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Classical shear cracks drive the onset of dry frictional
motion
Ilya Svetlizky1 & Jay Fineberg1

Frictional processes entail the rupture1,2 of the ensemble of discrete
contacts defining a frictional interface3,4. There are a variety of views
on how best to describe the onset of dry frictional motion. These
range from modelling friction with a single degree of freedom,
a ‘friction coefficient’3,5, to theoretical treatments using dynamic
fracture5–8 to account for spatial and temporal dynamics along the
interface. We investigated the onset of dry frictional motion by per-
forming simultaneous high-speed measurements of the real contact
area and the strain fields in the region surrounding propagating
rupture tips within the dry (nominally flat) rough interfaces formed
by brittle polymer blocks. Here we show that the transition from
‘static’ to ‘dynamic’ friction is quantitatively described by classical
singular solutions for the motion of a rapid shear crack5,9–13. We find
that these singular solutions, originally derived to describe brittle
fracture, are in excellent agreement with the experiments for slow
propagation, whereas some significant discrepancies arise as the
rupture velocity approaches the Rayleigh wave speed. In addition,
the energy dissipated in the fracture of the contacts remains nearly
constant throughout the entire range in which the rupture velocity
is less than the Rayleigh wave speed, whereas the size of the dissip-
ative zone undergoes a Lorentz-like contraction as the rupture velo-
city approaches the Rayleigh wave speed. This coupling between
friction and fracture is critical to our fundamental understanding
of frictional motion and related processes, such as earthquake
dynamics.

A dry frictional interface is composed of an ensemble of discrete
contacts whose total area (the real contact area, A) is orders of magnitude
smaller than the nominal contact area4. Local motion (slip) is initiated
when contacts are broken via propagating ruptures1. Characterization
of the dynamic fields that drive these ruptures and how they couple to
the dissipative mechanisms on the interface are therefore critical to
our fundamental understanding of frictional motion. These fields also
describe the elastic radiation emitted by the rupture whose form is
important to interpretation of near-field seismic signals radiated by
earthquakes14,15.

Linear elastic fracture mechanics10 (LEFM) is the fundamental theor-
etical framework describing brittle fracture. LEFM predicts a universal
singular form of stresses (and strains) in the vicinity of a crack tip. These
singular stresses are only regularized by dissipative10–13 processes that take
place as this singular limit is approached. Shear-driven (mode II) fracture
is generally considered to be impossible in bulk isotropic materials9

because it is believed that a crack will rotate under imposed shear so
as to fracture under pure tension. An exception to this may occur for
highly anisotropic conditions, as in the case of the weak interface plane
that defines a frictional interface11,16–18. Examples of such systems range
from natural faults to single adhesive contacts. Although both contact
separation8 and earthquake dynamics5,7,12,13,15 have long been theoret-
ically described using fracture mechanics, there has been no direct
experimental evidence that quantitative predictions of LEFM, such as
the universal singular forms of stresses and material motion at tips of
rapidly moving ruptures, really occur in frictional failure. We will dem-
onstrate that, in the brittle material studied, frictional ruptures along dry

and (nominally flat) rough interfaces can indeed be quantitatively
described by LEFM.

We study the structure of the elastic fields driving ruptures that prop-
agate within an interface formed between two initially flat poly(methyl-
methacrylate) blocks, which were uniformly roughened to a 3-mm r.m.s.
roughness. The blocks are pressed together with an externally imposed
normal force, FN 5 5,500 N (5 MPa of nominal pressure). Once FN is
applied, a shear force, FS, is quasi-statically incremented until stick-slip
motion initiates (Fig. 1a). The complete two-dimensional strain tensor,
eij(t), is measured at 19 locations along and ,3.5 mm above the interface
at 1,000,000 samples per second (Fig. 1a). We simultaneously measure
the displacement parallel to the interface, ux, at specific locations adja-
cent to the strain gages. At the same time, we measure the real contact
area, A(x,t), with high spatial resolution at 580,000 frames per second
(see Methods). We focus on the short time intervals bracketing slip
initiation.
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Figure 1 | Experimental system and slow rupture scaling. a, 19 Rosette strain
gauges (blue squares) are mounted 3.5 mm above the frictional interface. The
three strain components were measured simultaneously every 1ms. b, The
evolution of real contact area, A(x,t) (normalized at nucleation time, t 5 0),
along the 200-mm quasi-one-dimensional interface of a slow rupture front,
which nucleated at x 5 0 and accelerated to 0.3CR. c, A(t) (top) and _ux(t)
(bottom) (ux is the x component of the displacement field measured 3.5 mm
above the interface) at locations x1 (blue dots) and x2 (red dots) denoted in b.
d, Collapse of both A(x,t) (top) and _ux=Cf (bottom) is obtained by plotting the
data as a function of the distance x 2 xtip when the rupture tip, xtip, arrives at x1

