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Through periodic index modulation, we create two different types of photonic structures in a heated rubidium
vapor for controlled reflection, transmission and diffraction of light. The modulation is achieved through the
use of the AC Stark effect resulting from a standing-wave control field. The periodic intensity structures create
translationally invariant index profiles analogous to photonic crystals in spectral regions of steep dispersion.
Experimental results are consistent with modeling.

I. INTRODUCTION

All-optical structures which can be dynamically controlled
are an important resource for many applications, such as ultra-
fast optical switches [1] or nonlinear processes in waveg-
uides [2]. The photonic crystal [3, 4] is one such all-optical
structure, in which light propagating in a periodic dielectric
medium has a band structure of allowed and forbidden fre-
quencies. Another useful structure is the thick Bragg grating
or more generally the volume hologram which may be used
for information storage [5]. By carefully constructing a di-
electric medium, light can be guided and shaped for use in
information technology and other applications [6].

Much progress has been made in this field [4], including the
dynamical control of the structure by using the electro-optic
effect [7] and fast pulses [8–10]. However, as Artoni and La
Rocca point out [11], all of these schemes are limited by the
original specifications of the structure; while the index of the
medium may be rapidly changed, the spatial structure cannot
be modified quickly.

One interesting solution to this problem is to “write” a
structure onto a medium using interfering laser beams, such
as in Ref. [12]. By making use of electromagnetically in-
duced transparency (EIT), a periodic structure with alterna-
tively transparent and opaque regions can be created with
counter-propagating beams. It has been shown that this effect
could also be used to create structures that behave like pho-
tonic crystals [13] which can be modified in time [14]. No-
tably, in addition to being rapidly reconfigurable, these struc-
tures also have high spatial fidelity, avoiding the local disorder
problems of solid crystals [11].

However, all of these systems which utilize EIT are limited
by coherence times and are more readily realizable in cold
atoms than at room temperature owing to the ballistic or dif-
fusive behavior of the atoms. Another possibility is to create
structures using optical pumping [15], but the bandwidth will
be limited by the decay time.

In this paper we propose and demonstrate photonic struc-
ture behavior within a cell of hot rubidium gas by using the
AC Stark effect. In addition to avoiding the use of cold atoms,
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theses structures occur over large control beam detunings (po-
tentially answering some questions posed in Ref. [16]) and
can be modified at a rate exceeding Ref. 14. This leads to
many interesting possibilities for future work, such as rapidly
creating a cavity at the location of a short pulse of light to trap
it, quickly reflecting a beam of a certain frequency, or making
use of slow light such as in [17].

In the following section we introduce the theory based on
the AC Stark effect in rubidium gas, and in sections III and IV
we describe two different experiments, both of which demon-
strate Stark effect induced structural behavior. Finally, con-
clusions and future work are discussed in section V.

II. THEORY

The phase shift and absorption caused by an atomic transi-
tion are related to the real and imaginary parts of the suscepti-
bility of that transition [18]. A sufficiently strong control laser
will, via the AC Stark effect, cause a shift in the transition fre-
quency. The resulting change in the susceptibility will depend
upon the intensity of the control laser and the temperature and
density of the atoms. This change in the susceptibility causes
an adjustment to the refractive index and transmission; the ex-
pected modification for a typical setup is shown in Figure 1a.
For a given propagation length, it can be seen that there is a
trade-off between absorption and change in refractive index.
For a fixed control beam intensity (and hence a fixed AC Stark
shift), a greater refractive index change can be achieved by in-
creasing the density of the rubidium atoms; however, this in
turn leads to greater absorption.

The AC Stark shift caused by a control field of frequency ωc
may be calculated by considering the field to be constant over
the region of a given atom and using the standard Hamiltonian
for a two-level atom with resonance frequency ω0 interacting
with an electric field given by ~E = 1

2 (
~Ece−iωct + ~E∗c eiωct). We

assume the laser is near resonance and use the rotating wave
approximation, where the Hamiltonian becomes

HR =−h̄
(

0 Ω/2
Ω∗/2 ∆

)
, (1)

with Rabi frequency Ω = ~d · ~Ec/h̄, detuning ∆ = ωc−ω0 and
~d is the transition dipole moment. The shifted levels can be
found from the eigenvalues of HR .
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FIG. 1. (Color online) (a) The modification of the refractive index and transmission for a typical experimental setup (control beam: P = 30
mW, a beam waist of 810×85 µm2, T = 85◦C and a cell length of 7.5 cm). The transmission curves for a probe beam with (dashed green) and
without (solid blue) the control field present are shown along with the resulting change in the real part of the refractive index (solid black). (b)
The relevant levels for rubidium 85 are shown. The common ground state (52S1/2 F = 2) is Stark-shifted by the control beam either 780 nm
(blue, solid) or 795 nm (red, dashed). The magnitude of the Stark shift is included as δε/h̄ for two levels.

