to the probed mode resonant frequency can be expressed through the

induced change in dielectric constant due to correction to the equilibrium population number

given by the second term in Eq. (5)

δωpr

ωpr tanh
(
h̄ωpr

2kBT

) =

= − P0

2εε0

∫ 1

0
dy
∫ ∞

0
dω

∫ 1

0

dξ

ξ
√

1− ξ2

ξ2y2p2

ωpr − ω − i
T2

ξ2y2Ω2
0/2

(ω − ωpump)2 + 1
T 2

2
(1 + ξ2y2Ω2

0T
2
2 /2)

ξ =
∆0

h̄ω
, y = cos(θ). (7)

The integration over TLS frequencies ω can be performed analytically extending it to the

negative infinity. Then we get

δωpr

ωpr tanh
(
h̄ωpr

2kBT

) =

= −P0π

4εε0

∫ 1

0
dy
∫ 1

0

dξ

ξ
√

1− ξ2

ξ4y4p2Ω2
0T2

ωpr − ωpump − i
T2

[
1 +

√
1 + ξ2y2Ω2

0T
2
2 /2

] 1√
1 + ξ2y2Ω2

0T
2
2 /2

.(8)

In the case of zero frequency difference (ωpump = ωpr) this equation should approach the

standard model behavior. To show that this is indeed true one can rewrite this expression

as

δωpr

ωpr tanh
(
h̄ωpr

2kBT

) = −iP0π

2εε0

∫ 1

0
dy
∫ 1

0

p2y2ξ2dξ

ξ
√

1− ξ21 +

 ξ2y2p2Ω2
0T2/2

1
T2

[
1 +

√
1 + ξ2y2Ω2

0T
2
2 /2

] 1√
1 + ξ2y2Ω2

0T
2
2 /2
− 1


 =

= − i
2

P0 < p2 > π

3εε0
+
i

2

P0π

εε0

∫ 1

0
dy
∫ 1

0

p2y2ξ2dξ

ξ
√

1− ξ2

1√
1 + ξ2y2Ω2

0T
2
2 /2

(9)
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The unity term in brackets yields − i
2
P0<p2>π

3εε0
which is one half of the negative loss tangent

corresponding to the linear response theory. It cancels out the main contribution corre-

sponding to the first term in Eq. (5) in the large field limit. The second term represents the

exact expression for 1/2 of the non-linear loss tangent within the standard TLS model.

In the limit of interest of large non-linearity ΩT1,2 � 1 where the correction becomes

really large one can simplify Eq. (8) as

δωpr

ωpr tanh
(
h̄ωpr

2kBT

) =

=

√
2P0π

4εε0

∫ 1

0
dy
∫ 1

0

dξ√
1− ξ2

ξ2y3p2Ω0

∆ω + iξyΩ0√
2

, ∆ω = ωpump − ωpr. (10)

The real part of the correction to the frequency can be evaluated exactly as

δωpr

ωpr tanh
(
h̄ωpr

2kBT

) =

√
2P0p

2π2

8εε0

∆ω

Ω0

√
1 +

Ω2
0

2∆ω2 − 1√
1 +

Ω2
0

2∆ω2 + 1
. (11)

This result expresses the field dependence of the frequency shift in terms of the maximum

Rabi frequency Ω0 = 2pFpump/h̄. The result is sensitive to the distribution of dipole moments

p absolute value. Assuming the dipole moment magnitude to be approximately constant (see

e.g. Ref. [3], but see Ref. [4] and the discussion below) one can predict that the frequency

shift increases with the field at small fields Fpump � h̄∆ω/p where one can expand the

numerator with respect to the small ratio Ω0/∆ω as

δωlowpr
ωpr

=

√
2P0p

2π2

64εε0

Ω0

∆ω
, (12)

reaches the maximum |δωmaxpr /ωpr| = π2

24
√

3

P0p2

εε0
at Ωmax

0 =
√

6|∆ω| and then decreases as

δωhighpr

ωpr
=

√
2P0p

2π2

8εε0

∆ω

Ω0

(13)

with increasing the field at large fields Fpump � h̄∆ω/p (where we assumed tanh
(
h̄ωpr

2kBT

)
≈ 1

as in our experiments). The theory predictions are illustrated in Fig. 1a. The maximum

frequency shift can be conveniently expressed in terms of the weak-field loss tangent tan δ0 =

πP0p2

3εε0
as

| δωmax
ωpr tan δ0

| = π

8
√

3
≈ 0.227. (14)
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In our experiment we obtain δωmax

