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Abstract

The standard lore in the idealized picture of galaxy formation was that the gas was �rst heated to the
halo virial temperature behind an expanding virial shock. The articles by Dekel and Birnboim (2003, 2005)
showed that the virial shock was not necessarily stable: below a threshold halo mass, the shock is unstable.
Furthermore, these articles proposed a new scenario for galaxy formation: beyond the critical mass, a cold and
a hot mode of accretion coexist. Some of the gas is shock-heated to the virial temperature, but some of it
remains cold and penetrates deeply into the galaxy and these cold �ows feed the galaxy very e�ciently.

Our goal is to highlight the cold �ows in the galaxies of the MareNostrum simulation. We isolate some
galaxies from this cosmological simulation and de�ne slices to study the gas accretion. The results con�rm
the predictions of Dekel and Birnboim and can be compared to theoretical analyses as well as related to star
formation rate observations.

Résumé

Le scénario traditionnel pour la formation des galaxies impliquait l'existence d'un choc autour du rayon
viriel de la galaxie. Les articles de Dekel et Birnboim (2003, 2005) ont montré que ce choc n'était pas toujours
stable: il existe ainsi une masse critique pour la galaxie en-deça de laquelle le choc ne peut être stable. De plus,
ces articles ont prédit que même au-dessus de cette masse critique, des �laments de gaz froid n'ayant subi aucun
choc pouvaient pénetrer profondément dans la galaxie: les cold �ows. Ainsi, selon ce nouveau scénario, deux
types d'accretion peuvent se cotoyer: d'un coté une accrétion de gaz chaud, peu dense et qui a subi un choc, de
l'autre des écoulements de gaz froid plus denses et qui apportent la plus grande partie du gaz à l'intérieur de la
galaxie.

Nous cherchons à mettre en évidence ces cold �ows dans la simulation MareNostrum: il s'agit d'une simula-
tion cosmologique d'où nous isolons certaines galaxies pour en observer des coupes et pour en étudier l'apport
en gaz. Les résultats obtenus con�rment les prédictions de Dekel et Birnboim et peuvent être comparés avec
les résultats théoriques, ainsi que reliés aux observations du taux de formation d'étoiles.
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Introduction

In the last ten years, huge observation programs and the development of computer simulations have trans-
formed cosmology from a highly speculative science into a predictive science. We now speak of a �standard
model of cosmology� which would describe as accurately as possible the structure and the evolution of the
universe. An important part of cosmology consists in re�ning that model by constraining its parameters, but
even if this model is extremely successful at explaining the large scale structure of the universe, a phenomeno-
logical approach is necessary to achieve a better understanding of the complex processes involved in structure
formation. The current Big Bang model assumes a very homogeneous universe at early times, an assumption
which is con�rmed by the observations of the Cosmic Microwave Background. But looking at the sky today, we
see structure on all scales - from planets and stars to galaxies, clusters of galaxies and enormous voids between
them. The scenario which leads to these huge inhomogeneities is based on the simple gravitational instability,
but the non linearity of the equations and the prodigious number of particles require using numerical simula-
tions and a phenomenological approach. Indeed, knowing the basic equations does not mean understanding the
complex physical processes deriving from them.

The idealized picture of galaxy formation in the standard cosmological model is a spherical infall of gas inside
a dark-matter halo[14]. The standard lore was that the gas was �rst heated to the halo virial temperature behind
an expanding virial shock, but Yuval Birnboim and Avishai Dekel showed in 2003 that below a critical mass, the
virial shock in a galactic system is unstable and therefore often does not develop at all[1]. The resulting picture
is that at high redshifts, galactic systems below the shock-heating mass scale will be comprised almost solely of
cold gas, whereas above this scale a shock-heated gas extends out to the virial radius and cold, dense streams of
gas fall along all the way down to the central galactic disk[3, 5, 15]. During my internship, I worked under the
supervision of Avishai Dekel in the Racah Institute of Physics at the Hebrew University of Jerusalem, being part
of his team working on the cold streams. This team comprises PhD students and postdocs (Yuval Birnboim, Elad
Zinger, Noam Libeskind, Joanna Woo, Tobias Goerdt) as well as undergraduate students (Giora Engel, Michael
Mumcuoglu, Barak Einav) and combines theoretical work with simulation and data analysis. Besides reading
about galaxy formation and cosmology, my �rst task was to extract data from the MareNostrum simulation,
aiming at highlighting the cold �ows, and it is �nally with this data and using Matlab that I worked during
my whole internship. The results of this work were largely used in a team article submitted to Nature towards
the end of my internship: Massive galaxy formation by cold streams[4], available in the appendix section. The
team work and the frequent seminars were very stimulating and enabled me to keep in mind the more general
frame in which my work was embedded ; during my internship, I was also able to attend a class of Advanced
Cosmology on structure formation in the universe by Avishai Dekel and to listen to world leading cosmologists
during a workshop which took place in June.
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1 Formation of structure in the standard model of cosmology

1.1 The ΛCDM model

1.1.1 A Friedmann-Lemaître model

The �rst cosmological model based on general relativity was proposed in 1917 by Albert Einstein, who was
prejudiced to believe in a perfectly static universe without beginning or end. More generally, the Einstein
equations of general relativity relate the structure of space-time with its mass and energy contents: gravitational
�elds intrinsically a�ect the curvature of space-time. Consequently, the matter distribution of the universe
determines its global geometry. The more general form of these tensorial equations can be written as:

Gµν = Eµν + Λgµν

where Gµν is a tensor related to the distribution of matter, the Einstein tensor Eµν is related to the Riemann
tensor which itself describes the curvature of space-time, and the last term proportional to the metric gµν implies
a cosmological constant Λ. This tensorial equation leads to ten non linear scalar equations and implies the local
conservation of energy. A non zero cosmological constant was initially introduced by Einstein to allow a static
universe, but was later removed as Edwin Hubble con�rmed that our universe was not static, but expanding.
The cosmological constant was then abandoned, until recent observations reintroduced it.

The basic assumption in cosmology is the cosmological principle: the universe is assumed to be homogeneous
and isotropic on large scales. There is no preferred place to observe the laws of nature, which are assumed to
be the same everywhere and at all times, and at very large scales the universe is smooth. Other assumptions
arise when using general relativity: space-time should be simply connected (it could be �lled with observers),
locally �at (special relativity is locally valid) and there should be a means to synchronize all clocks in space.

The structure of space-time can be generally described by its metric, which is a quadratic form analog to
distance in an Euclidean space. Assuming a homogeneous and isotropic universe, the Einstein equations of
general relativity lead to the Friedmann-Lemaître-Robertson-Walker metric as the metric of the universe, which
can be written in spherical coordinates (r, θ, φ)

ds2 = −c2dt2 + a(t)2( dr2

1−kr2 + r2dΩ2)

where k describes the spatial curvature and is constant in time, a(t) is the scale factor, explicitly time dependent
and expressing the relative expansion or compression of the universe, and dΩ2 = dθ2+sin2θdφ2. In an expanding
universe, physical distances will expand proportionally to a(t) and it is therefore current to express the metric
in comoving coordinates dξ = cdt/a(t):

ds2 = −c2dt2 + a(t)2(dξ2 + Sk(ξ)dΩ2

where Sk(ξ) =

 sin(ξ) if k = +1
ξ if k = 0
sinh(ξ) if k = −1

The resulting equations in the case of an homogeneous and isotropic universe are called the Friedmann
equations:

H2 ≡ ȧ2

a2 = 8πG
3 ρ− kc2

a2 + Λc2

3

2 äa + ȧ2

a2 = − 8πG
c2 P − kc2

a2 + Λc2
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These equations are the basis of the di�erent models for the universe, as they give the evolution of the
scale factor as a function of time. Even if the real universe is not rigorously homogeneous and isotropic, the
Friedmann-Lemaître-Robertson-Walker model is used as a �rst approximation to describe the evolution of the
real universe. Di�erent parameters are involved in these equations, such as the curvature k whose values are
taken from {−1, 0,+1} or the cosmological constant Λ. The �rst Friedmann equation can be rewrited in terms
of density parameters

H2/H2
0 = Ωr,0a−4 + Ωm,0a−3 + Ωk,0a−2 + ΩΛ,0

where Ωm,0 ≡ ρm,0/ρc is the actual matter density parameter, de�ned as the ratio of the actual matter density
ρm,0 to the critical density of an Einstein-de Sitter universe (no curvature, no cosmological constant) ρc =
3H2

0/8πG, Ωr,0 ≡ ρr,0/ρc is the radiation density today, Ωk,0 ≡ −kc2/H2
0 is the spatial curvature density

today and ΩΛ,0 ≡ Λc2/3H2
0 is linked to the value of the cosmological constant today (often assimilated as a

vacuum density). These quantities are some of the cosmological parameters which determine a cosmological
model and the properties of the universe, as its mode of expansion. Recent observation programs have placed
severe constraints on the cosmological parameters, leading to the emergence of the ΛCDM cosmology as the
standard cosmological model. ΛCDM stands for Λ-Cold Dark Matter, as that Friedmann-Lemaître-Robertson-
Walker model assumes the existence of a cosmological constant and of cold dark matter. It is a Big Bang
model where the expansion is even accelerated. Some of the parameters of the ΛCDM cosmology, assuming no
spatial curvature Ωk = 0, are listed in Table 1: these values have been obtained with the data of the Wilkinson
Microwave Anisotropy Probe (WMAP), combined with the Sloan Digital Sky Survey (SDSS) and supernovae
data. The errors quoted are 1σ: there is statistically a 68% likelihood that the true value falls within the upper
and lower error bounds.

Parameter Value Description

H0 73.2+3.1
−3.2 km s−1Mpc−1 Hubble parameter

Ωm,0 0.266+0.025
−0.040 Total matter density (baryons and dark matter)

Ωb,0 0.0444+0.0042
−0.0035 Baryon density

ΩΛ,0 0.732+0.040
−0.025 Dark energy density

t0 13.7+0.13
−0.17Gyr Age of the universe

Table 1: Some parameters of the ΛCDM cosmology

1.1.2 Cold dark matter and a cosmological constant

The ΛCDM model assumes the existence of a cold, non baryonic dark matter. The observed phenomena which
lead to the assumption of the existence of this dark matter were the radial velocities of stars and gas in galaxies.
Indeed, Newtonian dynamics relate the rotation velocity of an object around a central mass to the distance
between the two objects and to the mass of the central one. As he was trying to determine the mass of the
Coma cluster in 1933, the Swiss astronomer Fritz Zwicky was surprised to �nd that 100 to 500 times more mass
than observed would be needed to explain the high values of the rotation velocities. The same phenomenon was
later observed by Sinclair Smith in 1936 for the Virgo cluster, but the problem did not trigger interest at that
time. It reappeared in the seventies when the American astronomer Vera Rubin studied the rotation of spiral
galaxies: stars far from the center of the galaxy seemed to be rotating so fast that the rotation curve of most
spiral galaxies was �at. According to Newtonian dynamics, the rotation velocity should decrease when moving
away from the center of the galaxy, as most of the visible matter is concentrated around the center. As the
density decreases approximately exponentially from the center, the velocity of the stars in the spiral arms of
the galaxy should also decrease exponentially, which is not observed.
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Figure 1: The rotation velocity of stars within a galaxy is not compatible with a simple disk model induced by
the luminous matter distribution. Assuming the existence of a dark matter halo surrounding the disk permits
to �t the observations.

To explain the dynamics of these galaxies, one could imagine the existence of a halo made of non visible
matter in which the visible matter would be embedded and whose mass would be more than �ve times higher
than the mass of the visible matter. For a few years, this dark matter was expected to be constituted of
ordinary baryonic matter, like asteroids, extrasolar planets or neutron stars. But later studies have shown that
it is not possible: the Big Bang theory precisely predicts the quantity of baryons present at the �rst epochs of
the universe and dark matter has therefore to be explained with a di�erent type of matter. The �rst candidates
were neutrinos, which are neutral particles weakly interacting with ordinary matter. But we now know that
their mass would have been too small to explain the masses of galactic haloes and their velocities too big to
enable haloes to form: the high velocities of this �warm dark matter� would have dispersed the little primordial
inhomogeneities which then led to the formation of galaxies and clusters of galaxies. It is for this reason that
most of the dark matter has to be �cold�, which means that its mean velocity at the �rst stages of cosmic history
was much smaller than the speed of light. Particle physicists are researching such a particle, which would weakly
interact with ordinary matter and would be much more slower and massive than the neutrino. Some extensions
of the standard model of particle physics, as supersymmetry, o�er possible candidates named WIMPS (Weakly
Interacting Massive Particles): these particles would only interact through weak and gravitational interactions.
Experiencing no electromagnetic interaction, we would not be able to detect them directly and their indi�erence
to the strong nuclear interaction prevent them to react with atomic kernels. Within the supersymmetric theory,
the neutralino would be a good candidate for dark matter: this particle would be the fermionic superpartner
of both the photon (boson which transmits the electromagnetic force) and the Z0 boson (which transmits the
weak nuclear interaction). The neutralino would be more massive than all known particles but the lightest
supersymmetric particle, which would assure its stability.

Even if the ΛCDM model seems to be the most accurate model to describe our universe nowadays, dark
matter has not been directly detected. The assumption of its existence is not the only possible answer to the
incompatibility between the observed galactic orbits and newtonian predictions: the israeli physicist Mordechaï
Milgrom proposed in 1983 to modify Newton's law of gravity[6]. This was the starting point of the MOND theory
(Modi�ed Newtonian Dynamics), which explains extremely well the rotation curves of galaxies without dark
matter. But even with its successes, the absence of an underlying theory which would explain the modi�cation
of Newton's law prevents it to be a fully convincing model.
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Recent measurements of the velocities of distant (high redshift) objects have shown that the Hubble constant
was lower earlier in the history of the universe: the expansion of the universe is accelerating[12]. This can be
only achieved with a non zero positive cosmological constant. This constant arises as a property of the structure
of space-time itself, as if it had an intrinsic repulsive action. The energy related to this property is referred as
dark energy and constitutes as much as 70% of the energy distribution of our universe.

Figure 2: The composition of the universe: stars and visible matter are responsible for only 0.5% of the total
mass, whereas ordinary baryonic dark matter reaches 5% of the mass of the universe. Neutrinos constitute a
warm dark matter but their low masses reduce their contribution to a few tenth of percents: a cold dark matter
dominates the matter distribution (25% of the mass of the universe). When dark energy is added to the total
mass-energy of matter (baryons and dark matter), the total energy density is consistent with what is needed to
make the universe �at (Ωk,0 = 1− Ωm,0 − ΩΛ,0 = 0). http://www.lsst.org/Science/darkenergy.shtml

1.1.3 A scenario for the early history of the universe

The basic process involved in galaxy formation is the gravitational instability: a local excess of matter will
attract the neighboring matter due to its gravitational potential and will be ampli�ed that way. In the stan-
dard cosmological model, density �uctuations were created very early in the history of the universe and later
condensed to form the structured objects we now see. Extrapolating the laws of physics indicates that at the
time of the Big Bang, around 13.7 Gyr ago, the distances between the now visible objects were close to zero
and temperature and density were in�nite. Quantum �uctuations at the very �rst moments were the seeds for
the future growth of structure in the universe. As the nascent universe passed through a phase of exponential
expansion driven by a negative-pressure vacuum energy density, called in�ation, these microscopic �uctuations
were magni�ed to cosmic size. Within this model, cosmic in�ation lead to �uctuations described by a Gaussian
random �eld with a nearly scale invariant spectrum (Harrison-Zel'dovich spectrum). As the universe expanded,
temperature decreased and formation of structured matter became possible. At that time, the universe was
still opaque: there was an equilibrium between matter and radiation, as free electrons ceaselessly absorbed and
re-emitted photons. As the universe continued to cool, electrons had no longer enough energy to overcome
the attractive force of atomic nuclei, and became bound to atoms. Light could now stream forth unimpeded.
This process is called recombination, and the ��rst light� enabled to stream is what we now see as the Cosmic
Microwave Background Radiation.
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Figure 3: The recent WMAP observations lead by NASA probed the Cosmic Microwave Background
and gave evidence in favor of the standard model of cosmology, and especially of the cosmic in�ation
model.http://map.gsfc.nasa.gov/m_ig/060915/CMB_Timeline150.jpg

1.2 The formation of structures

1.2.1 The principal mechanism: gravitational instability in an expanding universe

Formation of structures is essentially driven by the competition between the gravitational growth of �uctuations
and the expansion of the universe, which tends to dilute each local overdensity.