If the control field is chosen to interact only with the ground
state (which is common to both the probe and control fields),
as in the 780 nm field of Figure 1b, then the expected shift of
the probe resonance can be found by considering the shift on
just the lower level. This is given by

δε =− h̄
2

(
∆−

√
∆2 + |Ω|2

)
. (2)

For large detuning, this becomes

δε≈− h̄|Ω|2

4∆
. (3)

By interfering the control beam with itself, a periodic stand-
ing wave can be created within a heated cell of rubidium. This
standing wave provides a periodic intensity and thus a periodic
change in refractive index, analogous to a photonic structure,
but created in a hot cloud of rubidium gas.

For small AC Stark shifts the change in refractive index ∆n
will be proportional to the shift in susceptibility; but the sus-
ceptibility is proportional to the AC stark shift δε/h̄, hence
linear in control intensity and inversely proportional to the
control detuning [via Eq. (3)]. The efficiency of such struc-
tures will be proportional to the square of this refractive index
contrast [Ref. 5, Eq. (45)]; that is to say, the efficiency has the
behavior

e ∝ I2
c and e ∝

1
∆2 , (4)

where Ic is the intensity of the coupling field. It is therefore
advantageous to increase the coupling field intensity and re-
duce the detuning (while still avoiding other processes such
as optical pumping).

III. PHOTONIC BAND GAP

A. Experiment

One such structure can be induced by using a crossed beam
setup, shown in Figure 2a, which creates a set of disallowed
frequencies for a probe beam. We chose to use a crossed-
beam setup rather than a collinear design to enhance filtering,
to avoid coherent effects, and to prevent the control beam from
creating a band gap for itself. We choose the angles between
the beams such that the distance ∆p between nodes of the con-
trol beam is half the wavelength of the probe beam. Since the
index contrast ∆n = n1− n2 between the node and antinode
of the control field is small, this creates the equivalent of a
quarter-wave stack, with n1a1 ≈ n2a2 and a1 = a2 = ∆p/2.

For two control beams with wave numbers k1 = k2 = 2π/λc
we can calculate the required angle 2θ between the beams for
a band gap to occur. Treating the two crossing control beams
as plane waves of the form ~E j = ~A jei(~k·~r−ωt)+c.c. ( j = {1,2})
and assuming the amplitudes of each beam A1 = A2 = A, the
intensity as a function of distance x away from their crossing
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FIG. 2. (Color online) (a) Schematic of the photonic band gap
experimental setup of section III. Probe light at 795 nm is incident
on a rubidium vapor cell and appropriate detectors. A Stark-shifting
control beam at 780 nm and detuning ∆ of at least 1 GHz is set up in a
crossed configuration in order to create an interference pattern with a
periodicity that creates a band gap in the medium for the probe beam.
(b) Schematic of the Bragg grating experimental setup of section IV.
Polarizing beamsplitters (PBS) are used to combine and separate the
control and probe fields.

point for a given angle θ is

I = 2A2{1− cos[2θ]cos[2kxcos(θ)]}. (5)

Solving for the spacing ∆p between peaks, we find that ∆p =
λc/[2cos(θ)], where λc is the wavelength of the control field.
Letting the spacing be half the wavelength of the probe field
(λp) such that ∆p = λp/2, we find the simple condition

cos(θ) = λc/λp. (6)

For λc = 780 nm and λp = 795 nm, this gives θ = 11.2◦.
The experimental setup consists of a 780 nm external cav-

ity diode laser that produces a horizontally polarized standing
wave in a 1 mm long cell with naturally abundant rubidium. A
vertically polarized probe beam generated by a 795 nm exter-
nal cavity diode laser is incident on a 50:50 beamsplitter. Half
of the light passes through the cell to a detector, where the
absorption spectra is measured. The other half is measured
at a second detector so that percentage-of-input calculations
can be made. Reflected probe light passes back through the
beamsplitter to a third detector.

Absorption, transmission and reflection spectra of the probe
beam were recorded for various control beam frequencies.
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FIG. 3. (Color online) Plot of transmitted (dashed) and reflected
(solid) probe light. Since the index contrast created by the Stark
effect is greatest near resonance, the band gap is more dominant in
these regions.

The percent reflected was calculated by subtracting back-
ground from the reflected power and dividing by the input
power. The control beam was detuned from resonance by
at least 1 GHz to limit optical pumping. As expected, the
frequency of the band gap depended on the frequency of the
control light, but reflection was still present for detunings ex-
ceeding 50 GHz. Temperature adjustments were used to opti-
mize the optical depth. The angle between the control beams
was tuned to maximize reflection for a given probe frequency,
consistent with Eq. (6).