ωpr tan δ0
≈ 0.23 when the probe is at 5689 MHz which agrees

with theory, but when the probe is at 5626 MHz we get δωmax

ωpr tan δ0
≈ 0.16, which deviates from

the uniform-field theory (here we denote 1/Qi = tan δ even for our case of a non-uniform

electric field, see below). We note that in a Monte-Carlo simulation which takes into account

the finite number of TLSs and the non-uniform electric field (see below) we see a variation

in the value of | δωmax

ωpr tan δ0
| between different realizations and we can indeed see values close to

0.16. In addition, one should notice that the present estimate relies on the assumption of the

constant absolute value of the TLS dipole moment, a broader distribution of dipole moments

will definitely lead to the reduction of this maximum since it will mix up the contribution

from the maximum Rabi frequency with smaller contributions of other Rabi frequencies.

If the frequency detuning ∆ω approaches zero (corresponding to one-tone experiments)

the fraction

√
1+

Ω2
0

2∆ω2−1√
1+

Ω2
0

2∆ω2 +1

tends to unity and the frequency shift approaches zero as ∆ω .

The imaginary part of the relative frequency shift representing 1/2 of the loss tangent

correction can be also calculated using Eq. (10). The associated correction to the loss

tangent can be expressed as

δ tan(δ)

tanh
(
h̄ωpr

2kBT

)/πP0p
2

3εε0
=

= −

1 +
(

∆ω

Ω0

)2

6 + 3

√√√√1 + 2
(

∆ω

Ω0

)2

ln

1 +
(

Ω0

∆ω

)2

1−

√√√√1 + 2
(

∆ω

Ω0

)2




(15)

The expected dependence of the loss tangent on the external field amplitude is shown in

Fig. 1b.

If the TLSs’ hosting material doesn’t fill all the medium Eq. (11) and (15) should be

multiplied by the appropriate filling factor [5]. In addition, for a mode with a non-uniform

electric field distribution the internal loss 1/Qi is in general different from the bulk loss

tangent tan δ. Nevertheless, since, as we show below, there is a nearly identical power

dependence of 1/Qi and tan δ in the regime relevant for our experiments we use the notation

1/Qi ≡ tan δ throughout this appendix.
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FIG. 1. Theoretical calculation of (a) the frequency shift and (b) the loss tangent, as a function of

external field (for positive ∆ω).

CALCULATING THE STEADY-STATE PHOTON NUMBER IN THE RESONATOR

The steady state photon number in a resonator with resonance frequency ω0 driven at

power P with a pump tone of frequency ωp is given by [6]

〈N〉 =
κex

(κ/2)2 + ∆2

P

h̄ωp
. (16)

Using the definitions of external and total decay rates κex ≡ ω0

Qc
, κ ≡ ω0

Ql
and the detuning

between the drive and the resonator ∆ ≡ ωp − ω0 we obtain

〈N〉 = 4
Ql

ω0

Ql

Qc

1

1 + (2Ql∆/ω0)2

P

h̄ωp
. (17)

Ql, Qc and ω0 were extracted from the fits. For the pump-and-probe experiments ωp was

constant while the pumped-mode resonance frequency ω0 = ω0(P ) is power-dependent, hence

∆ was calculated using ω0(P ) which was obtained from the probe-only experiments. We note

that this calculation ignores impedance mismatches on the device and at the input chain of

the fridge [7] and therefore the calculated 〈N〉 cannot be considered completely accurate. A

knowledge of the exact number of photons is possible only by coupling the resonator to a

nonlinear quantum system [8]. Nevertheless, indication that our calculated 〈N〉 is close to

the real value can be found by (a) the agreement of the extracted nonlinear Kerr coefficients

with order-of-magnitude estimations (see below) and (b) the agreement between the pumping

number of photons for a maximal frequency shift and theory as detailed now. According
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to our theoretical derivation, the maximal frequency shift occurs at Ωmax
0 =

√
6∆ω, where

Ω0 = ΩN=1
0

√
N with ΩN=1

0 the single photon Rabi frequency. ΩN=1
0 is calculated by fitting

the two-tone frequency shift (see next section) which give ΩN=1
0 ≈ 2π×79 kHz. Substituting

∆ω = 2π × 63 MHz we obtain that the maximal frequency shift should occur at

〈N〉max = 6

(
∆ω

ΩN=1
0

)2

≈ 3.8× 106, (18)

which is in the order of the value we measured (see Fig. 3a in the main manuscript, but

notice that the actual maximal shift is measured by first subtracting the nonlinear kinetic

inductance shifts, see next section). In any case we stress that the exact value of 〈N〉 does

not effect our qualitative results.