The �rst study of the gravitational instability was carried by the british physicist James Jeans in 1902: his
theory took into account gravity and pressure and assumed a static medium. Gravity tends to condense matter,
whereas pressure diminishes inhomogeneities: the more the mass of a �uctuation, the more gravity is important
compared to pressure. The system is described by the following set of �uid equations: ρ̇+ ~∇~r(ρ~v) = 0 Continuity equation

(∂~v/∂t)~r + (~v. ~∇~r)~v = − ~∇~rΦ− ~∇~r(P )/ρ Euler equation
∇2
~rΦ = 4πGρ Poisson equation

where ρ is the local density, ~v = ~̇r where ~r is the physical space coordinate, Φ is the gravitational potential
and P the pressure. Taking the expansion of the universe into account and assuming a uniform background,
we switch to comoving coordinates ~x = ~r/a(t) where a(t) is the scale factor of the universe, and we write
ρ(t, ~r) = ρu(t)[1+δ(t, ~x)] where ρu(t) is the mean density of the universe at time t and δ(t, ~x) the overdensity at
the same time at a speci�ed position. To describe the global behaviour of the universe, we use the Friedmann
equations and assume an Einstein-de Sitter universe (which is a good approximation for early times).

After the in�ation period, the �uctuations are small enough to use a linear approximation: assuming that
δ << 1, ∇δ << 1 and v << 1, we obtain the following equation for δ, where c2s = ∂P/∂ρ is the sound speed[9]:

δ̈ + 2Hδ̇ = 4πGρuδ + a−2c2s∇2δ

The right side of this equation shows the competition between gravity and pressure, whereas in the left side,
the Hubble �ow seems to slow down as a friction force, which is an artifact of the comoving coordinates.
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The �rst stage of the �uctuation growth can be described by the linear approximation, but this approximation
becomes inaccurate when �uctuations have developed up to δ ≥ 1 and to even higher values, as we observe
today in galaxies. The linear phase leads to a non linear phase whose analytic treatment is more di�cult and
requires additional assumptions or a statistical approach.

1.2.2 Hierarchical clustering

Instead of using the spatial distribution of the overdensity δ(t, ~x), we consider its Fourier transform δ~k(t) and
de�ne the power spectrum as its variance

〈
|δ~k|

2
〉
. The evolution of the power spectrum of the �uctuations

depends on the properties of matter: if matter would have been mostly constituted of adiabatic baryons or hot
dark matter (neutrinos), the spectrum would have been cut for small scales and galaxies would have formed
by fragmentation of huge structures[2]. But in the ΛCDM model, most of the matter is assumed to be made
of cold dark matter: galaxies formed within the potential wells of the dark matter haloes[14]. As dark matter
does not lose its energy by radiation, it can't condense as e�ciently as baryonic matter and is organised in
more di�use haloes in which ordinary matter in embedded. In the case of cold dark matter, small structures
form �rst and larger structures form by successive mergers: this is the hierarchical scenario. Galaxy formation
is not a unique event but a continuous hierarchical process where small galaxies assemble to form bigger ones
through successive mergers. Collisions and close interactions between galaxies lead to tidal forces which distort
and strip the galaxies: their morphology is not �xed and evolves with the in�uences of the environment and of
the successive mergers.

In cosmological simulations, we can de�ne for each dark matter halo its progenitors and follow its formation
back in time through merger trees[13]. The Extended Press-Schechter theory (EPS) gives the conditional
probability for a halo of a given mass to have a progenitor of another given mass and a formula for the �ux
around a galaxy depending on its mass.

Figure 4: Example of merger trees for two galaxies: whereas the left one underwent several major mergers,
in which two galaxies of about the same mass merge, the right was mainly formed by smooth accretion. The
number of progenitors which are followed is determined by the mass resolution we chose: the merger trees could
have continued further up.
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But galaxy formation is not limited to the merging processes of dark matter haloes: intricate gas processes
a�ect galaxy morphology and structure. Within haloes, ordinary matter cools, losing energy by radiation, and
falls to the center of the potential well. Due to the conservation of the momentum, the gas velocity increases
when falling inwards and the centrifugal force can lead to the formation of a disk perpendicular to the initial
rotation axis of the halo. Violent mergers can interfere with the smooth accretion of gas within the halo and
brutally bring their own mass and angular momentum to the halo. At the center of the potential well, gas
is able to fragment to form stars. At the end of their evolution, most massive stars explode and eject their
gas and the heavy elements formed at their center in the interstellar medium. This feedback process, but also
the activity of some galactic nuclei (AGN - Active Galactic Nuclei) can produce powerful galactic winds which
reduce the size of the galaxies and inhibitate new star formation.

1.3 The MareNostrum simulation

1.3.1 The MareNostrum supercomputer

The di�erent processes involved in galaxy formation can be implemented in numerical simulations. The
MareNostrum galaxy formation project is a multidisciplinary collaboration between astrophysicists of France,
Germany, Spain, Israel and the United States, together with computer experts from IDRIS (Institut du
Développement et des Ressources en Informatique Scienti�que) and BSC (Barcelona Supercomputing Center).
The application solves a very complex set of mathematical equations by translating them into sophisticated
computational algorithms. These algorithms are based on state-of-the-art adaptive mesh re�nement techniques
and advanced programming technologies in order to optimize the timely execution of the same application on
several thousands of processors in parallel. This requires the combined power of 2048 PowerPC 970 MP proces-
sors and up to 3.2 TB of RAM memory. Contrary to other large computational problems in which information
can be split into independent tasks, and because of the non-local nature of the physical processes, all 2048 pro-
cessors have to exchange large amounts of data very frequently. A personal computer, provided it had enough
memory to store all the data, would need around 114 years to do the same task.

Figure 5: The MareNostrum computer in Barcelona is one of the most powerful of the world with its 10240
processors. Ironically located inside an old chapel, it is the perfect place to compute the formation and evolution
of a virtual replica of our own universe. Courtesy of Barcelona Supercomputing Center

13



Jonathan Freundlich, Cold �ows in the MareNostrum simulation

1.3.2 A cosmological N body and hydrodynamics simulation

The MareNostrum simulation is a cosmological N body and hydrodynamics simulation with most of the processes
involved in galaxy formation theory. The main asset of the MareNostrum project relies on using a quasi
exhaustive number of physical ingredients that are part of the current theory of galaxy formation, and at the
same time covering a large enough volume to provide a fair sample of the universe, especially at redshift above
one. Metal dependent cooling and UV heating, as well as a simple model for supernovae feedback and metal
enrichment have been incorporated in the simulation. A polytropic equation of state has been used to describe
the high density regions and star formation is included. The simulation was started with a base grid of 10243

cells and the same number of dark matter particles for a simulation box of 50 h−1Mpc and a spatial resolution
of about 1 h−1kpc in physical units. The grid was progressively re�ned, on a cell-by-cell basis, when the local
number of particles exceeded 10 according to the RAMSES Adaptative Mesh Re�nement (AMR) code[11, 8].
AMR permits to focus on high density regions and to permanently adapt the grid to the complex �ows. Periodic
boundary conditions are used to simulate an in�nite volume.

The simulation was run for a ΛCDM universe with Ωm = 0.3, ΩΛ = 0.7,Ωb = 0.045, H0 = 70 kms−1Mpc−1

and the amplitude of mass �uctuations on 8 Mpc scale σ8 = 0.9. The simulation was momentarily stopped at
redshift z ≈ 1.5 because of insu�cient allocated time. At the end of the simulation, the total number of AMR
cells was above 5.109.

1.3.3 Available data

The data of the MareNostrum simulation is stored in a computer at the Institut d'Astrophysique in Paris from
which we are able to download. In order to analyze the physical properties around high redshift galaxies, a
Friend-Of-Friend (FOF) catalog is available for each snapshot. This catalog lists the position and the number
of dark matter particles for each halo of the speci�ed output, each halo being delimited by a FOF algorithm.
We are able to download cubes for di�erent physical quantities: density, pressure, metalicity and the three
components of the velocity. The size of the cubes and their resolution can be chosen at will, but as the physical
resolution is about 1 h−1kpc, it is irrelevant to chose a grid cell whose size is smaller than the corresponding
comoving length. For output 75, corresponding to redshift z = 2.46, the highest resolution is resolution 14 -
where each grid cell has a size of 50 000/214 = 3.05 kpc/h comoving, that is to say 1.26 kpc physical.

Centering is an important issue: from the FOF catalog, we have access to the position of the center of the
dark matter halo, which does not necessarily corresponds to the center of the gas density. To de�ne the gas
center, we smooth the density �eld at resolution 13 with a gaussian �lter and search the highest value of the
smoothed density. The width of the gaussian �lter is chosen to cover about 5 grid cells, which corresponds to
12.6 kpc physical - a typical size for the radius of a galaxy (the radius of the Milky Way is about 15 kpc). We
then download the recentered cubes at resolution 14.

For each halo, we compute the virial mass Mvir and the virial radius Rvir, which is de�ned as the radius
of the sphere centered on the halo within which the average density is greater than the critical density by a
speci�ed factor (depending on Ωm, but close to 200). Di�erent virial quantities can be derived from the virial
radius and the virial mass, as the virial velocity or the virial density and eventually used to normalize the
di�erent physical quantities. The units used in the simulation are not directly meaningful, as they are rede�ned
at each time step to �t the re�nement: for each output di�erent density, length and time multiplicative factors
permit to obtain cgs units. For each halo, we rede�ne the velocity as the center of mass velocity and we compute
di�erent physical quantities deriving from density, pressure and velocity (see Table 2). Table 3 shows the panel
of downloaded haloes during my internship: we focused on redshift z ≈ 2.5 and haloes of mass Mvir ≈ 1012M�.
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Density ρ

Pressure P

Velocity ~v

Metallicity Z

Radial velocity vr ≡ ~v.~r/r
Radial �ux per solid angle ṁ ≡ r2ρvr

Temperature T ≡ µ mp

kB

P
ρ

Entropy K ≡ kB

µ mp

T
ρ2/3

Sound speed cs ≡ ( 5
3
P
ρ )1/2

Radial Mach number Mr ≡ vr/cs

Table 2: Physical quantities available from the MareNostrum simulation for each grid cell. mp refers to the
proton mass, µ is the mean molecular weight of the gas or plasma in units of mp, considered to be equal to
0.59, and kB refers to the Boltzmann constant.

z = 1.57 z = 2.46 z = 4.01

Mvir ≈ 1011M� 7

Mvir ≈ 1012M� 8 12 8

Mvir ≈ 1013M� 12

Table 3: The panel of downloaded haloes during my internship: the �gure lists the number of haloes at speci�ed
redshifts and halo masses. We focused on redshift z ≈ 2.5 and haloes of mass Mvir ≈ 1012M�.
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2 Cold �ows in the MareNostrum simulation

2.1 Shock heated gas and cold �ows

2.1.1 The standard picture of infall to a disk

The standard picture of disk formation assumes that while a dark matter halo relaxes to a virial equilibrium,
the gas that falls in within it is shock-heated near the halo virial radius to the halo virial temperature.

Initial density perturbations are assumed to grow by gravitational instability, reach maximum expansion,
and collapse into virial equilibrium at roughly half the maximum expansion radius. During the initial phase, and
roughly until shells start crossing each other near the virial radius Rvir, the gas pressure is negligible compared
to the gravitational force, so the shells of gas and dark matter move in a similar manner. Once interior to the
virial radius, where shells tend to cross and the gas density becomes high enough, the gas pressure becomes
an important player in the dynamics. Its hydrodynamic properties allow transfer of bulk kinetic energy into
internal energy and the pressure prevents gas elements from passing through other gas elements and from being
compressed without limit. This makes the infall velocity vanish at the center. Since in the cold infalling gas the
typical velocity is higher than the speed of sound, the information about this inner boundary condition cannot
propagate outwards in time, and these supersonic conditions create a shock. After the gas crosses the shock,
it is heated up, the speed of sound increases, and the �ow becomes subsonic. The shock transfers the kinetic
energy that has been built during the collapse into internal gas energy just behind the shock. A stable spherical
shock would slowly propagate outwards through the infalling gas, leaving behind it hot, high-entropy gas that
is almost at rest. The temperature of the post-shock gas roughly equals the virial temperature.

2.1.2 Stability of the virial shock

The persistence of the shock depends on su�cient pressure by the post-shock gas, which supports it against
being swept inwards due to the gravitational pull together with the infalling matter. Radiative gas cooling makes
the gas lose entropy and pressure, which weakens the pressure support behind the shock front. Yuval Birnboim
and Avishai Dekel analyzed the stability of the virial shock in 2003, both numerically and analytically[1, 3].

One dimensional spherical simulations without metallicity permitted to follow the evolution of the radii of
Lagrangian gas shells in a spherical gravitating system consisting of gas and dark matter. The initial density
�uctuation was coherent with the ΛCDM model, gas was assumed to be cooling radiatively and the collapse of
each gas shell was stopped at roughly 0.05Rvir by an arti�cial centrifugal force which mimicked the formation of
a central disc. The results of these simulations are presented in Fig. 6: it shows that a strong shock exists near
the virial radius for massive haloes of mass ∼ 1012M�, as expected in the common picture. The virial shock
gradually propagates outwards, encompassing more mass in time. But for lower masses, a stable shock forms
and in�ates from the disk towards the virial radius only after a total mass of more than a few times 1011M�
has collapsed.
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Figure 6: Time evolution of the radii of Lagrangian gas shells in a spherical simulation of a protogalaxy consisting
of primordial gas (metallicity Z = 0) and dark matter[3]. Lines represent di�erent gas shells and temperature
is marked by color. A shock shows up as a sharp break in the �ow lines, namely a sudden slowdown of the
infall, associated with an abrupt increase in the temperature. The lower discontinuity marks the �disk� radius
due to an arti�cial centrifugal force. The �gure to the right shows a massive system where the virialized mass
grows from 1011 to 1013M� whereas in the left one, the virialized mass grows from 1010 to 1012M�. A virial
shock exists only in systems more massive than a critical mass, while in smaller haloes the gas �ows cold and
unperturbed into the inner halo[3].

The existence or absence of a shock, as seen in the simulations, can be evaluated via an analysis of the
post-shock gas[1]. The condition for the existence of a stable shock can be derived from the balance between
the pressure in the post-shock gas and the gravitational attraction towards the halo center. For an ideal gas,
the pressure is expressed in the equation of state P = (γ − 1)ρe where ρ is the gas density and e the speci�c
internal energy. The adiabatic index γ has a value of 5/3 for a mono-atomic gas such as ionized hydrogen.

If there is no cooling in the gas, the stability criterion is the standard Jeans stability criterion, γ > 4/3 in
the adiabatic case. Generalizing the de�nition of the adiabatic index γ = (∂lnP/∂lnρ)S , we de�ne the new
quantity along the particle trajectories

γeff ≡ ∂lnP
∂lnρ

= γ − ρ
ρ̇
q
e

where q is the radiative cooling rate and the second equality follows from energy conservation ė = −PV̇ − q
plugged into the equation of state, where V = ρ−1 is the speci�c volume. The quantity γeff deviates from the
adiabatic index by a term which is the ratio between the characteristic rates of the two involved processes: the
cooling rate q/e which reduces the pressure in the post-shock gas, and the compression rate ρ̇/ρ which tends to
increase the pressure.