(blue, at time t1) and x2 (red, at time t2). Cf is the local front velocity. A(x,ti) was
measured directly whereas the spatially dependent _ux(x) was constructed from
the time series _ux(t) using _ux(x,t)~ _ux(x{Cf t). Variations of Cf (x) are
accounted for as described in Methods. During the front’s passage, { _ux=Cf

corresponds to changes of the strain component parallel to the interface, Dexx.
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We define the location of a rupture front, xtip, as the point where the
initial value of A(x,t) is reduced by 3%. xtip both represents the fracture
of contacts and signals the initiation of local slip2. For a steadily moving
front, eij(x,t) 5 eij(x 2 Cft), where Cf is the rupture front velocity. When
Cf varies slowly, eij(x,t) 5 eij(x 2 #Cf dt), enabling conversion from tem-
poral eij(t) to spatial measurements eij(x 2 xtip), using Cf(t) obtained
from A(x,t) measurements (see Methods). For each front passage we
define strain tensor variations, Deij, by subtracting the initial strains
from exx and eyy and residual strain from exy.

We present a typical measurement of A(x,t) for a slow, but accelerat-
ing, rupture front in Fig. 1b. Cf is well below the Rayleigh wave speed,
CR (,1,255 m s21) over the entire duration of this experiment. As Cf

increases, the timescale of the weakening process (drop of A(x,t)) short-
ens (Fig. 1c, top) and material element velocities, _ux(u is the displace-
ment field), increase significantly (Fig. 1c, bottom). In contrast to A(x,t),
which is an interfacial property, _ux constitutes a lower bound of the slip
velocity at the interface, because it is measured 3.5 mm from the inter-
face (see Methods). When plotted in the reference frame of the moving
rupture tip, x 2 xtip, the A(x,t) collapse (Fig. 1d, top) to a single curve.
Furthermore, _ux(x), when scaled by Cf, collapses to a well-defined func-
tional form (Fig. 1d, bottom) corresponding to Dexx~{ _ux(x)=Cf (Ex-
tended Data Fig. 2). Note that contacts are broken for x 2 xtip , 0 and
unbroken when x 2 xtip . 0.

Figure 2a demonstrates that for slow ruptures (,0.01CR , Cf ,

,0.3CR) the measured variations of each strain tensor component, Deij,
collapse to well-defined functional forms. This breaks down as Cf in-
creases; all Deij amplitudes grow significantly while strain oscillations

are strongly amplified. Typical measurements of Deij for high velocities
(0.96CR) are presented in Fig. 2b.

We now compare the measured strains, eij, to the universal asymp-
totic solutions for mode II cracks predicted by LEFM. In our experi-
ment, external tensile stresses (s0

xx,s0
yy) exist and the crack faces are

subjected to a residual frictional shear stress, tr, so that the stresses can

be written as sij~Dsijz
s0

xx tr

tr s0
yy

� �
. Owing to the linearity of the

governing equations, the stress field variations, Dsij, can be mapped11

to the stress-free conditions that define the mode II crack problem.
Therefore, near the rupture tip, Dsij have the singular form:

Dsij~
KIIffiffiffiffiffiffiffi
2pr
p SII

ij (h,Cf ) ð1Þ

where (r,h) are polar coordinates relative to the crack tip, SII
ij (h,Cf ) is

a known universal function and KII is a scalar coefficient known as the
stress intensity factor10. Dsij are linearly related to the measured strain
variations Deij via the elastic moduli and the use of plane strain bound-
ary conditions (see Methods). Because the strain gauges are displaced
from the interface, each Deij(x) measurement involves both radial
(50 mm . r . 3.5 mm) and angular (0 , h ,p) variations (see Fig. 2c).

In Fig. 2a we show that for slow ruptures all of the measured strain
componentsDeij agree well with the strains corresponding to equation
(1) (black lines), where the only free parameter is KII. The apparent
data collapse in Fig. 2a occurs because these LEFM solutions for
Cf , 0.4CR are indistinguishable. KII is related to G, the energy flux
per unit area (the energy release rate), via10:

G~
(1{n2)

E
fII(Cf )K

2
II ð2Þ

where fII(Cf ) is a known universal function that is fairly constant for
low velocities and diverges as Cf R CR. When G is balanced by the
fracture energy C (the energy dissipated per unit area), equation (2)
uniquely relates KII for each Cf to C. Using equation (1) to measure KII,
the energy balance condition (G 5 C ) therefore yields a single value
C < 1.1 6 0.3 J m22 for the LEFM predictions presented in Fig. 2a over
0.01CR , Cf , ,0.3CR.