ESTIMATING THE AVERAGE SINGLE PHOTON RABI FREQUENCY OF A

DOMINANT TLS

Using Eq. (11) and knowing that the maximal shift occurs at Ωmax
0 =

√
6|∆ω| we obtain

δωpr
δωmaxpr

= 3
√

6
∆ω

Ω0

√
1 +

Ω2
0

2∆ω2 − 1√
1 +

Ω2
0

2∆ω2 + 1
. (19)

Since Ω0 = ΩN=1
0

√
N with ΩN=1

0 the single photon Rabi frequency and because we know

the detuning ∆ω we can fit our two-tone frequency measurements vs. 〈N〉 to Eq. (19)

and extract ΩN=1
0 . In order to exclude the nonlinear kinetic inductance shifts we first

subtract them using the fitted nonlinear Kerr coefficients (notice that reasonable results are

obtained only when we use the value of K ′ fitted for the 5689 MHz resonance, supporting

the assumption that the value of K ′ extracted from fitting the 5626 MHz resonance is not

the correct one (see main manuscript)). This yields ΩN=1
0 /2π ≈ 81 kHz when probing at

5626 MHz and ΩN=1
0 /2π ≈ 78 kHz when the probe is at at 5689 MHz. These values which

are much larger than the ones expected for a uniform electric field (ΩN=1
0 /2π ≈ 5.2 kHz)

confirm the predictions of previous studies [9, 10] and of our Monte-Carlo simulations (see

below) that TLSs at regions of strong fields dominate the nonlinear behavior.
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MONTE-CARLO SIMULATIONS

In order to check the effects of a finite number of TLSs and non-uniform electric fields

we have conducted numerical Monte-Carlo simulations (a similar approach was used in

Ref. [9]). First, we calculate the electric field distribution of a CPWR using the potential

matrix method [11]. The expected number of TLSs NTLS = P0V h̄2πB is calculated using

the density of states P0 = 1045 J−1m−3 [12], a bandwidth of B = 2 GHz and our geometrical

dimensions, where we assumed that TLSs are located at a distance of 2.5 nm from metal-

air/metal-dielectric and substrate-air interfaces [10, 13]. For the substrate-air interface we

assumed TLS to be inside the substrate and for the metal-air we assumed that they are

inside a dielectric layer with ε = 10. In order to make the calculation computationally

reasonable we first calculated the field in absence of the additional thin layer and then used

the appropriate electric field boundary conditions to calculate the fields the TLSs experience

[10]. For each numerical realization TLSs are randomly placed inside these layers and their

frequency ωj coupling strength
(

∆0j

h̄ωj

)2
and relative angle to the field θj are acquired using the

standard distributions [2, 14]. Then, the electric field is calculated yielding the maximal Rabi

frequency Ω0 =
2pEN=1,j

h̄

√
N and the coupling constant gj = ∆0j

h̄ωj

p cos(θj)EN=1,j

h̄
, where EN=1,j

is the calculated electric field at the position of TLS j for an average single-photon energy in

the resonator. We assumed that the dipole moment magnitude is a constant with the value

P = 2.8 D [4]. The frequency shift and half of the loss tangent are calculated by performing

the sum Eq. (1) and taking the real and imaginary parts respectively. The numerical codes

are available for download in our group’s web site [15]. We stress that these simulations

are not intended for estimating the absolute values of the loss and frequency shifts, since

these depend on some values which are not precisely known such as TLS density of states

P0 and can also depend on the numerical grid size. Adaptive meshing which is required for

exactly calculating the fields at nanometric distances in a micron-size geometry is outside

the scope and need of this Letter. In Fig 2 we show the simulated shifts of frequency

and loss tangent as a function of pump photons assuming a uniform electric field (dashed

lines) and when the non-uniformity of the field is taken into account (full lines). These are

simulations of pump-and-probe experiments with ∆ω/2π = 60 MHz. In Fig. 3 we show fits

of the simulation results to the theoretical model Eq. (11) for both uniform and non-uniform

electric field. As can be seen in Fig. 3a and Fig. 2a, for a uniform electric field the theory fits
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FIG. 2. Simulated (a) frequency shifts and (b) loss tangents as a function of pump photons (for

a positive ∆ω/2π = 60 MHz). Each line corresponds to a different numerical realization. Full

(Dashed) lines show simulations with non-uniform (uniform) electric fields.