A perturbation analysis on spherical shells results in a stability criterion of the form (with γ = 5/3):

γeff > γcrit ≡ 2γ
γ+2/3

= 10
7

It is possible to express γeff in terms of characteristic timescales rather than rates. The cooling timescale
is de�ned as tcool ≡ e/q and the compression time as tcomp ≡ Γρ/ρ̇, where Γ is a numerical factor chosen to
have the stability criterion equivalent to tcool > tcomp. The simple condition for an unstable shock is that the
cooling rate has to be faster than the compression rate. If the cooling rate is slower, the compression in the gas
will cause an increase in pressure which can then balance the loss of energy by radiative cooling and allow the
post-shock gas to be stable against the global gravitational collapse and keep the shock supported. It is possible
to restate the stability criterion in terms of pre-shock quantities of the gas and, by employing the virial relations
in the ΛCDM cosmology, �nd a critical post-shock temperature with its halo virial velocity and consequently
the critical halo mass for a stable shockMcrit ≈ 6 1011M�, largely independent of redshift. The implementation
of this critical mass in cosmological simulations like GalICS permitted to �t observations much more accurately
than before, especially it reproduced the observed bimodality of the distribution of galaxies[3].
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2.1.3 Cold streams in a hot medium

This shock stability analysis lead to an new scenario for galaxy formation. Gas accreted to a galaxy below
the mass threshold Mcrit is never heated and remains cold. Once the mass of the galactic system reaches the
critical mass, a stable virial shock forms and the subsequent evolution of the galaxy is in accordance with the
�classic� spherical infall model. Nevertheless, simulations have shown that the gas could accrete onto a forming
galaxy in two modes [5]: a conventional �hot mode�, which dominates the growth of high mass systems, and
a �cold mode�, which is never heated above 105K, dominates in low mass systems and is largely found along
�laments. At high redshifts of z ∼> 2, one expects to �nd galactic systems containing hot gas in a virial shock
punctured by cold dense streams. The resulting picture -summarized in Fig. 7- is that at high redshifts, galactic
systems below the shock-heating scale will be comprised almost solely of cold gas, which falls to the center
roughly spherically, whereas above this scale a shock heated gas extends out to the virial radius and cold, dense
streams of gas fall along �laments all the way down to the central galactic disk. These �laments should carry
more angular momentum than the shock-heated gas and the direct collapse of cold gas should a�ect the star
formation rate and the morphology of galaxies[15, 4].

Figure 7: Analytic predictions for the regimes of cold streams and shock-heated medium in the plane of halo
mass and redshift. The nearly horizontal curve is the robust threshold mass for a stable shock based on spherical
infall analysis, Mshock(z). Below this curve the �ows are predicted to be predominantly cold and above it a
shock-heated medium is expected to be present. The inclined solid cure is the conjectured upper limit for cold
streams, valid at redshifts higher than zcrit ∼ 2. The hot medium in Mvir > Mshock haloes at z > zcrit is
predicted to host penetrating cold streams, while haloes of a similar mass at z < zcrit are expected to be all
hot, shutting o� most of the gas supply to the inner galaxy. The dotted lines correspond to the Press-Schechter
mass function, which gives the typical mass of haloes as a function of redshift[3].

The reason for penetrating cold streams at high redshifts is that at early times, the haloes of Mvir > Mshock

populate the extreme massive tail of the halo mass distribution. As such, they are fed by dark-matter �laments
from the cosmic web that are narrow compared ro Rvir and denser than the mean density within the halo. The
enhanced density of the gas that streams along these �laments allows it to cool more rapidly than the dynamical
compression rate behind a shock and thus avoid the shock heating that occurs elsewhere in the halo.
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2.2 Highlighting the cold streams in the MareNostrum simulation

2.2.1 Di�erent morphologies

To have a �rst idea of the galaxies extracted from the simulation, we can plot projected density and temperature
along the directions of the cube: we just sum up the values along a speci�ed direction. But instead of weighting
temperature by volume, we weight it by mass, which is more accurate: more importance is given to the cells
which contains more gas. The high density centers of the galaxies appear to be colder: at the center, gas cools
to form a disk and stars.

Figure 8: Maps of projected density and weighted temperature for typical Mvir ≈ 1012M� haloes at di�erent
redshifts. The plain white circle indicates the virial radius Rvir of the halo whereas the dotted white circle
indicates 0.2 Rvir. At higher redshifts, thin �laments penetrate to the inner part of the halo, which is not the
case at z = 1.57.

The maps of Fig. 8 show a typical halo of mass Mvir ≈ 1012M� at redshifts 1.57, 2.46 and 4.01. A disk
can be seen at each redshift in the central area, but the general structure of the halo and its satellites di�ers.
We can clearly identify disk satellites and tidal tails provoked by the gravitational �eld of the central galaxy.
The halo at redshift 1.57 is all hot, which is not the case at higher redshift, where cold streams penetrate the
shock-heated gas. The critical mass for the existence of a virial shock without cold streams seems to increase
with redshift: while at redshift 4.01 and even 2.46, clear �laments are streaming into the inner halo, the z = 1.57
halo lies at the center of a hot bubble with no apparent �laments inside the virial radius. At high redshift, an
accretion shock coexists with cold streams coming from the outer parts of the halo.

Fig. 9 clearly shows the development of a virial shock when the mass grows: no shock is observed for
Mvir ≈ 1011M�, a shock is developing from the disk in the second Mvir ≈ 1012M� halo and at Mvir ≈ 1013M�
the virial shock encompasses the whole halo, without any penetrating cold �laments. These results are perfectly
coherent with the predictions of Dekel & Birnboim (2006) shown in Fig. 7.
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Figure 9: Maps of projected density and weighted temperature for typical haloes at redshift z = 2.46 and
di�erent masses. The plain white circle indicates the virial radius Rvir of the halo whereas the dotted white
circle indicates 0.2 Rvir. A virial shock develops when the halo mass is higher than Mvir ≈ 1012M�, whith an
intermediate regime of cold streams within a hot medium (central halo).

2.2.2 Slices reveal cold �ows

The next step to analyze the cold streams is to select the plane where we would be able to see them as well as
possible and to plot thin slices through a galaxy, de�ned with a linear interpolation from the initial cube. We
select a typical halo of mass Mvir = 1012M� at z = 2.46 from the simulation and we map di�erent quantities
relevant to the gas in a thin slice chosen to highlight the cold streams - we will focus on the same halo in the
next sections. The Matlab programs I developed are available in the appendix section, as well as slices from
three di�erent galaxies of the same mass at the same redshift.

Fig. 10 maps di�erent gas quantities in a thin slice centered on one typical galaxy of Mvir ≈ 1012M�
at z = 2.46: density, entropy, inward �ux and radial Mach number. The shock-heated, high-entropy, low-�ux
medium is penetrated by three massive, narrow streams of low-entropy gas. The entropy map shows log(T/ρ2/3)
where the temperature and gas density are in units of the virial temperature and mean density within the virial
radius. They exhibit the virial shock which covers most of the virial sphere. The narrow streams are of much
lower entropy and the boundaries between them and the hot medium within the virial radius are sharp and well
de�ned. Shocks surround the streams long before they enter the virial radius. Flux inwards is almost exclusively
channeled through the narrow streams and the streaming velocities are supersonic whereas the velocity �eld in
the hot medium is turbulent and sometimes even out�owing. The Mach number seems to be roughly the same
in the dense �laments and outside the halo, but this comes from very di�erent reasons: the density is very low
outside the halo so the sound speed is high and the Mach number too, whereas in the �laments, the high values
for the Mach number come from the high velocities.
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Figure 10: Gas maps in a thin slice through a galaxy of mass Mvir ≈ 1012M� at redshift z = 2.46. Arrows
describe the velocity �eld and the circle marks the halo virial radius. The density map emphasizes the narrowness
of the streams and reveals that they are typically denser than the surrounding medium by more than an order
of magnitude. The entropy K ∝ T/ρ2/3 highlights the high-entropy medium �lling the halo out to the virial
shock and exhibits three radial low-entropy streams penetrating to the inner disk seen edge-on. The radial �ux
per solid angle, ṁ = r2ρvr, demonstrates that almost all the inward �ux in channeled through the streams and
the radial Mach number M = vr/cS shows that the streams are supersonic, in the contrary to the shock-heated
gas.

Although the streams tend to be rather radial when viewed on scales compared to the halo virial radius,
some of them �ow in with impact parameters of the order of 10 kpc, comparable to the disc sizes: this steady
�ux is the source of angular momentum required for the buildup of a rotating disk.
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2.2.3 Isolating the high �ux regions: smooth �ows versus clumpy accretion

Instead of a real three dimensional representation of the halo, isolating the high �ux regions permits to have
a three dimensional impression. By plotting the column density for cells whose inwards �ux is higher than
a certain threshold, we isolate the streams from the low �ux regions. Fig. 11 displays the three dimensional
structure of the streams and uncovers almost spherical clumps along two of them. The other stream can be
referred as a smooth �ow, as its clumps are hidden below the resolution limit and are too small to damage
signi�cantly the central disk. It is not clear to what extent the smooth component is truly smooth or built by
minor clumps, and whether the smoothness has a physical origin or is merely a numerical artifact.

Figure 11: Flux-selected column density map for a typical halo of mass Mvir ≈ 1012M� at z = 2.46. Are
plotted only the cells in which the radial �ux per solid angle ṁ = r2ρvr is above two times the radial �ux,
de�ned as ṁvir = R2

vir ρvir Vvir, where ρvir = Mvir/(4π/3 R3
vir) and Vvir = (GMvir/Rvir)1/2. The colors

represent the logarithm of the column density divided by the molecular weight of the gas µmp and the white
circle corresponds to the virial radius Rvir. Two of the three radial streams show gas clumps of mass of the
order of one tenth of the mass of the central galaxy.

2.3 How can we �nd systematically the best slice to view the streams ?

2.3.1 The direction of the disks

The �rst developed program to view the streams is a program whose input arguments are the angles de�ning a
slice: the direction of the slice has to be de�ned manually. But we would like to have a program which would
automatically �nd the best possible slice to highlight the cold streams. Motivated by the assumption that it is
the cold streams which feed the angular momentum of the disk, we can assume as a �rst try that the direction
of the disk is close to the direction of the �ows. This assumption will have to be tested, but it gives at least
speci�c directions to view the galaxy.

The direction of the disk can be determined in two di�erent ways: by the direction of its angular momentum,
and by diagonalizing its inertial tensor. But the �rst thing to do is to isolate the disk from the rest of the halo:
we select a sphere of radius 0.2Rvir around the center of the halo. This sphere usually encompasses the central
disk but is close to its limits. The angular momentum is de�ned by the sum within this sphere of ρi ~ri × ~vi,
where ~ri is the radial vector from the center of the halo to a given cell labeled by the subscript i, ρi and ~vi being
the density and the velocity in that cell. The inertial tensor is de�ned by Iµν =

∑
i ρi(r

2
i δµν − riµriν) where the
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indexes µ and ν refer to the directions x, y, and z, δµν is the Kronecker symbol, riµ refers to the µ component
of the radial vector at position i and r2

i is the distance from the center of the halo. Matlab is able to diagonalize
easily the Iµν matrix, and the eigenvectors give the directions of the disk: the eigenvector corresponding to the
smallest eigenvalue corresponds to the main direction of the disk.

Both methods converge to the same result, as shown in Fig. 12, but this method is not satisfactory enough
to highlight the streams. It is nevertheless important to be able to determine the direction of the central disk,
as the comparison between this direction and the direction of the streams could be interesting to understand
the building of the disk.

Figure 12: Cosinus of the angle between the direction given by the angular momentum and the direction obtained
from the inertial tensor for the 12 downloaded haloes of mass Mvir ≈ 1012M� at z = 2.46: both methods agree.

2.3.2 A numerical bias concerning the direction of the disks

The disks are expected to have a small tendency to be aligned with the x, y and z axes of the simulation box, as
can be seen in Fig. 13: the �gure plots cos(θ) where θ is the angle between the main direction of the disk and one
of the three axes of the simulation. For each galaxy of mass M ≈ 1012M�, we calculate the angle between the
disk and each of the axes: if we have a gaussian distribution around the alignment case, we expect a distribution
for cos(θ) of the form N = A(2exp[cos2(θ)/2σ2] + exp[(cos(θ) − 1)2/2σ2]), where σ is the standard deviation
and A a numerical factor. The e�ect exists, but is small and its amplitude is comparable to the Poisson noise.

This e�ect comes from the discretization inherent to numerical simulations: the numerical force is not equal
to the real force and induce small potential wells along the axes. Indeed, the gravitational force is computed
from the matter distribution by the Poisson equation ∇2Φ = 4πGρ, which implies the second order derivative
of the gravitational potential Φ. At a low order approximation and in the one dimensional case, discretization
leads to equal Φ′′(x) to (Φ(x+ ∆x)− 2Φ(x) + Φ(x−∆x))/∆x2 where ∆x is the length of the grid cell: higher
orders of approximation can be achieved, but this identi�cation will always remain approximative.
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Figure 13: Cosinus of the angles between the direction of the disk and the axes of the simulation for haloes
of mass Mvir ≈ 1012M� at di�erent redshifts. The �gure to the bottom right corresponds to all redshifts
together. The black curve is a �tting function of the form A(2 exp[cos2(θ)/2σ2]+exp[(cos(θ)−1)2/2σ2]), whose
parameters are the standard deviation σ and the numerical factor A.

2.3.3 An idea to isolate the direction of the �ows

Assuming there is a slice in which the �ows would be the most visible, comparing a large panel of slices would
permit to select the best one. To automate this selection, we can imagine a program which would create di�erent
slices and compute a certain quantity relevant to the �ows for each slice, for example the total sum on the grid
cells of vr/T , S or even just the density ρ. The slice in which this scalar quantity would be maximal (or minimal)
would be selected. A �rst task would have been to compare di�erent quantities, but the realization of such a
program faced a strong RAM memory problem and was not ful�lled.
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3 Accretion around galaxies

3.1 Histograms

3.1.1 One dimensional histograms

Histograms permit to have an idea of the distribution of a certain quantity. Temperature and entropy histograms
weighted by mass are represented in Fig. 14: we delimited the region corresponding to the cold �ows by isolating
the streams area in the pictures. These regions corresponds to relative peaks of the distribution, but we can't
really deduce from these histograms that the accretion is bimodal. The initial purpose of these histograms was
to select threshold values to isolate di�erent regions of the accreting gas, but they did not permit to extract
any robust threshold.

Figure 14: Mass-weighted temperature and entropy histograms for a typical halo of mass Mvir ≈ 1012M� at
z = 2.46. The �lled area corresponds roughly to the cold streams and the very low values to the disk at the
center of the galaxy. The �gure to the right corresponds to a weighted entropy histogram within the slice of
Fig. 10.

3.1.2 Decomposing galaxies into components: bird plots

To identify and isolate the di�erent components of the simulated systems, we use in Fig. 15 mass histograms of
the gas distributed on the temperature-density plane, dubbed bird plots[15]. This distribution re�ects the basic
underlying gas processes taking place in the simulation.

The prominent line of positive slope in the lower left hand corner of the plot corresponds to the adiabatically
contracting medium at the edge of the halo. This low-density gas has not yet undergone shock-heating and
is not greatly a�ected by radiative cooling: it contracts adiabatically with ρ ∝ T 1/(γ−1) ∝ T 2/3. The di�use
area that dominates the right hand side corresponds to the shock-heated gas: its shape is the result of the
complicated and di�erent forms of cooling and shock heating taking place in the hot component of the halo
gas. In the cold mode, the virial shock does not develop so the gas remains relatively cold in denser �laments,
as seen in the feature rising towards the left-hand corner in the plot. Even denser regions seem to contract
adiabatically in the upper line of the plot, which may be a numerical artifact. A distinction between the cold
�ows and the hot medium can be made from Fig. 15: the cooling processes begin to dominate the structure of
the gas at T ∼ 104.5.
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Figure 15: Bird plot : gas distribution on the T -ρ plane for the typical halo of Fig. 10 (Mvir ≈ 1012M�,
z = 2.46). Color coding corresponds to the mass of the gas with given values of T and ρ. This �gure reveals
many of the underlying thermodynamic processes taking place in the gas. In the bottom right we see the
adiabatically contracting gas from the intergalactic medium, the shock-heated gas is in the large area on the
right side and we �nd the cold streams and gas clumps in the thin sharp rise in slope to its left.