B. Results

The results of the experiment are consistent with the model
of a periodic index contrast induced by the AC Stark effect.
This is evident through observations of certain disallowed
probe frequencies (exhibited by reflection from the gas). The
disallowed probe frequencies depend on both the angle and
the frequency of the control field, despite the lack of coher-
ence present in the experiment.

Eq. (2) can be used to find the expected Stark shift from
the control field. For a control power of 120 mW, a gaussian
beam diameter of 600 µm and a detuning of 2 GHz, the pre-
dicted shift is 5.7×107 Hz. Based upon probe scans with and
without the control field, the average shift was found to be
2×107 Hz. However, this is only an approximation that does
not take into account the distortion of the transmitted field plot
when the standing wave control field is present.

The reflection and transmission spectra of the probe are
shown in Figure 3. The steepest dispersion occurs in regions
near resonance; therefore, the reflectivity is strongest there,
consistent with Figure 1. This is also where the greatest ab-
sorption occurs, accounting for the low percentage of reflected
light. Depending on the frequency and angle of the con-
trol beams, the reflection occurs strongly at the correspond-
ing probe frequencies. In the data shown, the angle was tuned
so that the reflected peak was maximized for the D1 transi-
tion of 87Rb, from the F = 1 ground state. It is not surprising
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FIG. 4. (Color online) Plot of probe (black, thin) and control
field (blue, thick) normalized intensities along with the control field
squared (red, dashed) during pulsed operation. A rapid response of
the band gap effect to the turn-on of the control field is evident.

that the effect occurs at the other resonances (although more
weakly), since according to Eq. (2) a Stark shift is still present
for nonzero detuning. It is also important to note that the re-
moval of one of the control beams results in no frequency-
dependent reflections; this behavior supports our conclusion
that the standing wave is responsible for the band gap.

The time response of the system was then investigated by
pulsing the control field and observing the reflected light. Fig-
ure 4 shows a plot of the amplitude of both the control field
and the reflected probe field as a function of time. The peak of
the reflected pulse occurs at the same time as the peak of the
control field pulse, within the precision of our measurement
(≈ 5 ns). Faster pulsing and detecting apparatus would be re-
quired to detect a delay in the response of the band gap, which
should be proportional to the Rabi frequency of the control
field. This will be the subject of future work. However, we
note here that the delay of the reflected pulse in Ref. 14 was
on the order of a microsecond.

It may also be noted that the width of the reflected probe
pulse is shorter than the control field pulse (thin black versus
thick blue traces in Figure 4). However, by comparing the
width of the square of the intensity to the width of the reflected
probe pulse (dashed red versus thin black traces in Figure 4),
we find the results consistent with the discussion of Eq. (4).

This first demonstration is the all-optical equivalent of a
quarter wave stack in a dielectric medium. In the following
section, we turn to a second arrangement where we again em-
ploy the AC Stark effect, but in a co-propagating configuration
leading to a thick Bragg grating.

IV. BRAGG GRATING

A. Experiment

To create the Bragg grating we interfere two nearly co-
propagating beams taken from the same laser source, as shown
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FIG. 5. (Color online) (a) Plot of measured (blue) and simulated
(red, dashed) diffracted probe light. (b) Measured (blue) and sim-
ulated (red, dashed) transmitted probe. Probe detuning is from the
D1 line of the 87Rb F = 1→ F ′ = 2 transition. Cell and control
parameters are same as in Figure 1 and the grating spacing is 55 µm.

in Figure 2b. A standing wave is produced in the plane per-
pendicular to the average direction of propagation of the two
control beams. If the control and probe wavelengths are close,
then the Bragg angle for such a grating is identical to the angle
of incidence of the control beam. The path of the probe and its
diffraction therefore lie along the paths of the control beams.
Thus, we are able to use orthogonal polarizations to separate
the probe from the control. In contrast to the experiment of
section III, here we use an isotopically pure 85Rb vapor cell
of length 7.5 cm. Also, in this configuration, it is desirable to
use nearly degenerate control and probe fields (in this case the
D1 line of rubidium).

We simulate the effect of this grating by first calculating the
expected change in the refractive index caused by the control
field using classical susceptibility equations, calculated from
[18], with the added AC Stark shift of Eq. (3) and taking into
consideration hole burning and optical pumping caused by the
probe. These results, along with experimental measurements
of the beam sizes and angles, are then incorporated into a sim-
ulation of the 3D propagation of the electromagnetic field.