(a) (b)

FIG. 3. Fitting the simulated frequency shifts to the theoretical model for (a) uniform and (b)

non-uniform electric fields. Each sub-figure corresponds to a different numerical realization (same

as those of Fig. 2). Blue dots are the simulation results, red dashed lines are fits to Eq. (11).

the simulations very well except from some variance between the different realizations and a

non-vanishing shift which remains for high pump powers. Both effects are explained by the

finite number of TLS which in addition to the variance results in a finite asymmetry even

at the absence of pumping. Due to the asymmetry for each realization there is a different
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initial frequency shift which translates to a different ∆f0 at high powers. In contrast to

the uniform field case, if the non-uniformity of the field is taken into account, the theory

fits the simulations qualitatively but can have different amounts of quantitative deviations

as shown in Fig. 3b. In rare cases (not shown) the qualitative picture breaks as well. In

addition, there are large differences between different realizations and the behavior is very

irregular. The reason for these deviations is that the shifts are dominated by a few TLSs

which are located in regions of strong electric fields such a corners [9, 10]. These dominating

TLSs cause also that the fitted maximal single-photon Rabi frequency ΩN=1
0 will be much

larger than the value expected for a uniform field. For example, for the three realizations

shown in the top row of Fig. 3b which are reasonably fitted the extracted single-photon

Rabi frequencies are ΩN=1
0 /2π = 39, 15 and 49 kHz , while for a uniform field we expect

ΩN=1
0 /2π ≈ 5.2 kHz. The uniform-field simulations indeed give ΩN=1

0 /2π = 5, 4.7 and 5.4

kHz which are close to the theoretical value. Large values of ΩN=1
0 were also fitted from our

experiments’ data (see main manuscript) confirming the assumptions that strongly coupled

TLSs dominate the shifts. In addition, the differences between the shifts of both resonances

and small deviation from the theoretical curves (see Fig. 3a of the main manuscript) are

explained by the effect of small dominating TLSs as confirmed by the simulations.

In addition to the simulations of two-tone experiments we also checked the effect of finite

number of TLSs and non-uniform electric fields on one-tone probe-only measurements. The

simulations results are shown in Fig. 4. As can be seen in Fig. 4b the non-uniform fields

reduce the critical photon number in which saturation starts and soften the loss curves [10]

but does not significantly effect the functional behavior at high-powers [10, 16]. In addition,

as mentioned above, due to the finite number of TLSs there is some asymmetry in TLSs

spectral distribution around the probed resonance, resulting in frequency shifts in one-tone

experiments as shown in Fig. 4a. This effect is more pronounced for a non-uniform electric

field in which a few TLSs in regions of strong fields have a large effect. Notice that in contrast

to the two-tone case (Fig. 2a) the direction of the shift is random. This finite asymmetry can

explain the low-power frequency shifts in one-tone experiments shown in Fig. 2a of the main

manuscript. We notice that low-power frequency shifts in random directions were observed

in another experiment of uncoupled resonators on Sapphire (unpublished).
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FIG. 4. Simulated (a) frequency shifts and (b) loss tangents of probe-only experiments. Full

(Dashed) lines show simulations with non-uniform (uniform) electric fields.

A KERR NONLINEARITY MODEL FOR COUPLED RESONATORS

In this section we extend the model of Yurke and Buks [17] to the case of coupled res-

onators. Modeling the nonlinear inductance as a Kerr-type one we write the Hamiltonian

of the coupled resonators as

H = h̄ω0a
†
1a1 + h̄ω0a

†
2a2 + h̄g

(
a†1a2 + a†2a1

)
+
h̄

2
K(a†1a

†
1a1a1 + a†2a

†
2a2a2). (20)

The first two terms are the linear parts of both resonators (assumed to have the same bare

frequency ω0), the third term is the coupling term with coupling g and the last term contains

the Kerr nonlinearity part for both resonators, with a Kerr coefficient K (again, assumed

to be identical for both resonators). Defining the normal modes as

a± ≡
a1 ± a2√

2
⇒ a1,2 ≡

a+ ± a−√
2

, (21)

which obey the canonical commutation relations

[
a†i , aj

]
= δij (i, j = +,−) , (22)

we obtain the standard transformation to the normal modes

Hlin ≡ h̄ω0a
†
1a1 + h̄ω0a

†
2a2 + h̄g

(
a†1a2 + a†2a1

)
= h̄(ω0 + g)a†+a+ + h̄(ω0 − g)a†−a−. (23)
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In order to calculate the nonlinear term it is useful to notice that in the sum

a†1a
†
1a1a1 + a†2a

†
2a2a2 (24)