3.2 Flux feeding the galaxy

3.2.1 Flux pro�les

In order to quantify the accretion around the galaxy, we have de�ned the �ux per solid angle ṁ = r2ρvr. Using
a spherical grid where the angular area covered by each grid cell is constant, we can easily compute the �ux
as a function of the radius for each galaxy. Practically, the pro�les of total mass �ow rate through shells of
radius r are obtained by integrating ρvrdS over the shell, where ρ is the gas density, vr the radial velocity and
dS = r2dΩ with dΩ the angular area element.
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Figure 16: Pro�les of total gas in�ow rate through spherical shells for 12 galaxies of Mvir ≈ M� at z = 2.46.
The blue line corresponds to the inwards �ux (summation only over cells with a negative value of ṁ = r2ρvr),
whereas the red line corresponds to the total �ux (summation over all cells).
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Figure 17: Density pro�les on spherical shells for 12 galaxies of Mvir ≈ M� at z = 2.46 corresponding to the
galaxies of Fig. 16. These pro�les permit to have an idea of the mass distribution within the halo and have to
be related to the �ux pro�les of Fig. 16.
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On average over the di�erent galaxies of Mvir ≈ M� at z = 2.46, the total �ux remains roughly constant
from well outside the virial radius (Rvir ∼ 90 kpc) all the way to the disc vicinity inside r ∼ 15 kpc. This
calculation takes into account the various mergers observed in the curves (minor and major ones), so the average
in�ow rate reaches ∼ 100M�yr−1[4].

The Extended Press Schechter (EPS) theory of gravitational clustering gives an approximation for the
average growth rate via mergers and smooth accretion as a function of the virial mass Mvir of the speci�ed
halo. This theory gives the mass distribution of the progenitors of a given halo, using a statistical approach of
galaxy clustering beyond the linear growth. The growth rate of the baryonic component is expected to follow
the practical formula[7]:

Ṁ ≈ 6.6M1.15
12 (1 + z)2.25f.165 M�yr−1

where M12 ≡ Mvir/1012M� and f.165 is the baryonic fraction in the matter in units of the cosmological
value fb = 0.165. At z = 2.46, the average baryonic growth rate of haloes of 1012M� is Ṁ ∼ 100M�yr−1.
Consequently, the average growth rate measured in the 12 haloes of the MareNostrum simulation is in very
good agreement with the EPS prediction.

Flux pro�les involving only cells along streamlines penetrating to the inner core of the halo were obtained
by Tobias Goerdt: these pro�les were almost the same as the pro�les in Fig. 16: the galaxy is mostly fed by
the cold gas streaming along the �laments to the center of the halo.

3.2.2 Smooth �ows versus mergers

The �ux pro�les reveal the clumpiness of the gas streams: the clumps appear as narrow peaks of inwards �ux.
A large fraction of the baryons comes into the center of the halo as minor clumps or smoothed �ows. These
smooth �ows keep the discs intact unlike destructive major mergers and assure a constant cold gas supply along
the �laments of the cosmic web. This important phenomena could explain observed high star formation rates in
massive galaxies in the young universe. Indeed, the surprisingly high formation rates were commonly attributed
to violent mergers, which are incompatible with rotating discs. The existence of smooth cold �ows could be the
key to understand these star-forming galaxies, as it would supply a large enough quantity of cold gas to form
stars without destroying the central disk of these galaxies[4].

3.3 Building the disk: the direction of the cold �ows

3.3.1 Hammer-Aito� maps

Cold streams are an essential phenomena to understand the building of a disk inside a halo, as the high �ux
�laments bring angular momentum up to the central area of the halo. One important issue is the relationship
between the direction of the rotating disk and the direction of the streams: we could easily imagine that the
disk develops within the plane of the gas feeding �laments - if there is such a plane.

Hammer-Aito� projections are equal-area maps of the surface of a sphere. As for the Cosmic Microwave
Background, it enables to map spherical shells around a galaxy to see the three dimensional structure of the
streams. Fig. 18 shows the �ux on shells around the center of a typical halo of Mvir ≈ 1012M� at z = 2.46
(still the same as in Fig. 10): we distinctly see the three streams of inward �ux, preserved during their infall to
the center of the galaxy.

The next step would be to plot these maps in the direction of the central disk, which would de�ne the
equatorial plane. It would enable us to visualize the direction of the streams with respect to the direction of
the disk and therefore to compare visually both directions.
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Figure 18: Hammer-Aito� projections of the �ux per solid angle for three di�erent shells at radius 0.2Rvir, Rvir
and 2Rvir for the typical halo of Fig. 10 (Mvir ≈ 1012M�, z = 2.46). The color scale represents the �ux per
solid angle in M�yr−1. We can clearly see the three �laments with gas �owing inwards, but as we can see it in
the �rst map, the choice of the equatorial plane is not accurate.

3.3.2 Comparison between the direction of the disk and the direction of the �ows

An ongoing work is to quantitatively compare the direction of the �ows and the direction of the disk. The
imagined means to do that is to use a certain quantity (for example the inward �ux) to weight the angle
between the position vector ~r of each grid cell and the main direction of the disk. We would then obtain the
histogram for the distribution of the cosinus of this angle, which would give us an idea about the building of
the disk. For the moment, di�culties concerning the Hammer-Aito� maps have held us.
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Conclusion

During my internship, I was able to experience theoretical research in cosmology, especially the work with
simulations and the research of phenomenological models to explain the data. As most of my internship was
spent writing programs for Matlab, I got used to this program and more generally to programming. I wrote a
few codes to work with the MareNostrum simulation which will surely be used by the rest of the team at the
Hebrew University, as this simulation has still many things to teach: it is very rich and gives a statistical sample
of galaxies to study their formation. The research on galaxy formation is a vast and promising subject, many
questions remain unanswered and the cold �ows could be very useful to solve them: How do galaxies get their
angular momentum and how is the central disk formed ? How can we explain observed high star formation
rates in high redshift galaxies ? What is the relationship between the Active Galactic Nuclei and the two modes
of accretion ? This internship also enabled me more generally to widen my knowledge in cosmology, by the
means of reading articles, attending a course on structure formation and by weekly seminars on various aspects
of cosmology. And last but not least, I was able to discover a wonderful city, Jerusalem, and a very dynamic
and colourful country, Israel...

Wadi in the Judean desert
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A Matlab programs

A.1 Extracting the data from the MareNostrum simulation

After downloading the speci�ed cubes from triguedina, a computer at the Institut d'Astrophysique de Paris,
we have to use the �les in Matlab. The following programs for Matlab were written by Elad Zinger: the
�rst one permits to extract the data cubes from the initial .dat �le speci�ed by �lename, the second one
de�nes usual parameters and the last one computes the virial radius Rvir and the virial mass Mvir from the
number of dark matter particles within the speci�ed halo (the number of particles is given in the halo list of
the MareNostrum simulation). As we downloaded haloes from only three di�erent outputs, we just took into
account the parameters of these three outputs (34, 75, and 128).

A.1.1 Reading the cubes

function result = read_cube(filename)
[inp message]=fopen(filename,'rb','b');
JUNK=fread(inp,1,'int32');
result.nx=fread(inp,3,'int32');
SPACE=fread(inp,2,'int32');
result.data=reshape(fread(inp,result.nx(1)*result.nx(2)*result.nx(3),'float32'),result.nx');
result.data=single(result.data);
JUNK=fread(inp,1,'int32');
fclose(inp);

end

A.1.2 De�ning the environment

% Global MareNostrum Environment
global omega_m; global omega_l; global omega_k; global omega_b; global h; global Lbox; global Mdm;

% Cosmological parameters
omega_m=0.300000011920929E+00;
omega_l=0.699999988079071E+00;
omega_k=0.000000000000000E+00;
omega_b=0.450000017881393E−01;

% Hubble constant in units of 100 km /s /Mpc
h=0.7;

% Size of the simulation cube (comoving kpc/h)
Lbox=50000;

% Mass of a dark matter particle (solar masses)
Mdm=11695786.658674;
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% Expansion factor, redshift and numerical factors depending on the output

if output==34,
aexp=0.199702383922873E+00;
zz=1/aexp−1; %z=4.01

den_fac=0.346996787056857E−27;
len_fac=0.439345258038073E+26;
time_fac=0.175476585435706E+17;

elseif output==75,
aexp=0.289015390621532E+00;
zz=1/aexp−1; %z=2.46

den_fac=0.114475431737723E−27;
len_fac=0.635833878771479E+26;
time_fac=0.367531542470913E+17;

elseif output==128,
aexp=0.389854287769091E+00;
zz=1/aexp−1; %z=1.57

den_fac= 0.466410432392356E−28;
len_fac= 0.857679459266299E+26;
time_fac= 0.668740009044558E+17;

else error('wrong output')
end

A.1.3 Virial mass and virial radius

%% Find the virial mass Mvir in solar masses given the number of dark matter particles in the halo
function result=mv_MN(ndm)

global Mdm
Mdm= 11695786.658674;

result= Mdm.*ndm;
end

%% Find the virial radius Rvir in kpc physical given Mvir and redshift
function result=rv(mv,z)

% Convert mass to c.g.s
m = mv.*1.989e+33;

% Define cosmological parameters
global omega_m; global omega_l; global h;
omm0=omega_m;
oml0=omega_l;
hub=h;

% Average mass density of the universe in c.g.s
avg_dens=1.877e−29*omm0*(hub^2)*(1+z)^3;

% The virial radius is define as the radius within which the density exceeds some threshold
omm=omm0*(1+z)^3/(oml0+omm0*(1+z)^3);
∆=(18*(pi^2)+82*(omm−1)−39*(omm−1)^2)/omm
result=(((m.*3./(∆.*avg_dens*4*pi))).^(1/3))/(1000*3.0856e18);

end
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A.2 De�ning the desired quantities

The quantities available directly from the simulation are: the density rho, the pressure p, the velocities vx, vy
and vz, and the metalicity met. We compute the center of mass velocity Vxx, Vyy and Vzz, as well as the radial
�ux per solid angle mdot, the radial velocity vr, the temperature T, the entropy S, the sound speed c and the
radial mach number mach. We consider here cubes of resolution 14, which is the highest resolution available
(about 1 kpc/h comoving).

A.2.1 Virial quantities

% The virial quantities deriving from Rvir and Mvir

% Rvir in physical coordinates: kpc and cgs
Rvir_kpc=Rvir/h*aexp;
Rvirial=Rvir_kpc*3.08568025*10^21;

% Mvir in cgs
Mvirial=Mvir*1.9891*10^33;

% The following quantities are in cgs units
f_b=0.165;
Rhovirial=f_b*Mvirial/(4*pi/3*Rvirial^3);

Gcgs=6.6725985*10^(−8);
Vvirial=sqrt(Gcgs*Mvirial/Rvirial);

m=0.59*1.672623110*10^(−24);
kb=1.38065812*10^(−16);
Tvirial=1/2*Vvirial^2*m/kb;

% Virial flux in solar masses/year
Mdotvirial=0.165*40*(Mvir/10^12)^1.15*(1+zz)^2.25;

A.2.2 Physical quantities

% Center of mass velocity
M=sum(sum(sum(rho)));
Vx_cm=sum(sum(sum(vx.*rho)))/M;
Vy_cm=sum(sum(sum(vy.*rho)))/M;
Vz_cm=sum(sum(sum(vz.*rho)))/M;

Vxx=vx−Vx_cm;
Vyy=vy−Vy_cm;
Vzz=vz−Vz_cm;
clear vx vy vz Vx_cm Vy_cm Vz_cm M

% Radial flux per solid angle (solar masses/year)
[y, x, z] = meshgrid(1:n(1), 1:n(2), 1:n(3));
x=single(x − ic);
y=single(y − jc);
z=single(z − kc);

resolution=14;
x=x*50000/(2^resolution);
y=y*50000/(2^resolution);
z=z*50000/(2^resolution);

x=x/h*aexp;
y=y/h*aexp;
z=z/h*aexp;
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global mdot
mdot=sqrt(x.^2+y.^2+z.^2);
mdot=mdot.*(Vxx.*x+Vyy.*y+Vzz.*z);
mdot=mdot.*rho;
mdot=mdot*(3.08568025*10^21)^2/(1.98892E33)*31536000;

% Radial velocity (cgs)
global vr
vr=x.*Vxx+y.*Vyy+z.*Vzz;
vr=vr./sqrt(x.^2+y.^2+z.^2);
clear x y z

% Temperature
global T
m=0.59*1.67262158E−24;
T=m/(1.380658E−16)*p./rho;

% Entropy
global S
S=(T.*(rho.^(−2/3)));
S=S/(Tvirial*Rhovirial^(−2/3));
S=log10(S);

% Sound speed
gamma=5/3;
c=sqrt(gamma*p./rho);

% Mach number
global mach
mach=vr./c;\emph{}

A.2.3 Finding the center of the cube

function result=find_center(rho,resolution)
global Xc Yc Zc
n=size(rho);

if resolution==13,
smooth_length=5;

elseif resolution==14,
smooth_length=9;

end

sbox=[smooth_length,smooth_length,smooth_length];
rho_s=smooth3(rho,'gaussian',sbox);
[C,ind]=max(rho_s(:));
[i,j,k]=ind2sub(n,ind);
ijk=[i, j, k]

Xc=i−(n(1)+1)/2;
Yc=j−(n(2)+1)/2;
Zc=k−(n(3)+1)/2;
Xc=Xc*50000/(2^resolution);
Yc=Yc*50000/(2^resolution);
Zc=Zc*50000/(2^resolution);
DX=Xc/50000;
DY=Yc/50000;
DZ=Zc/50000;

result=[DX DY DZ];
end

% If the initial center was "center" (in cube units − between 0 and 1)
DL=find_center(rho,resolution);
new_center=center+DL;

38



Jonathan Freundlich, Cold �ows in the MareNostrum simulation

A.2.4 Projected density

% Simple projected density along the three directions
function rhoview(rho,cubename,output,resolution)

filename='%s_%s.png';
cname='%d_o%d_l%d';
cname=sprintf(cname,cubename,output,resolution);

figure('Position',[5 −135 1000 1000])
imagesc(log10(squeeze(mean(rho,1))))
colorbar
cdens1=get(gcf,'Colormap');
xlabel('Z','FontSize',12,'Interpreter','latex');
ylabel('Y','FontSize',12,'Interpreter','latex');
title('Density (log) direction X','FontSize',14,'Interpreter','latex');
saveas(gcf,sprintf(filename,cname,'rho1'))

figure('Position',[5 −135 1000 1000])
imagesc(log10(squeeze(mean(rho,2))))
colorbar
set(gcf,'Colormap',cdens1)
xlabel('Z','FontSize',12,'Interpreter','latex');
ylabel('X','FontSize',12,'Interpreter','latex');
title('Density (log) direction Y','FontSize',14,'Interpreter','latex');
saveas(gcf,sprintf(filename,cname,'rho2'))

figure('Position',[5 −135 1000 1000])
imagesc(log10(squeeze(mean(rho,3))))
colorbar
set(gcf,'Colormap',cdens1)
xlabel('Y','FontSize',12,'Interpreter','latex');
ylabel('X','FontSize',12,'Interpreter','latex');
title('Density (log) direction Z','FontSize',14,'Interpreter','latex');
saveas(gcf,sprintf(filename,cname,'rho3'))

end

% Projected density with a flux threshold (depending on the virial flux Mdotvirial)
function just_flow(mat,direction,frac)

global rho T S vr mdot aexp Mdotvirial
mdotc=−frac*Mdotvirial/(4*pi);
tic=[9.4531 49.1354 88.8177 128.5 168.1813 207.8646 247.5469];
dim={'−150','−100','−50','0','50','100','150'};
index=single(find(mdot<mdotc));
mat1=single(zeros(size(mat)));
mat1(index)=mat(index);
weight=mat16=0;
norm2=0.6*1.6726231*20^(−24); %mu*mproton CGS

figure('Position',[5 −135 1000 1000])
imagesc(log10(squeeze(sum(mat1,direction))/norm2)),
load('flowmap2')
set(gcf,'Colormap',flowmap2)
caxis([4.5 8.5])
text(7,243,'Column density','Interpreter','latex','FontSize',22,'Color',[1 1 1],'FontWeight','bold')
c=colorbar;
set(c,'YTick',[3 4 5 6 7 8 9],'FontSize',14);
set(get(c,'Title'),'string','log(

∑ ρ
µmp

)','Interpreter','latex','FontSize',14);

set(gca,'Xdir','normal');
set(gca,'Ydir','normal');
set(gca,'XTick',tic)
set(gca,'YTick',tic)
set(gca,'XTickLabel',dim,'FontSize',14)
set(gca,'YTickLabel',dim,'FontSize',14)
xlabel('Distance [kpc]','Interpreter','latex','FontSize',18)
ylabel('Distance [kpc]','Interpreter','latex','FontSize',18)

end

39



Jonathan Freundlich, Cold �ows in the MareNostrum simulation

A.3 Viewing a slice

A.3.1 De�ning the slice

The slice is de�ned by the position of the center, niveau, and by the two angles theta and phi. For each slice,
on of the initial direction x, y or z is chosen to �t the slice. Here we present a slice viewed along the y axis, for
256× 256× 256 cubes.