If the intensity profile of the interfering control beams
I(x,y,z) is known, the accumulated phase difference of the
probe field can be expressed as

φ(x,y,z) =
2π

λ
δnI(x,y,z)z+ i[α+δαI(x,y,z)]z, (7)

where n is the real part of the total index of refraction n+ in′′,
α is the absorption coefficient (given by α = 2πνn′′/c), and
δn and δα are the corresponding changes. The intensity of the
diffracted and transmitted probe field was found by summing
the absolute square of the field over the pixels in the appropri-
ate diffraction order.
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FIG. 6. (Color online) Plot of measured diffracted probe with
change in the detuning of the control field (blue). The inset shows a
log-log plot of the measured data (blue) and a straight line fit (red)
with a slope of−1.99±0.02. The control field detuning is measured
from the D1 line of the 85Rb F = 2→ F ′ = 3 transition.

B. Results

We first measure the diffracted signal, shown in Figure 5,
by tuning the control beam to the D1 line of the 87Rb F =
1→ F ′ = 2 transition, 2.7 GHz from the closest 85Rb tran-
sition; this ensures that there is no optical pumping. (Again,
the reflected probe field is not present when we block either of
the control beams, thus verifying that our signal is due to the
induced grating). We see that the diffracted signal is strongest
on the edges of the absorption as expected (see Figure 1), and
is observed to be largest on the 85Rb D1 F = 2 transition where
there is the smallest detuning. The results of the simulation
confirm that the grating is produced by the AC Stark shift.

Finally, we vary the control field frequency while holding
the probe at a constant detuning of 2.2 GHz from the D1 line
of the 87Rb F = 1→ F ′ = 2 transition. The diffracted probe
signal is shown in Figure 6 and is visible for pump detunings
up to 10 GHz. The diffracted probe signal falls off with an
inverse square law relationship consistent with an AC Stark
effect induced grating as predicted by the theory [Eq. (4)].
This behavior is shown in the inset of Figure 6, where the

slope is −1.99± 0.02. When the control is close to the 85Rb
D1 F = 2 transition, optical pumping dominates as expected.
On the other side of the transition the new dressed state caused
by the control beam causes the probe to lie in a place of very
high absorption; thus no diffracted signal is observed at this
probe frequency.

V. CONCLUSIONS

Both systems show optically induced structures that are
only effective when the interfering control fields are present.
It is clear from these results that the AC Stark effect is the
cause of these structures and that the response time is . 5 ns.

The results of Section III B are consistent with the model
of a periodic index contrast induced by the AC Stark effect,
which creates the photonic band gaps seen in Figure 3. The
results of Section IV B demonstrate that we are able to very
closely simulate these processes, and that to fully understand
the behavior of these structures one needs to take into account
the change in both the real and imaginary parts of the suscep-
tibility caused by the AC Stark effect. In future work, we plan
to extend the periodic structure into two dimensions. This
could be achieved with the use of a digital micro-mirror de-
vice capable of generating periodic patterns resembling a 2D
photonic crystal. This pattern could be easily manipulated at
high speed, effectively creating a fast, controllable optical cir-
cuit.

In summary, we have shown that a variety of structures may
be set up in hot rubidium gas by use of the AC Stark effect. By
turning the control fields on (off) we can enable (disable) the
photonic band gap, thereby producing a fast optical switch.
Importantly, the control and probe fields can be derived from
different sources and the atomic cloud is heated; this is a vast
simplification over designs that utilize EIT and cold atoms.
These results open up many interesting possibilities in quan-
tum computing and alternatives to photonic crystal technol-
ogy.

ACKNOWLEDGEMENTS

This research was supported by the ARO Grant No.
W911N-12-1-0263, ISF Grant No. 1248/10 and the Univer-
sity of Rochester.

[1] K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizu-
tani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu,
X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue,
M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, New
Journal of Physics 8, 208 (2006).

[2] P. K. Vudyasetu, D. J. Starling, and J. C. Howell, Phys. Rev.
Lett. 102, 123602 (2009).

[3] S. John, Phys. Rev. Lett. 58, 2486 (1987).

[4] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386,
143 (1997).

[5] H. Kogelnik, Bell System Technical Journal 48, 2909 (1969).
[6] A. Yariv and P. Yeh, Photonics, sixth ed. (Oxford University

Press, 2007).
[7] D. Scrymgeour, N. Malkova, S. Kim, and V. Gopalan, Appl.

Phys. Lett. 82, 3176 (2003).
[8] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson,

Nature 431, 1081 (2004).

http://dx.doi.org/10.1103/PhysRevLett.102.123602
http://dx.doi.org/10.1103/PhysRevLett.102.123602
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://www.alcatel-lucent.com/bstj/vol48-1969/articles/bstj48-9-2909.pdf


6

[9] W. Huang, W. Qian, and M. El-Sayed, Advanced Materials 20,
733 (2008).

[10] Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo,
and M. Lipson, Phys. Rev. Lett. 108, 223907 (2012).

[11] M. Artoni and G. C. La Rocca, Phys. Rev. Lett. 96, 073905
(2006).

[12] H. Y. Ling, Y.-Q. Li, and M. Xiao, Phys. Rev. A 57, 1338
(1998).
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