=
1

4

(
a†+ + a†−

) (
a†+ + a†−

)
(a+ + a−) (a+ + a−)

+
1

4

(
a†+ − a†−

) (
a†+ − a†−

)
(a+ − a−) (a+ − a−)

only terms which are positive in the last line (i.e. which involve an even number of minus

signs) will survive, getting a factor of 2, the others will be canceled. The result of the

calculation is

Hnonlin ≡
h̄

2
K(a†1a

†
1a1a1 + a†2a

†
2a2a2) (25)

=
h̄

4
K
(
a†+a

†
+a+a+ + a†−a

†
−a−a− + 4a†+a+a

†
−a− + a†+a

†
+a−a− + a†−a

†
−a+a+

)
.

The first two terms in the parentheses are the Kerr terms of the normal modes, the third

term is an energetic price for having photons in more than one mode (notice that the two

modes occupy the same spatial volume) and the last two terms are two-photon exchange

terms. Since from the commutation relations Eq. (22)

a†ia
†
iaiai = a†iaia

†
iai − a

†
iai ≡ Ni(Ni − 1), (26)

where Ni is the number operator of mode i, we can finally write the Hamiltonian as

H = h̄(ω0 + g)N+ + h̄(ω0 − g)N− +
h̄

4
K (N+ − 1)N+ +

h̄

4
K (N− − 1)N− (27)

+h̄KN−N+ +
h̄

4
K
(
a†+a

†
+a−a− + a†−a

†
−a+a+

)
Writing the Heisenberg equations of motion for the normal modes (neglecting non-resonant

terms, assuming K〈N〉 � 2g such as in our case)

da±
dt

= − i
h̄

[a±, H] = −i
(

[ω0 ± g] +
K

2
N± +KN∓

)
a± (28)

it can be seen that the cross-Kerr frequency shift is twice the self-Kerr one.

FITTING ONE-TONE LOSS TO VARIOUS TLS MODELS

The standard TLS model predicts a square-root dependence of the loss tangent on the

resonator internal energy [18], i.e. tan δ ∝
(
1 + N

NC

)−0.5
where NC is the critical photon
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number for saturation. While matching results of measurements on lossy dielectrics, this

model didn’t fit many measurements of resonators with higher internal quality factors where

a phenomenological power-law: tan δ ∝
(
1 + N

NC

)−φ
with φ < 0.5 was needed [19]. Here

we fit our measurements to the phenomenological power-law and to two other alternative

models: the interacting TLS model [19] and a model which assumes two types of TLSs [20].

Fig. 5a shows fits to the phenomenological power-law

tan δ = tan δi ·
(

1 +
N

NC

)−φ
+ tan δr, (29)

where tan δr is a residual power-independent loss term. High photon-number measurements

(〈N〉 > 107) in which the loss increases with power [21] were excluded from the fits. The

extracted parameters are φ ≈ 0.21, NC ≈ 7, tan δi ≈ 2.1 × 10−5 and tan δr ≈ 1.3 × 10−6.

While this model fits the results, the ad-hoc exponent φ ≈ 0.21 which is different than the

theoretical φ = 0.5 and the seemingly unphysical low critical photon number NC makes this

model unfavourable.

In Fig. 5b we show fits of the internal loss to the logarithmic dependence predicted by

the interacting TLS model [19, 22]

tan δ = Pγ tan δi log
(
γmax
Ω0

)
= Pγ tan δi log

(
γmax

ΩN=1
0

√
N

)
=

1

2
Pγ tan δi log


(
γmax/Ω

N=1
0

)2

N

 ,
(30)

where γmax (γmin) is the maximum (minimum) switching rate of fluctuating TLSs coupled

to a coherent TLS, Pγ ≡
[
log

(
γmax

γmin

)]−1
is a normalization constant related to averaging

over the switching rates and Ω0 (ΩN=1
0 ) is the TLSs (single-photon) Rabi frequency. Since

this model is relevant only for low powers (where the fluctuations due to the interactions

are faster than the Rabi frequency) we have fitted this model only for 〈N〉 < 1000. This

model also seem to fit the low power results. The extracted parameters yield (using the low-

power value of tan δ as tan δi) Pγ ≈ 0.2 which is in the order of the expected value assuming

switching rates in the range γ ≈ 1−106 Hz [22]. In addition, we obtain γmax

ΩN=1
0
≈ 220 which for

our results of ΩN=1
0 /2π ≈ 80 kHz gives γmax ≈ 18 MHz, which is reasonably self-consistent

with the Pγ value. We notice that this value of γmax cannot be explained as resulting from

phonon mediated relaxation, since for thermal fluctuators with energy E ≡ h̄ω ∼ kBT

the maximal phonon relaxation rate given by Eq. (2) is T−1
1,min ∼ AT 3 which for 20 mK is