% Extrema of the slice (at the edges of the cube)
YA=niveau+255/2*(−tan(theta)−tan(phi));
YB=niveau+255/2*(−tan(theta)+tan(phi));
YC=niveau+255/2*(tan(theta)−tan(phi));
YD=niveau+255/2*(tan(theta)+tan(phi));

[Z,X]=meshgrid(1:255:256);
Y=[YC YD;YA YB];

[Zi,Xi]=meshgrid(1:256);
Yi=interp2(Z,X,Y,Zi,Xi);

Ymin=round(Yi−width/2);
Ymax=Ymin+width−1;

% Quantities within the slice
rho_slice=zeros(256,width,256);
T_slice=zeros(256,width,256);
S_slice=zeros(256,width,256);
vx_slice=zeros(256,width,256);
vy_slice=zeros(256,width,256);
vz_slice=zeros(256,width,256);
mdot_slice=zeros(256,width,256);
mach_slice=zeros(256,width,256);

for i=1:256,
for j=1:256,

ymin=Ymin(j,i);
ymax=Ymax(j,i);
rho_slice(i,:,j)=rho(i,ymin:ymax,j);
S_slice(i,:,j)=S(i,ymin:ymax,j);
vx_slice(i,:,j)=Vxx(i,ymin:ymax,j);
vy_slice(i,:,j)=Vyy(i,ymin:ymax,j);
vz_slice(i,:,j)=Vzz(i,ymin:ymax,j);
mdot_slice(i,:,j)=mdot(i,ymin:ymax,j);
mach_slice(i,:,j)=abs(mach(i,ymin:ymax,j));

end
end

rho_mean=squeeze(mean(rho_slice,2));
R=sum(rho_slice,2);
S_mean=squeeze(mean(S_slice,2));
vxrho=sum(vx_slice.*rho_slice,2);
vyrho=sum(vy_slice.*rho_slice,2);
vzrho=sum(vz_slice.*rho_slice,2);
vx_mean=squeeze(vxrho./R);
vy_mean=squeeze(vyrho./R);
vz_mean=squeeze(vzrho./R);
mdot_mean=squeeze(mean(mdot_slice,2));
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A.3.2 How do the slice look like ?

% The picture of the slice permits to detect possible errors
figure(niveau*10)
mesh(Xi,Yi,Zi,C)
hold on
mesh(Xi,Yi+width−1,Zi,C)

%Tracing the cube
vertex_matrix=[1 1 1;256 1 1;256 256 1;1 256 1;1 1 256;256 1 256;256 256 256;1 256 256];
faces_matrix=[1 2 6 5;2 3 7 6; 3 4 8 7; 4 1 5 8;1 2 3 4; 5 6 7 8];
patch('Vertices',vertex_matrix,'Faces',faces_matrix,'FaceVertexCData',hsv(6),'Facecolor','white')
alpha(0.5)

%To view the points A,B,C,D
text(256,YA,1,'A')
text(256,YB,256,'B')
text(1,YC,1,'C')
text(1,YD,256,'D')

set(gca,'Xdir','normal')
set(gca,'Ydir','normal')
set(gca,'Zdir','normal')
set(gca,'Xlim',[1 256])
set(gca,'Ylim',[1 256])
set(gca,'Zlim',[1 256])
set(gca,'YTick',round(YA))
set(gca,'YTickLabel',round(YA))
set(gca,'YTick',round(YB))
set(gca,'YTickLabel',round(YB))
set(gca,'YTick',round(YC))
set(gca,'YTickLabel',round(YC))
set(gca,'YTick',round(YD))
set(gca,'YTickLabel',round(YD))
xlabel('X')
ylabel('Y')
zlabel('Z')
view(20,26)
hold off

A.3.3 An image of the slice: density

figure('Position',[5 −135 1000 1000])
imagesc(log10(rho_mean))
colormap(jet)
load('densmap')
set(gcf,'Colormap',densmap)
caxis([−29 −25])
c=colorbar;
axis square

set(gca,'Xdir','normal');
set(gca,'Ydir','normal');
set(gca,'XTick',tic)
set(gca,'YTick',tic)
set(gca,'XTickLabel',dim,'FontSize',18)
set(gca,'YTickLabel',dim,'FontSize',18)

set(get(c,'Title'),'string','log(ρ)','Interpreter','latex','FontSize',26);
set(c,'YTick',[−29 −28.5 −28 −27.5 −27 −26.5 −26 −25.5 −25],'FontSize',14);
xlabel('Distance [kpc]','Interpreter','latex','FontSize',24)
ylabel('Distance [kpc]','Interpreter','latex','FontSize',24)

% To trace the Virial Radius
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t=linspace(0,2*pi,1000);
h=256/2;
k=256/2;
xvir=Rvir*cos(t)+h;
yvir=Rvir*sin(t)+k;

hold on
plot(xvir,yvir,'w','LineWidth',2)

% Add velocity arrows
hold on
[x z]=meshgrid(1:pas:256,1:pas:256);
vx_mean=vx_mean(1:pas:256,1:pas:256);
vy_mean=vy_mean(1:pas:256,1:pas:256);
vz_mean=vz_mean(1:pas:256,1:pas:256);
quiver(z,x,transpose(vz_mean),transpose(vx_mean),'w','LineWidth',1.2)

text(6,243,'Density','Interpreter','latex','FontSize',32,'Color',[0 0 1],'FontWeight','bold')
text(8,243,'Density','Interpreter','latex','FontSize',32,'Color',[0 0 1],'FontWeight','bold')
text(7,242,'Density','Interpreter','latex','FontSize',32,'Color',[0 0 1],'FontWeight','bold')
text(6,244,'Density','Interpreter','latex','FontSize',32,'Color',[0 0 1],'FontWeight','bold')
text(7,243,'Density','Interpreter','latex','FontSize',32,'Color',[1 1 1],'FontWeight','bold')

A.4 The direction of the disk

A.4.1 Inertial tensor

% We compute the inertial tensor inside 0.2 Rvir (R is in grid cells)
f=0.2;
R=f*Rvir/50000*2^14;
radius=ceil(R)+1;
radius1=[ic jc kc]−radius;
radius2=[ic jc kc]+radius;

rho=rho(radius1(1):radius2(1),radius1(2):radius2(2),radius1(3):radius2(3));
vx=vx(radius1(1):radius2(1),radius1(2):radius2(2),radius1(3):radius2(3));
vy=vy(radius1(1):radius2(1),radius1(2):radius2(2),radius1(3):radius2(3));
vz=vz(radius1(1):radius2(1),radius1(2):radius2(2),radius1(3):radius2(3));
clear radius1 radius2

n_inertia=size(rho);
ntot_inertia=n_inertia(1)*n_inertia(2)*n_inertia(3);

index=1:ntot_inertia;
[i,j,k]=ind2sub(n_inertia,index);
clear index

i=i';
j=j';
k=k';

X=i−(radius+1);
Y=j−(radius+1);
Z=k−(radius+1);

Ixx=sum(rho(:).*(X.^2));
Ixy=sum(rho(:).*X.*Y);
Ixz=sum(rho(:).*X.*Z);
Iyy=sum(rho(:).*(Y.^2));
Iyz=sum(rho(:).*Y.*Z);
Izz=sum(rho(:).*(Z.^2));
clear rhocore

I=[Ixx,Ixy,Ixz;Ixy,Iyy,Iyz;Ixz,Iyz,Izz];
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clear Ixx Ixy Ixz Iyy Iyz Izz

% We search the eigenvectors and eigenvalues of the inertial tensor I
[V,D]=eig(I,'nobalance');
clear I

Eigval=[D(1,1),D(2,2),D(3,3)];
[Cmax,I1]=max(Eigval);
[Cmin,I3]=min(Eigval);
I2=6−I1−I3;
clear Cmax Cmin Eigval D

V1=V(:,I1)/norm(V(:,I1));
V2=V(:,I2)/norm(V(:,I2));
V3=V(:,I3)/norm(V(:,I3));
clear V I1 I2 I3
% V3 corresponds to the main direction of the disk

A.4.2 Angular momentum

% We compute the angular momentum J
X=reshape(X,n_inertia);
Y=reshape(Y,n_inertia);
Z=reshape(Z,n_inertia);

Jx=rho.*(Y.*vz−Z.*vy);
Jy=rho.*(Z.*vx−X.*vz);
Jz=rho.*(X.*vy−Y.*vx);
Jx=sum(Jx(:));
Jy=sum(Jy(:));
Jz=sum(Jz(:));
J=[Jx,Jy,Jz];
J=J/norm(J);

A.4.3 Comparing the two methods

% Both vectors are normalized
cosangle=dot(V3,J);

% We then apply the following function to plot the histogram
function result=histo(mat,edges,n)

absc=linspace(edges(1),edges(2),n+1);
offset=(absc(2)−absc(1))/2;
absc=absc+offset;
absc=absc(1:n);

n=hist(mat,absc);
hist(mat,absc)
set(gca,'Xlim',[edges(1) edges(2)])

result=[absc',n'];
end
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A.4.4 Study of a numerical bias: the alignment with the grid

% Defining the cosinus of the angles
ux=[1;0;0];
uy=[0;1;0];
uz=[0;0;1];

cosx=dot(V3,ux);
cosy=dot(V3,uy);
cosz=(dot(V3,uz));

% We plot a histogram for the different values, all directions and all haloes together
% data is the matrix containing the absolute values of the cosinus
[absc,n]=histo(data,[0 1],8);

% Fitting function
function result=bigaussian_fit(params,x,y)

A=params(1);
sigma=params(2);

Fitted_curve=A.*(2*exp(−x.^2/sigma^2)+exp(−(x−1).^2/sigma^2));
Error_vector=Fitted_curve−y;

result=sum(Error_vector.^2);
end

% Fitted parameters
Starting=rand(1,2);
options=optimset('Display','iter');
Estimates=fminsearch(@bigaussian_fit,Starting,options,absc,n)
% Estimates gives the values of the two parameters A and sigma

A.5 Bird plots

% hist2d is a program adapted from a program written by Elad Zinger.
% xx: we can make bird plots defined by mass or number of particles...

function result = hist2d(T,rho,xx,weight)
global tro mnro mxro mnt mxt

ltm=(T);
lro=(rho);
wt=ones(size(ltm));
wt=wt.*weight;

ltm=ltm(:);
lro=lro(:);
wt=wt(:);
xx=xx(:);

len=200;
mnro=floor(min(lro));
mxro=ceil(max(lro))−mnro;
mnt=floor(min(ltm));
mxt=ceil(max(ltm))−mnt;

tro=zeros(len,len,2);

ltm=ltm−mnt;
lro=lro−mnro;

for i=1:size(ltm,1)
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indx=round((ltm(i)./mxt).*len);
indy=round((lro(i)./mxro).*len);
if indx==0, indx=1;end
if indy==0,indy=1; end
tro(indx,indy,1)=tro(indx,indy,1)+xx(i).*wt(i);
tro(indx,indy,2)=tro(indx,indy,2)+wt(i);
end

%Bird Plot
figure
imagesc(transpose(log10(tro(:,:,1))))
colorbar
load('bird_colormap')
set(gcf,'Colormap',bird_colormap)
set(gca,'Xdir','normal')
set(gca,'Ydir','normal')
xlabel('log T')
ylabel('log \rho')
title('Mass Bird')
set(gca,'XTick',[(2−mnt)*len/mxt,(3−mnt)*len/mxt,(4−mnt)*len/mxt,(5−mnt)*len/mxt,...
(6−mnt)*len/mxt,(7−mnt)*len/mxt,(8−mnt)*len/mxt,(9−mnt)*len/mxt,(10−mnt)*len/mxt,...
(11−mnt)*len/mxt,(12−mnt)*len/mxt,(13−mnt)*len/mxt,(14−mnt)*len/mxt])
set(gca,'YTick',[(−30−mnro)*len/mxro,(−28−mnro)*len/mxro,(−26−mnro)*len/mxro,...
(−24−mnro)*len/mxro,(−22−mnro)*len/mxro,(−20−mnro)*len/mxro,(−18−mnro)*len/mxro])
set(gca,'XTickLabel',[2,3,4,5,6,7,8,9,10,11,12,13,14])
set(gca,'YTickLabel',[−30,−28,−26,−24,−22,−20,−18])

end

A.6 Spherical coordinates

A.6.1 Unity sphere

% The following function defines and plot the unity sphere (equal angular area sphere)
function [xx,yy,zz]=uni_sphere(n)

error(nargchk(0,2,nargin));
[cax,args,nargs] = axescheck(n);

n=n−1;
theta = (−n:2:n)/n*pi;
phi = acos((−n:2:n)'/n)−pi/2;

cosphi = cos(phi); cosphi(1) = 0; cosphi(n+1) = 0;
sintheta = sin(theta); sintheta(1) = 0; sintheta(n+1) = 0;

x = cosphi*cos(theta);
y = cosphi*sintheta;
z = sin(phi)*ones(1,n+1);

if nargout==0,
cax = newplot(cax);
surf(x,y,z)

else
xx = x; yy = y; zz = z;

end
end
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A.6.2 Transfering to spherical coordinates

% We tranfer a cube in cartesian coordinates into a cube in spherical coordinates
% cube: the cartesian cube wanted in spherical coordinates
% MAX_R: maximum value of r (number of cells)
% center: center of the cube

function result=create_sphere(cube,MAX_R,center)
result = zeros(size(cube),'single');
CUBE_SIZE = size(cube,1);
SPHERE_RES = CUBE_SIZE;
INTERP = 'linear';

[Sx Sy Sz] = uni_sphere(SPHERE_RES);
size(Sx);
RR = [0.5:0.5:((CUBE_SIZE−1)/2)];
% length(RR) = CUBE_SIZE −1

if ¬exist('MAX_R','var')
MAX_R = length(RR);
end

if ¬exist('center','var')
center = (CUBE_SIZE+1)/2;
center=[center,center,center];
end

MAX_R=min([MAX_R (CUBE_SIZE−1)]);

for ridx = 1:MAX_R
RSx = RR(ridx)*Sx+center(1);
RSy = RR(ridx)*Sy+center(2);
RSz = RR(ridx)*Sz+center(3);

result(ridx,:,:) =single(interp3(cube, RSx, RSy, RSz, INTERP));
end

end

A.7 Flux pro�les

A.7.1 Flux as a function of the radius

% Spherical coordinates

% (ic,jc,kc) is the center of the cube
max_r=2*min([floor(nc/2),ic,nc−ic,jc,nc−jc,kc,nc−kc]);

rho=create_sphere(rho,max_r,[ic jc kc]);
vr=create_sphere(vr,max_r,[ic jc kc]);

% n=[256,256,256] is the size of the initial cubes
[y, x,, z] = meshgrid(1:n(1), 1:n(2), 1:n(3));
r=x*50000/(2^resolution)/h*aexp/2;

mdot=vr.*r.^2.*rho*(3.08568025E21)^2;
mdot=mdot/(1.98892E33)*31536000; %In solar masses/year

% As a function of the radius
r = 0.5:0.5:((max_r−1)/2);
r=r*50000/2^resolution/h*aexp;

flux_tot=squeeze(sum(sum(mdot,2),3)*4*pi/(nc^2));
flux_tot=flux_tot(1:(max_r−1))';
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in=mdot<0;
flux_in=squeeze(sum(sum(mdot.*in,2),3)*4*pi/(nc^2));
flux_in=flux_in(1:(max_r−1))';

vvir=vr≤(−Vvirial)/2;
flux_vvir=squeeze(sum(sum(mdot.*vvir,2),3)*4*pi/(nc^2));
flux_vvir=flux_vvir(1:(max_r−1))';

% Eventually: temperature and entropy thresholds Tc and Sc
cold=log10(T)<Ts;
flux_cold=squeeze(sum(sum(mdot.*cold,2),3)*4*pi/(nc^2));
flux_cold=flux_cold(1:(max_r−1))';

lows=S<Ss;
flux_lows=squeeze(sum(sum(mdot.*lows,2),3)*4*pi/(nc^2));
flux_lows=flux_lows(1:(max_r−1))';

A.7.2 Flux pro�les: plots

figure('Position',[5 −135 1000 1000])
plot(r,flux_tot,'r','LineWidth',1.5)
hold on
plot(r,flux_in,'b','LineWidth',2)
hold on
jbfill(r,ze,flux_in,'b','w',1,0.3)
hold on
plot([0 170],[0 0],'k','LineWidth',1.5)
hold on
axis([0 170 −300 0])
grid on
set(gca,'FontSize',20)
plot([0 170],[0 0],'k','LineWidth',3)
plot([0 170],[−300 −300],'k','LineWidth',3)
plot([0 0],[−300 0],'k','LineWidth',3)
plot([170 170],[−300 0],'k','LineWidth',3)
plot([Rvir_kpc Rvir_kpc],[−225 −175],'k','LineWidth',2)
plot([Rvir_kpc Rvir_kpc],[−150 −100],'k','LineWidth',2)
text(Rvir_kpc−5,−160,'Rvir','FontSize',24,'Interpreter','latex','Color','k','FontWeight','bold')

xlabel('R [kpc]','FontSize',22,'Interpreter','latex','FontWeight','bold');
ylabel('Ṁ [M�¬yr−1]','FontSize',22,'Interpreter','latex','FontWeight','bold');
legend('Ṁtot','Ṁ<0');
set(legend(), 'interpreter','latex','Location','SouthWest','FontSize',24,'FontWeight','bold')

function[fillhandle,msg]=jbfill(xpoints,upper,lower,color,edge,add,transparency)
%USAGE: [fillhandle,msg]=jbfill(xpoints,upper,lower,color,edge,add,transparency)
%This function will fill a region with a color between the two vectors
%fillhandle is the returned handle to the filled region in the plot.
%xpoints= The horizontal data points (ie frequencies).
%upper = the upper curve values (data can be less than lower)
%lower = the lower curve values (data can be more than upper)
%color = the color of the filled area
%edge = the color around the edge of the filled area
%add = a flag to add to the current plot or make a new one.
%transparency is a value ranging from 1 for opaque to 0 for invisible, for the filled color only.
%John A. Bockstege November 2006;

if nargin<7;transparency=.5;end %default is to have a transparency of .5
if nargin<6;add=1;end %default is to add to current plot
if nargin<5;edge='k';end %dfault edge color is black
if nargin<4;color='b';end %default color is blue

if length(upper)==length(lower) && length(lower)==length(xpoints)
msg='';
filled=[upper,fliplr(lower)];
xpoints=[xpoints,fliplr(xpoints)];
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if add
hold on

end
fillhandle=fill(xpoints,filled,color);
set(fillhandle,'EdgeColor',edge,'FaceAlpha',transparency,'EdgeAlpha',transparency);
if add

hold off
end
else
msg='Error: Must use the same number of points in each vector';
end

end

A.7.3 Density pro�les

% We plot the density as a function of the radius r
r = 0.5:0.5:((256−1)/2);
r=r(1:(256−1));
r=r*50000/2^resolution/h*aexp;

rhor=squeeze(mean(mean(rho,3),2));

ze=7*ones(size(rho));

msun=1.98892*10^33;
kpc=3.08568025*10^21;

figure('Position',[5 −135 1000 1000])
quant=log10(r.^2.*rho/msun*kpc^3)';
plot(r,quant,'r','LineWidth',1.5)

hold on
jbfill(r',quant,ze','r','w',1,0.3)
hold on
axis([0 170 7 9])
grid on
plot([0 170],[7 7],'k','LineWidth',3)
plot([0 170],[9 9],'k','LineWidth',3)
plot([0 0],[7 9],'k','LineWidth',3)
plot([170 170],[7 9],'k','LineWidth',3)

set(gca,'YTick',[7 7.5 8 8.5 9])
set(gca,'YTickLabel',[7 7.5 8 8.5 9],'FontSize',30)
plot([Rvir_kpc Rvir_kpc],[7.85 8.25],'k','LineWidth',2)
plot([Rvir_kpc Rvir_kpc],[8.5 8.90],'k','LineWidth',2)
text(Rvir_kpc−5,8.375,'Rvir','FontSize',24,'Interpreter','latex','Color','k','FontWeight','bold')
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A.8 Hammer-Aito� maps

A.8.1 Rotating the spherical grid

% Rotated unity sphere
function [xx,yy,zz]=uni_sphere2(n,thetac,phic)

[cax,args,nargs] = axescheck(n);
n=n−1;
phi = (−n:2:n)/n*pi;
theta = (−n:2:n)'/n*pi/2+pi/2;

x = sin(theta)*cos(phi);
y = sin(theta)*sin(phi);
z = cos(theta)*ones(1,n+1);
x=cos(thetac).*x−sin(thetac).*y;
y=cos(thetac)*sin(phic)*x+cos(thetac)*cos(phic)*y+sin(thetac)*z;
z=−sin(thetac)*sin(phic)*x−sin(thetac)*cos(phic)*y+cos(thetac)*z;

if nargout == 0
cax = newplot(cax);
surf(x,y,z)
else
xx = x; yy = y; zz = z;
end

end

% Rotated surface of the sphere at a specified radius
function result=aitoff_sphere(cube,thetac,phic,radius,center)

CUBE_SIZE = size(cube,1);
SPHERE_RES = CUBE_SIZE;
INTERP = 'linear';
[Sx Sy Sz] = uni_sphere2(SPHERE_RES,thetac,phic);
size(Sx);

if ¬exist('center','var')
center = (CUBE_SIZE+1)/2;
center=[center,center,center];
end

RSx = radius*Sx+center(1);
RSy = radius*Sy+center(2);
RSz = radius*Sz+center(3);
result=single(interp3(cube, RSx, RSy, RSz, INTERP));

end

A.8.2 Hammer-Aito� projection

function aitoff(data)
n=size(data);

[theta,phi]=meshgrid(1:n(2),1:n(1));
[thetaI,phiI]=meshgrid(1:360,1:180);
thetaI=thetaI*n(1)/360;
phiI=phiI*n(2)/180;

dataitoff=double(interp2(theta,phi,data,thetaI,phiI));

figure('Position',[5 −135 1000 1000])
axesm ('hammer', 'Frame', 'on', 'Grid', 'on');
meshm(dataitoff,[1 90 180])
colorbar('h');

end
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B Projected densities

B.1 Five random ∼ 1011M� haloes at z = 2.46

Figure 19: Five random ∼ 1011M� haloes at z = 2.46: output 75, haloes 4340, 4341, 4342, 4344, and 4347. The
white circle represents the virial radius.
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B.2 Five random ∼ 1012M� haloes at z = 2.46

Figure 20: Five random ∼ 1012M� haloes at z = 2.46: output 75, haloes 300, 307, 309, 310, and 314. The
white circle represents the virial radius.
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B.3 Five random ∼ 1013M� haloes at z = 2.46

Figure 21: Five random ∼ 1013M� haloes at z = 2.46: output 75, haloes 2, 3, 6, 10, and 13. The inner white
circle represents 0.2 Rvir.
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B.4 Five random ∼ 1012M� haloes at z = 1.57

Figure 22: Five random ∼ 1012M� haloes at z = 1.57: output 128, haloes 426, 427, 428, 429, and 433. The
white circle represents the virial radius.

53



Jonathan Freundlich, Cold �ows in the MareNostrum simulation

B.5 Five random ∼ 1012M� haloes at z = 4.01

Figure 23: Five random ∼ 1012M� haloes at z = 4.01: output 34, haloes 75, 76, 78, 81, and 82. The white
circle represents the virial radius.
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C Slices for four ∼ 1012M� haloes at z = 2.46

C.1 Halo 303 output 75

Figure 24: Gas maps in a thin slice and �ux-selected column density through a galaxy of mass Mvir ≈ 1012M�
at redshift z = 2.46. Arrows describe the velocity �eld and the circle marks the halo virial radius. The density
map emphasizes the narrowness of the streams and reveals that they are typically denser than the surrounding
medium by more than an order of magnitude. The entropy K ∝ T/ρ2/3 highlights the high-entropy medium
�lling the halo out to the virial shock and exhibits three radial low-entropy streams penetrating to the inner
disk seen edge-on. The radial �ux per solid angle, ṁ = r2ρvr, demonstrates that almost all the inward �ux in
channeled through the streams and the �ux-selected column density map averages the density along a speci�ed
direction in the cells in which the �ux per solid angle is higher than two times the virial �ux.
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C.2 Halo 310 output 75

Figure 25: Gas maps in a thin slice and �ux-selected column density through a galaxy of mass Mvir ≈ 1012M�
at redshift z = 2.46. Arrows describe the velocity �eld and the circle marks the halo virial radius. The density
map emphasizes the narrowness of the streams and reveals that they are typically denser than the surrounding
medium by more than an order of magnitude. The entropy K ∝ T/ρ2/3 highlights the high-entropy medium
�lling the halo out to the virial shock and exhibits three radial low-entropy streams penetrating to the inner
disk seen edge-on. The radial �ux per solid angle, ṁ = r2ρvr, demonstrates that almost all the inward �ux in
channeled through the streams and the �ux-selected column density map averages the density along a speci�ed
direction in the cells in which the �ux per solid angle is higher than two times the virial �ux.
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C.3 Halo 311 output 75

Figure 26: Gas maps in a thin slice and �ux-selected column density through a galaxy of mass Mvir ≈ 1012M�
at redshift z = 2.46. Arrows describe the velocity �eld and the circle marks the halo virial radius. The density
map emphasizes the narrowness of the streams and reveals that they are typically denser than the surrounding
medium by more than an order of magnitude. The entropy K ∝ T/ρ2/3 highlights the high-entropy medium
�lling the halo out to the virial shock and exhibits three radial low-entropy streams penetrating to the inner
disk seen edge-on. The radial �ux per solid angle, ṁ = r2ρvr, demonstrates that almost all the inward �ux in
channeled through the streams and the �ux-selected column density map averages the density along a speci�ed
direction in the cells in which the �ux per solid angle is higher than two times the virial �ux.
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C.4 Halo 314 output 75

Figure 27: Gas maps in a thin slice and �ux-selected column density through a galaxy of mass Mvir ≈ 1012M�
at redshift z = 2.46. Arrows describe the velocity �eld and the circle marks the halo virial radius. The density
map emphasizes the narrowness of the streams and reveals that they are typically denser than the surrounding
medium by more than an order of magnitude. The entropy K ∝ T/ρ2/3 highlights the high-entropy medium
�lling the halo out to the virial shock and exhibits three radial low-entropy streams penetrating to the inner
disk seen edge-on. The radial �ux per solid angle, ṁ = r2ρvr, demonstrates that almost all the inward �ux in
channeled through the streams and the �ux-selected column density map averages the density along a speci�ed
direction in the cells in which the �ux per solid angle is higher than two times the virial �ux.
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D Workshop poster: New understanding of galaxy evolution
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E SubmittedNature article: Massive galaxy formation by cold streams
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The massive galaxies in the young universe, ten billion years ago, form stars at surprising

intensities1,2. While they were commonly attributed to violent mergers, many of them are ex-

tended rotating discs incompatible with mergers3,2,4. In order to decipher this phenomenon, we

use a cutting-edge cosmological simulation5 and clustering theory6,7 to explore how these galaxies

acquired their gas. We �nd that these are �Stream-Fed Galaxies�, growing via steady, narrow,

cold gas streams, which penetrate e�ectively through the shock-heated media of dark-matter

haloes as massive as the Milky Way's8. Half the stream mass is in clumps leading to mergers

of mass ratio 1:10 or higher, and half is in smoother �ows. Since the merger duty cycle is 0.1,

three-quarters of the galaxies forming stars at a given rate are fed by smooth streams. Unlike

destructive major mergers, the smoother �ows can keep the discs intact, though thick and per-

turbed. The observed abundance of star-forming galaxies implies that the in�owing gas turns

into stars at maximum e�ciency. In contrast, the sub-millimeter galaxies that form stars even

more intensely1 are largely compact merger-induced starbursts in haloes twice as massive.

Star-Formation Rate versus Halo Growth Rate

It appears that the most e�ective star formers in the universe were galaxies of stellar and gas mass on the
order of 1011M� at redshifts z= 2−39,2, when the universe was about 3 Gyr old. The common cases3,2 show
star-formation rates (SFR) of 100−200M� yr−1. These include UV-selected galaxies termed BX/BM, and
rest-frame optically selected galaxies termed sBzK, which we jointly refer to as �Star-Forming Galaxies� (SFG).
Their SFR is much higher than the 4M� yr−1 in the Milky Way today, while their characteristic dynamical
time is only about 5 times shorter. The comoving space density of SFGs is n'2×10−4 Mpc−3, implying within
the standard ΛCDM cosmology that they reside in dark-matter haloes of masses <∼3.5×1012M�. In parallel,
the most extreme star formers are observed as dusty objects, termed Sub-Millimeter Galaxies (SMG)10,11, with
SFRs up to ∼ 1, 000M� yr−1 and n' 2×10−5 Mpc−3. While the SMGs could largely be starbursts induced
by major mergers, the morphology and kinematics of the SFGs indicate extended, thick rotating discs that
are incompatible with the expected compact or highly perturbed appearance of ongoing major mergers3,2,12,4.
The big puzzle is how massive galaxies form most of their stars so e�ciently at early times and not through
major mergers, given that there is no equivalent phenomenon in today's universe and its origin is not obvious
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theoretically. A necessary condition is clearly a steady, rapid gas supply into appropriately massive discs at
early epochs.