T−1
1,min ∼ 1 kHz.
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Finally, the loss measurements were also fitted to a two-typed TLS model [20]

tan δ = tan δi1

(
1 +

N

NC1

)−0.5

+ tan δi2

(
1 +

N

NC2

)−0.5

+ tan δr, (31)

where each TLS type j has a different critical photon number NCj and an intrinsic low-power

loss tan δij which is related to its coupling to the electric field, density of states and filling

factor. The fits are shown in Fig. 5c. High photon-number measurements (〈N〉 > 107) in

which the loss increases with power were excluded from the fit. The fits seem reasonable

for 〈N〉 < 104 but deviate for higher powers. The extracted parameters vary significantly

for the two different resonances and are tan δi1 ≈ 5.2 × 10−6, NC1 ≈ 3300, tan δi2 ≈ 1.4 ×

10−5, NC2 ≈ 15 and tan δr ≈ 2.9 × 10−6 for the resonance at 5689 MHz and tan δi1 ≈

2.7 × 10−6, NC1 ≈ 27000, tan δi2 ≈ 1.2 × 10−5, NC2 ≈ 70 and tan δr ≈ 2.5 × 10−6 for the

resonance at 5626 MHz. Although the actual values of the critical photon number differ

significantly between both resonances their ratio is of the same order NC1

NC2
≈ 2 − 4 × 102.

This agrees with the assumption of the model that one TLS type has a much stronger

coupling to strain and hence a shorter T1 yielding a larger NC with NC1

NC2
≈ 102 [23]. The

fact that tan δi1 < tan δi2 is explained by the assumption that the strongly coupled TLSs

are rare (i.e. have a smaller filling factor). We note that a two-typed TLS model was used

to fit loss measurements in atomic layer deposition oxides [24] and that two types of TLSs

with a different dipole moment magnitude were found when individual TLSs were measured

[4] and by echo measurements [25]. In addition, two-typed TLS model was used to explain

the strain dependence of echo dephasing in a recent experiment [26, 27].

To conclude, our loss measurements cannot distinguish between the various TLS models,

but seem to be fitted well by models other than the phenomenological power-law. Further

discussion regarding these competing models [22, 28] is outside the scope of this Letter. We

notice that the dependence of the real part of the dielectric constant ε on power does not

change when interaction between TLSs are introduced [19], justifying our ignoring of TLSs

interactions when calculating the frequency shift.
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ESTIMATING THE KERR COEFFICIENT FROM NONLINEAR KINETIC IN-

DUCTANCE

In this section we derive an order of magnitude estimation for the Kerr coefficient based

on nonlinear kinetic inductance calculations and compare it to our results. Assuming the

total (current dependent) inductance to be in the form [21] L = L0+Lk

[
1 +

(
I
Ic

)2
]

where L0

and Lk are the geometric and (linear) kinetic inductances respectively and Ic is the critical

(pair-breaking) current, we obtain the nonlinear frequency shift

∆f (I) ≈ − 1

2π

ω2
0

2

Lk
L0

(
I

Ic

)2

. (32)

Substituting the average number of photons h̄ω0〈N〉 = LI2 we arrive at the expression for

the Kerr coefficient
K

2π
≈ − 1

2π

h̄ω2
0

2L0

Lk
L0

(
1

Ic

)2

. (33)

For our devices L0 ≈ 1 nH and ω0 ≈ 2π × 5.6 GHz. Using the values Lk

L0
= 0.04 for the

kinetic inductance fraction [29] and Jc = 100GA/m2 for the critical current density [30]

with a cross section of A = 120nm × 8µm we obtain K
2π
≈ −4.5 × 10−5, which is in the

order of magnitude of the values extracted from our measurements.
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(a)

(b)

(c)

FIG. 5. Fitting the internal loss vs 〈N〉 for the probe-only experiments to the (a) Phenomenological

power-law (b) interacting and (c) two TLS types models. Green (blue) points are for the resonance

at 5626 MHz (5689 MHz). Lines are fits to the various models.
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