One should �rst verify that the required rate of gas supply is compatible with the predicted growth rate of
the corresponding dark-matter haloes in the standard cosmological model. The average growth rate of halo virial
mass Mv, via mergers and smooth accretion, is derived6 based on the EPS theory of gravitational clustering13

(Methods). It resembles the assembly rate in cosmological N -body simulations14,15. For the ΛCDM cosmology
(a �at universe with 72% dark energy, mass dominated by cold dark matter, and �uctuation normalization
parameter σ8 = 0.8)16, the corresponding growth rate of the baryonic component is well �tted by the practical
formula6

Ṁ ' 6.6M1.15
12 (1 + z)2.25 f.165 M� yr−1 , (1)

where M12 ≡Mv/1012M�, and f.165 is the baryonic fraction in the matter assembled into haloes in units of the
cosmological value fb = 0.165. Thus, at z = 2.2, the average baryonic growth rate of haloes of 2×1012M� is
predicted to be Ṁ ' 200M� yr−1, fairly su�cient for feeding the SFR observed in SFGs. However, this is not
by a large margin, implying that (a) the incoming material must be mostly gaseous, (b) the cold gas must very
e�ciently penetrate deep into the inner halo, and (c) the SFR must closely follow the gas supply rate.

Penetrating Cold Narrow Streams

The required e�cient penetration into the inner halo is not a trivial matter, given that the indicated halo masses
of Mv > 1012M� are above the threshold for virial shock heating17,18,19,8, Mshock

<∼1012M�. Such haloes are
encompassed by a stable shock near their outer radius Rv, inside which gravity and thermal energy are in virial
equilibrium. Infalling gas through the virial shock is expected to heat up to the virial temperature and stall
in quasi-static equilibrium before it can cool and gradually rain into the inner galaxy20. However, Dekel &
Birnboim8 have conjectured that at z ≥ 2, these hot massive haloes are penetrated by narrow cold streams.
The reason is that at early times, the haloes of Mv>Mshock populate the extreme massive tail of the halo mass
distribution. As such, they are fed by dark-matter �laments from the cosmic web that are narrow compared
to Rv and denser than the mean density within the halo. The enhanced density of the gas that streams along
these �laments allows it to cool more rapidly than the dynamical compression rate behind a shock and thus
avoid the shock heating that occurs elsewhere in the halo (Supplementary Information).

To test this conjecture, we study the way gas feeds massive high-z galaxies in the MareNostrum simulation -
a hydrodynamical simulation in a comoving cosmological box of 50h−1Mpc and a resolution of ∼1h−1kpc at the
galaxy centers (Methods). Fig. 1 maps the entropy and inward �ux of gas in a thin slice centered on one typical
galaxy of Mv = 1012M� at z = 2.5. It demonstrates that the shock-heated, high-entropy, low-�ux medium
that �lls most of the halo out to Rv and beyond is penetrated by three massive, narrow streams of low-entropy
gas. They �ow into the central disc with a radial �ux per solid angle several times the average virial �ux as
estimated from eq. (1). The opening angle of a typical stream at Rv is 20 − 30◦, so the streams cover a total
area of ∼ 0.4 rad2, namely a few percent of the sphere. The �ux map in Fig. 2 displays the three-dimensional
structure of the streams and uncovers clumps along two of them.

The penetration through the halo into the center can be evaluated via the pro�les of total mass in�ow rate
Ṁ(r) through shells of radius r, obtained by integrating ρ vrr2dΩ over a shell, where ρ is the gas density, vr
the radial velocity, and dΩ the angular-area element. Fig. 3 displays the average �ux pro�le over the simulated
galaxies of Mv ' 1012M� at z = 2.5, on top of the pro�les of four representative cases (Supplementary
Information). The average pro�le reveals that the total �ux remains roughly constant from well outside the
virial radius (∼ 90 kpc) all the way to the disc vicinity inside r∼ 15 kpc. The in�ow rate of ∼ 100M� yr−1 is
consistent with the virial growth rate predicted by eq. (1). Apparently, the �ux decay while traveling through
the halo is roughly compensated by the higher cosmological �ux when that gas entered the halo, eq. (1), leading
to the apparent constancy of �ux with radius.
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Figure 1: Gas maps in a thin slice through a galaxy of Mv = 1012M� at z = 2.5. Arrows describe the
velocity �eld and the circle marks the halo virial radius Rv. The entropy, K ∝ T/ρ2/3, highlights (in red)
the high-entropy medium �lling the halo out to the virial shock near Rv. It exhibits three, radial, low-entropy
streams (blue) penetrating into the inner disc seen edge-on. The radial �ux per solid angle, ṁ = r2ρ vr,
demonstrates that almost all the inward �ux is channeled through the streams (blue), at a rate that remains
roughly the same at all radii. This rate is several times higher than the spherical average outside the virial
sphere, ṁvir'8M� yr−1rad−2.

62



Jonathan Freundlich, Cold �ows in the MareNostrum simulation

Figure 2: Flux map of the galaxy shown in Fig. 1, highlighting the three-dimensional structure of the streams
in a box of side 320 kpc. The colors refer to in�ow rate per solid angle of point-like tracers at the centers of
the cubic grid cells. Two of the three radial streams show gas clumps of mass on the order of one tenth of the
central galaxy.

Figure 3: Gas in�ow rate through spherical shells of radius r, from the disc vicinity to almost twice the halo
virial radius. The thick black curve is the average over the simulated galaxies of Mv ' 1012M� at z = 2.5,
showing deep penetration at a roughly constant rate. The colored curves refer to four representative galaxies,
two showing clumps of µ >∼ 0.1 and two with smoother �ows involving only mini-minor clumps of µ < 0.1.
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Abundance of Gas In�ow Rates

In order to relate to the observed abundance of galaxies as a function of SFR, we use the MareNostrum �ux
pro�les to evaluate n(>Ṁ), the comoving number density of galaxies with an instantaneous gas-�ow rate higher
than Ṁ . We �rst extract from the simulated �ux pro�les the conditional probability distribution at a given
mass, P (Ṁ |Mv). It is done by sampling the Ṁ(r) pro�les uniformly in r, given that the in�ow velocity along
the stream is roughly constant (Methods & Supplementary Informations). This is convolved with the halo mass
function n(Mv), based on the Sheth-Tormen approximation21, to provide

n(Ṁ) =
∫ ∞

0

P (Ṁ |Mv)n(Mv) dMv . (2)

The desired cumulative abundance n(>Ṁ) is obtained by integration from Ṁ to in�nity, and shown at z = 2.2
in the upper curve of Fig. 4. We see that galaxies with Ṁ >150M� yr−1 are expected at a comoving number
density n ∼ 3×10−4 Mpc−3. Fluxes as high as Ṁ > 500M� yr−1 are anticipated at n ∼ 6×10−5 Mpc−3. It
is encouraging to note that this theoretical prediction lies safely above the observed values as indicated by
the symbols. However, the di�erence between the gas supply rate and SFR is only by a factor of order 2,
con�rming our earlier conclusion that once the gas reaches the disc, it should very e�ciently convert into stars
on a dynamical time scale.

Figure 4: Comoving number density of galaxies with gas in�ow rate higher than Ṁ at z = 2.2, as predicted
from our analysis of the cosmological simulation. The upper curve refers to total in�ow, and the lower curve
is limited to gas input by µ> 0.1 mergers. The symbols represent the vicinity of where the observed massive
star-forming galaxies can be put once the observed SFR is identi�ed with Ṁ . The sBzK/BX/BM galaxies are
marked SFG10. The SMGs brighter and fainter than 5 mJy are marked accordingly10,9. The gas in�ow rate is
su�cient for the SFR, but the small margin implies that the SFR must closely follow the gas supply. Most of
the massive star formers should be observed while being fed by smooth �ows rather than undergoing mergers.

Smooth Flows versus Mergers

By analyzing the clumpiness of the gas streams, we address the role of major mergers versus smooth �ows
in the disc buildup and star formation. Fig. 2 exhibits �ve obvious clumps along the streams. The sample
pro�les in Fig. 3 reveal the clumps as narrow peaks of inward �ux. We evaluate each clump mass by integrating
Mclump =

∫
Ṁ(r) dr/vr(r) across the peak, and estimate a mass ratio for the expected merger of the clump with

the central galaxy by µ = Mclump/(fbMv), ignoring mass loss in the clump on its way in. We term �merger�
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any major or minor merger of µ ≥ 0.1, as opposed to �mini-minor� mergers where µ < 0.1, which we refer to
as �smooth� �ows. Fig. 3 shows two galaxies with µ > 0.1 clumps inside 2Rv, and two involving only smoother
�ows in this radius range. We �nd that about half the mass is �owing in as mergers and half as smoother �ows.
However, for Mv∼ 1012M� and z∼ 2.2, the duty cycle of mergers in a galaxy history is only η <∼ 0.1, i.e., less
than one out of ten galaxies is undergoing a merger at any given time.

It is encouraging to note that a similar estimate can be obtained from an EPS-based prediction, by reading
from Fig. 6 of Neistein & Dekel7 the rate dN/dω of mergers into a haloMv with mass ratio > µ. For the typical
starburst duration we assume ∆t ' 0.1Rv/Vv (namely ∼ 50 Myr at z = 2.5), based on merger simulations22.
A similar estimate is derived from the typical peak width in the Ṁ(r) pro�les of Fig. 3, with streaming at the
virial velocity, (GMv/Rv)1/2∼220 km s−1. This leads to η=(dN/dω)∆t'0.09 for M=2×1012M� at z=2.2.

The lower curve in Fig. 4 is obtained similarly to the upper curve, but using only the gas fed by mergers
(µ > 0.1). From the di�erence between the two curves we learn that among the galaxies of a given Ṁ , only
about a quarter are predicted to be seen while undergoing a merger. The fact that the symbol representing
typical SFGs (sBzK and BM/BX galaxies) lies well above the lower, merger curve indicates that in most of
them the star formation is driven by smooth �ows rather than mergers. This may explain why these galaxies
maintain an extended thick disc while doubling their mass over a halo crossing time4. On the other hand, as
seen in Fig. 4, about half the bright SMGs (with �ux > 5mJy), and most of the fainter SMGs, are consistent
with being merger-induced starbursts10.

Conclusion

The cosmological gas accretion rate into galactic haloes of >∼ 1012M� at z = 2-3 is su�cient to explain the
observed abundance of high star-formation rates, but only barely so. This implies that the transition from
accretion at the virial radius to SFR in a central galaxy has to be very e�cient2,4. Indeed, our simulation
reveals that the cold gas is poured into the center of each halo via a few steady narrow streams, riding the
dark-matter �laments of the cosmic web, and very e�ectively penetrating through the shock-heated medium
that otherwise �lls the halo. A large fraction of the baryons comes in as mini-minor clumps, or smooth �ows.
The more clumpy input component, which involves about half the incoming mass, is also gas rich. We read
from Fig. 4 that at a given SFR, the abundance of galaxies forming stars by smooth streams is ∼ 3 times higher
than the merger-induced starbursts. The Star-Forming Galaxies are predominantly fed by smooth �ows, and
can thus be interpreted as �Stream-Fed Galaxies�. The same is true for a non-negligible fraction of the bright
SMGs, the rest being driven by >∼ 1:10 mergers.

One should note that the intense SFR associated with streams must be limited to galaxies of ∼ 1011M�
in order not to violate the observational constraints on the overall density of SFR at these epochs11,23. Star
formation must be suppressed in much smaller galaxies, possibly due to stellar feedback24,25,8. For completeness,
it is also interesting to note that about half the ∼ 1011M� galaxies at z ∼ 2.2 have su�ered a major merger
during the preceding ∼1.5Gyr, as well as drastic heating by an expanding shock20,26 (Libeskind, N., Birnboim,
Y. & Dekel, A., in preparation), so many of them are expected to be compact spheroids of low SFR rather than
extended massive star formers27,28. This implies an even tighter correspondence between the gas input rate and
the SFR.

METHODS

Halo Growth by EPS. Neistein et al.6 used the EPS13 theory of cosmological clustering into spherical haloes
in virial equilibrium to derive a robust approximation for the average growth rate of halo virial mass Mv,

d lnMv/dω = −(2/π)1/2[σ2(Mv/q)− σ2(Mv)]−1/2, ω ≡ δc/D(t) . (3)

The time variable ω, which makes the expression time invariant, is inversely proportional to D(t), the linear
growth rate of density �uctuations at time t in the assumed cosmology, with δc ' 1.68. The power spectrum of
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initial density �uctuations enters via the variance σ2(Mv). The constant q is 2.2 with an uncertainty of ±0.1
intrinsic to the EPS theory. Eq. (3) has been con�rmed to resemble the assembly rate in cosmological N -body
simulations14.

The MareNostrum simulation. The cosmological simulation5,29 used in the present analysis has been
performed with the Eulerian AMR code RAMSES30 on 2,048 processors of the MareNostrum supercomputer.
The code simulates the coupled gas and dark-matter dynamics, using a Particle-Mesh scheme for the dark-matter
component and a second-order Godunov scheme for the gas component. In order to describe the formation
of dense star-forming discs, the code includes metal-dependent radiative cooling, UV heating by a standard
photo-ionizing background, star formation, supernovae feedback and metal enrichment. The simulation box of
comoving 50h−1Mpc involved 1, 0243 dark-matter particles and 4 ×109 gas cells. Using a quasi-Lagrangian
re�nement strategy, the spatial resolution reaches ∼ 1h−1kpc in physical units at all times. The dark-matter
particle mass is ∼108M�, so each of the haloes studied here consists of ∼104 particles within the virial radius.
Since one can reliably describe the formation of haloes down to ∼100 particles31, namely ∼1010M�, the 1012M�
haloes addressed here are two orders of magnitude above the minimum halo mass. This simulation allows us to
capture the important properties of gas accretion into galaxies in more than 100 haloes of ∼1012M� at z∼2.5,
thus providing a large statistical sample. A �rst analysis of galaxies from this simulation5 have con�rmed the
bi-modal nature of cold �ows and hot media as a function of mass and redshift8.

Our current analysis is based on robust features that are properly simulated, such as the large-scale structure
of the streams, the total �ux in them, and the gas clumps more massive than ∼ 1010M�. However, the �nite
resolution does not allow a fair treatment of small-scale gas phenomena such as turbulence in the hot gas,
ram-pressure stripping of clumps, hydrodynamical instabilities at the stream boundaries, and the formation of
small clumps. Furthermore, the current resolution does not allow a detailed study of the discs that form at the
halo centers as the disc thickness is barely resolved. More accurate analysis of the �ne stream structure and
disc buildup should await simulations of higher resolution.

Computing the �ux abundance. In order to evaluate the conditional probability P (Ṁ |Mv) for eq. (2),
we measure P0(Ṁ |M0) from a fair sample of MareNostrum galaxies in haloes of M0 = 1012M� at z0 = 2.5
(Supplementary Information). We then generalize it to other masses Mv using the scaling from eq. (1), Ṁ ∝
M1.15
v , namely

P (Ṁ |Mv) = P0[Ṁ(M0/Mv)1.15|M0] . (4)

At z∼ 2.5, this estimate of Ṁ is good to within a factor of two for Mv ≤ 1013M�, beyond which it becomes
a more severe overestimate (Goerdt et al., in preparation). The results for other redshifts (z>2) are obtained
using the scaling from eq. (1), Ṁ ∝ (1 + z)2.25.
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MASSIVE GALAXY FORMATION BY COLD STREAMS

This is an extension of the Letter to Nature, aimed at providing further details, in support of the results reported
in the main body of the Letter.

1 On the origin of narrow streams

Dekel & Birnboim 20068(hereafter DB06) put forward the conjecture that at redshifts higher than zcrit ∼ 2,
narrow cold streams penetrate deep into the dark-matter haloes even when the haloes are more massive than
the shock-heating scale, Mshock

<∼ 1012M�. This prediction is summarized in Fig. 5.

Figure 5: Analytic prediction for the regimes dominated by cold �ows and shock-heated medium in the plane of
halo mass and redshift, based on Fig. 7 of DB06. The nearly horizontal curve marks the robust threshold mass
for a stable shock based on spherical infall analysis, Mshock(z). Below this curve the �ows are predicted to be
predominantly cold and above it a shock-heated medium is expected to exted out to the halo virial radius. The
inclined solid curve is the conjectured upper limit for cold streams, valid at redshifts higher than zcrit∼2. The
hot medium in haloes of Mv>Mshock at z>zcrit is predicted to host penetrating cold streams, while haloes of
a similar mass at z < zcrit are expected to be all hot, shutting o� most of the gas supply to the inner galaxy.
Also shown is the charachteristic Press-Schechter halo mass M?(z); it is much smaller than Mshock at z>2.

The critical condition for a stable virial shock is that the radiative cooling rate behind the shock is slower
than the compression rate, t−1

cool < t−1
comp, allowing the buildup of pressure support behind the shock against

global gravitational collapse. Based on a spherical analysis, DB06 found that a virial shock should exist in
dark-matter haloes above a threshold mass Mshock

<∼1012M� that is rather constant in time, at an actual value
that is sensitive to the metallicity of the gas in the halo. The existance of such a threshold mass and its value as
a function of redshift have been con�rmed by the analysis of cosmological simulations19,8,20,5. However, at high
redshifts, even above the threshold mass, a shock is not expected to develop along narrow, cold, radial streams
that penetrate through the halo, because the cooling there is more e�cient than in the surrounding halo.

The appearance of intense streams at high z, as opposed to their absence at low z, re�ects the interplay
between the shock-heating scale and the independent characteristic scale of nonlinear clustering, i.e., the Press-
Schechter32 mass M? that corresponds to the typical dark-matter haloes forming at a given epoch. The key
di�erence between the two epochs is that the rapid growth ofM? with time, as seen in Fig. 5, makesMshock�M?

at z>2 while Mshock∼M? at lower redshifts.
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Figure 6: The pattern of dark-matter in�ow in a shell (1-3)Rv outside two haloes from a cosmological N-body
simulation at z = 0 (based on P. Seleson & A. Dekel, in preparation). Left: a typical halo with Mv ∼ M?.
Right: a rare halo with Mv >> M?. In terms of the di�erent ways by which these two haloes are fed by
dark-matter, they correspond to two haloes of the same mass Mv ∼ 1012M�, but at z ∼ 0 and z ∼ 2 − 3
respectively. Top to bottom: density, temperature and infall velocity. We see that the typical halo resides inside
a broad �lament so it is practically fed by wide-angle di�use accretion. On the other hand, the rare halo is fed
by a few narrow, dense, in-�owing �laments.

The following argument explains why rare dark-matter haloes of Mv�M? are fed by narrow streams, while
typical haloes ∼M? accrete from a wide angle. The large-scale structure of dark matter is expected to be
roughly self-similar in time when masses are measured in terms of M? and densities in terms of the background
universal density. We learn from cosmological N-body simulations19,33 that this is indeed the case for the
large-scale �lamentary structure: the characteristic width of the �laments is comparable to R? ∝M1/3

? , the
typical size of an M? halo, while the typical �lament length is larger by about an order of magnitude and scales
similarly in time. This means that while the infall pattern into ∼M? haloes is practically a wide-angle, nearly
spherical pattern, the infall into Mv�M? haloes is along a few well-de�ned �laments that are thin relative to
the halo size. Assuming that at any given epoch the accretion rate of dark matter, Ṁ , is roughly proportional
to the halo mass Mv (Eq. 1 of the Letter), while the virial densities in haloes of all masses are the same (by
de�nition), this geometrical di�erence implies that the densities in the �laments penetrating Mv�M? haloes
are higher by a factor of a few than the typical densities in their host haloes. This is demonstrated in Fig. 6.

Assuming that the density of the gas �owing along the �laments scales with the dark-matter density, and
that the infall velocity is comparable to the halo virial velocity, we conclude that the cooling rate in the �laments
feeding an Mv�M? halo should be higher by a factor of a few than in the surrounding spherical halo. If the
compression rate in the �laments is comparable to that in the host halo, this implies that the thin �laments have
a harder time supporting a stable shock. As a result, the critical halo mass for shock heating in the �laments
feeding it must be larger by a factor of a few. This is the case for Mv

>∼Mshock haloes at high redshifts.

A crude estimate led DB06 to the conjectured upper limit for penetrating streams shown in Fig. 5:

Mstream ∼
Mshock

fM?
Mshock for fM? < Mshock , (5)
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where the characteristic width of the streams is ∝ (fM?)1/3, with f a factor of order a few. At low z, where
fM? >Mshock, cold �ows exist only for Mv <Mshock. At high z, where fM? < Mshock, cold streams appear
even in Mv>Mstream haloes where shocks have heated part of the gas, as long as Mv<Mstream. The critical
redshift zcrit separating these two regimes is de�ned by

fM?(zcrit) = Mshock . (6)

This crude maximum mass for cold streams is shown in Fig. 5 for an arbitrary choice of f = 3.

A preliminary analysis of the MareNostrum simulation5 con�rms the prediction of eq. 5, when taking into
account the lower metallicities in the simulation compared to that assumed in the analytic calculation. The
streams analyzed in the current Letter, in dark-matter haloes of Mv = 1012M� at z = 2.5, represent an
encouraging con�rmation of the validity of the DB06 conjecture. Further analysis in progress (T. Goerdt et al.,
in preparation) indicates, for example, that at z = 2.5, the fraction of in�ow in cold streems drops by a factor
of three at Mv ' 2 × 1013M�, much in the spirit of the crude prediction of Fig. 5. The permitted cold gas
supply by streams in massive haloes at high redshift, followed by a shutdown above Mshock at low redshifts,
turn out to provide good match to many observed galaxy properties when these features are incorporated in
semi-analytic simulations of galaxy formation34−37.

2 Maps of entropy, �ux and density for esveral galaxies

Fig. 7 to 9 extend the visual information provided by Figs. 1 and 2 of the Letter. They display di�erent
gas properties that highlight the structure and kinematics of the cold streams in three simulated galaxies of
Mv=1012M� at z=2.5.

The entropy maps show log(T/ρ2/3) where the temperature and gas density are in units of the virial tem-
perature and mean density within the halo virial radius Rv. They exhibit the virial shock, covering most of the
area of the virial sphere and sometimes extending beyond 2Rv. The narrow streams are of much lower entropy,
by more than three orders of magnitude, comparable to the low entropy in the central disc they lead to. The
boundaries between the streams and the hot medium within the virial radius are sharp and well de�ned. We
also note that semi-cylindrical shocks sometimes partly surround the elongated streams long before they enter
the halo virial radius.

The arrows mark the velocity �eld projected on the slice plane, and the �ux color maps show the �ow rate
per solid angle, ṁ = r2ρ vr. The �ux inward is almost exclusively channeled through the narrow streams. This
�ux is several times the average over a sphere, ṁvir'8M� yr−1rad−2. The opening angle of a typical stream at
Rv is 20− 30◦, so the streams cover a total area of ∼0.4 rad2, namely a few percent of the sphere. The velocity
�eld in the hot medium is turbulent and sometimes showing vast out�ows. The inward �ux over most of the
sphere area is negligible, both inside and outside the virial radius or the virial shock. The streaming velocities
are supersonic, with a Mach number of order a few.

Although the streams tend to be rather radial when viewed on scales comparable to the halo virial radius,
some of them �ow in with impact parameters on the order of 10 kpc, comparable to the disc sizes. The steady
high �ux along a line of a rather �xed orientation with a non-negligible impact parameter is the source of
angular momentum required for the buildup of an extended rotating disc (A. Zinger et al., in preparation).

The gas density maps emphasize the narrowness of the streams, and reveal that they are typically denser
than the surrounding medium by more than an order of magnitude. This con�rms the prediction described
in �E, and explains why a virial shock is avoided along the streams, allowing them to penetrate cold and
unperturbed into the inner halo.

The column-density maps of the in�owing material are obtained by summing up the densities in grid cells
along each line of sight inside the box of side 320 kpc. The cells that enter this sum are only those where the
inward �ux per solid angle is at least twice the average over a sphere based on Eq. 1 of the Letter. The densities
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here are in units of cm−3, after dividing by 0.6mp. These maps highlight the three-dimensional con�guration
of radial streams, and the clumps along some of them.

Fig. 10 displays three-dimensional TIPSY1 pictures of the radial in�ux ṁ , similar to Fig. 2 of the Letter.
It shows the overall structure of the in�owing streams in 3D perspective for four simulated haloes. The pictures
reveal that the typical con�guration is of three major narrow streams. Some of the streams are straight lines,
and others are curved. Some of the streams are of rather �xed width from well outside Rv, and others display
a conical shape, starting broad at large radii and getting narrower as they penetrate into the halo. The gas
streams show dense clumps, with about half the stream mass in clumps of mass ratio µ > 0.1, namely mass
above ∼ 1010M�. The rest is in smaller clumps, some clearly hidden below the resolution limit. Since these
mini-minor clumps are not expected to cause signi�cant damage to the central disc22, we can refer to them
in this respect as �smooth� �ows. It is not clear at this point to what extent the smooth component is truly
smooth or built by mini-minor clumps, and whether the perfect smoothness has a physical origin or is merely
a numerical artifact, but this distinction does not make a qualitative di�erence to our present discussion.

1http://www-hpcc.astro.washington.edu/tools/tipsy/tipsy.html
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Figure 7: Gas in halo 314 of the MareNostrum simulation. Three maps refer to a thin equatorial slice. They
show (a) entropy logK = log(T/ρ2/3) in units of the virial quantities, (b) radial �uxṁ = r2ρvr inM�yr−1rad−2,
and (c) log density in units of the mean gas density within Rv. The fourth panel shows log column density
through the 3D box of side 320 kpc, considering only the cells where the radial �ux inward is at least twice as
high as the average over a shell based on Eq. 1 of the Letter. The circle marks the virial radius.
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Figure 8: Gas in halo 303 of the MareNostrum simulation. Three maps refer to a thin equatorial slice. They
show (a) entropy logK = log(T/ρ2/3) in units of the virial quantities, (b) radial �uxṁ = r2ρvr inM�yr−1rad−2,
and (c) log density in units of the mean gas density within Rv. The fourth panel shows log column density
through the 3D box of side 320 kpc, considering only the cells where the radial �ux inward is at least twice as
high as the average over a shell based on Eq. 1 of the Letter. The circle marks the virial radius.
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Figure 9: Gas in halo 311 of the MareNostrum simulation. Three maps refer to a thin equatorial slice. They
show (a) entropy logK = log(T/ρ2/3) in units of the virial quantities, (b) radial �ux ṁ = r2ρvr inM�yr−1rad−2,
and (c) log density in units of the mean gas density within Rv. The fourth panel shows log column density
through the 3D box of side 320 kpc, considering only the cells where the radial �ux inward is at least twice as
high as the average over a shell based on Eq. 1 of the Letter. The circle marks the virial radius.
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Figure 10: Inward �ux in the three-dimensional boxes of side 320 kpc centered on galaxies 314, 303, 311 and 310
from the MareNostrum simulations. The colors refer to in�ow rate per solid angle of point-like tracers at the
centers of the cubic grid cells. The dotted circle marks the virial radius. All haloes show high-�ux streams, some
smooth and some with embedded clumps. Galaxy 310 (bottom right) is undergoing multiple minor mergers due
to the particularly clumpy streams.
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3 Flux pro�les and probability distribution

Figure 11: Pro�les of total gas in�ow rate through spherical shells as in Fig. 3 of the Letter. Shown here are
twelve galaxies of Mv ≈ 1012M� at z = 2.5, randomly chosen from the simulation. The lower six panels show
clumps that correspond to mergers of mass ratio µ > 0.1, while the upper six are fed by smoother �ows with
only mini-minor mergers of µ < 0.1.

Fig. 11 is an extension of Fig. 3 of the Letter, presenting the in�ux pro�les of twelve galaxies, all with
Mv ' 1012M� at z = 2.5, chosen at random from the MareNostrum simulation. The pro�les extend from
r=15 kpc, the disc vicinity, to r=160 kpc, almost twice the virial radius of Rv'90 kpc. Six galaxies turn out to
show clumps leading to mergers of µ>0.1, and the rest show only smaller clumps in smoother �ows. One can
read from the relative width of the clumps in the �gure that the duty cycle for µ>0.1 clumps in each individual
galaxy is less than 0.1. By comparing the areas above the individual pro�les with the average for galaxies of
that mass and redshift, one can see that on average only about half the stream mass is in clumps.

Fig. 12 shows the probability distribution of Ṁ for the �ducial galaxies of Mv =M0 = 1012M� at z = 2.5.
It has been derived as explained in the Methods section of the Letter, by uniform sampling of the �ux pro�les
shown in Fig. 11. This P0(Ṁ |M0) is used in Eq. 4 of the Letter to derive the conditional probability for other
halo masses, P (Ṁ |Mv), which is then used in Eq. 2 to derive the abundance of galaxies with a given Ṁ . The
tail or the distribution at Ṁ > 200M� yr−1 is dominated by µ > 0.1 mergers, while the main body of the
distribution is mostly due to smoother streams. Recall that the average is about 100M� yr−1.
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Figure 12: The conditional probability distribution P (Ṁ |Mv) for the �ducial caseMv=M0 =1012M� at z=2.5.

4 The abundance as a function of mass and redshift

As described in Methods, we derived the conditional probability distribution P (Ṁ |Mv) from the simulated
haloes at z = 2.5 for a �ducial halo mass Mv = 1012M�, shown in Fig. 12. We then used the scaling of eq. 1
of the Letter to obtain an estimate for other halo masses. Preliminary analysis of more massive haloes at that
redshift (T. Goerdt et al., in preparation) indicates that the actual �ux starts dropping below the adopted
estimate in haloes more massive thanMstream∼1013M�. For a �rst crude estimate of the e�ect this might have
on our results shown in Fig. 4 of the Letter, we re-compute the comoving number density n(>Ṁ) as described
in the main text, but now limit the halo mass range that contributes to Ṁ by an upper cuto� at Mstream.
Fig. 13 shows the results for di�erent values of Mstream. We see that a cuto� at Mstream=1013M� makes only
a small di�erence to n(>Ṁ), by a factor of ∼ 2 at the high-Ṁ regime corresponding to the bright SMGs. Thus,
the decay of cold streams above 1013M� is not expected to alter our results in a qualitative way. On the other
hand, we learn from the fact that the symbols lie far above the lower curve that the high-SFR objects at these
redshifts are dominated by central galaxies in haloes more massive than 1012M�. In fact, we �nd that some of
the SFGs and many of the bright SMGs are associated with haloes more massive than 3× 1012M�.

Fig. 13 also shows the predicted abundance n(> Ṁ) at di�erent redshifts, now applying no �nite upper
mass cuto� Mstream. This is justi�ed for z > 2 based on our preliminary investigation of the MareNostrum
galaxies at di�erent redshifts and masses and consistent with the conjecture of DB068. We see that the comoving
abundance of galaxies with Ṁ ∼150M� yr−1 is predicted to vary by a factor less than two between z= 2 and
4. By z∼7 that abundance drops by an order of magnitude. The variation with redshift is somewhat larger at
the high-�ux end, toward Ṁ ∼ 103M� yr−1. At lower redshifts, the contribution of streams in massive haloes
above Mshock is most likely overestimated by this procedure, so a similar analysis in the low-z regime should
impose an upper limit at Mstream'Mshock.
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Figure 13: Comoving number density of galaxies with total gas in�ow rate higher than Ṁ at z = 2.2, as in
Fig. 4 of the main body of the Letter. The numbers on the right refer to logMv of haloes with the corresponding
abundance. Left: Dependence on the maximum halo mass that contributes to cold streams, for Mstream =
1012, 1012.5, 1013, 1014M�. Right: Variation with redshift, z=2, 3, 4, 5, 7.
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