A typical example of rupture at high Cf (Fig. 2b) demonstrates that
for the same constant value of C most characteristic features of Deij

observed at higher rupture velocities are also well described by equa-
tion (1). For example, the violent high-amplitude strain oscillations
that occur when the rupture tip passes beneath the measurement point
(Fig. 2c) are due to the singular nature of SII

ij (h,Cf ). Figure 2b, top,
however, demonstrates that equation (1) clearly fails to describe Dexy

for x 2 xtip . 0.
To systematically study how Deij varies over 0.01 , Cf , 0.99CR, we

characterizeDeij variations using dexx, deyy, dexy and deOsc
xy , as defined in

the insets within Fig. 3. With the only input being the constant value of
C measured at low velocities, we see that, for all Cf, the theory quanti-
tatively describes both the strain variations dexx and deyy (Fig. 3a) and
the violent high-amplitude strain oscillations, deOsc

xy , (Fig. 3b, top)
evident in the example in Fig. 2b.

Although dexy is also well-described by the theory for Cf/CR , 0.4,
we find (Fig. 3b, bottom) that a systematic failure of the classic univer-
sal form predicted by LEFM (equation (1)) occurs, as seen in Fig. 2b,
top. These deviations are first observed at Cf < 0.7CR and increase
dramatically as Cf R CR; experiments reveal a sharp and systematic
increase of dexy, whereas the theory predicts vanishingly small values as
Cf R CR. Note that for Cf/CR , 0.4 the apparent collapse of all strain
components (Fig. 2a) is a natural consequence of the theory.

We now consider the value of C. Whereas the bulk fracture energy,
Cbulk 5 2,000 J m22, is a material property of poly(methylmethacry-
late), the interface value, C, is directly related to A(x,t), which is deter-
mined by FN. It is interesting that the measured value C 5 1.1 J m22 for
our experimental conditions is approximately Cbulk when the sparse-
ness of the contacts4 (A=Anominal) is accounted for (see Methods).
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Figure 2 | The functional form of the elastic strains. a, Measurements of
strain tensor variations, Deij, after subtracting the initial strain from exx and eyy

and residual strain from exy. Colours represent different slow front velocities
(0.05CR , Cf , 0.24CR; see key). Corresponding LEFM predictions (equation
(1)) for plane strain boundary conditions are plotted in black (Cf 5 0.2CR). The
fracture energy C < 1.1 J m22 is the sole free parameter. b, The mean value of
Deij for three typical measurements at Cf < 0.96CR. Equation (1) is plotted
(black line) for the same C as in a, and still describes the larger amplitudes and
strong oscillations of rapidly propagating ruptures. c, Shear strain variations,
Dexy, surrounding the rupture tip predicted by equation (1) for Cf 5 0.96CR.
The blue square denotes the strain gauge location relative to the approaching
rupture tip. Note the strong angular dependence that drives the violent
oscillations in b.
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This suggests that significant plastic deformation (the major contri-
bution to Cbulk) may also take place within the contacting asperities, as
surmised in ref. 2.

Although LEFM enables us to measure C, it does not address the
details of the dissipative region. As A(x,t) is measured on the interface,
it characterizes cohesive zone (interface weakening region) properties.
Figure 4a reveals that the contact area reduction,DA, increases with Cf,
suggesting that corrections to our assumption of constant C may be
required at high velocities. C could indeed vary significantly in the
singular (Cf < CR) region of Deij while still being consistent with the
data, as when approaching the singularity our finite (610 m s21) mea-
surement accuracy of Cf and CR limits our ability to resolve C.

Although the non-monotonic behaviour of A with x 2 xtip suggests
interesting dynamics as Cf R CR, for reasons of simplicity we char-
acterize the scale over which A(x,t) is reduced by single length scale, Xc

(Fig. 4a, bottom). We suggest that Xc provides a direct measure of the
cohesive zone size. Figure 4b demonstrates that Xc is not constant, but
systematically contracts with increasing Cf. As Cf R CR, Xc appears to

approach zero. Fracture mechanics predicts such an effective ‘Lorentz
contraction’ of all length scales in the propagation direction5,10,12. In
particular, we expect Xc 5 X0

c /fII(Cf), where fII(Cf) is the universal func-
tion (equation (2)) relating KII to G, which diverges at CR and X0

c 5

Xc(Cf 5 0). Figure 4b (black line) demonstrates that this general result
of elastodynamic theory describes the measurements well.

Figure 4b indicates that in the slow rupture regime, strain measure-
ments were performed at scales of ,Xc, which characterizes the scale
of the cohesive zone. The universal form, predicted by equation (1), is
expected to describe the elastic fields at distances far from the cohesive
zone, but still small compared to other dimensions of the system11. The
good agreement with LEFM (Fig. 2a) is, nevertheless, consistent (see
Extended Data Fig. 4) with simple cohesive zone models coupled to
LEFM11.

In this light, as Xc contracts by nearly an order of magnitude as Cf R CR,
we should expect equation (1) to become increasingly more accurate in
precisely the velocity regime where it performs badly (compare dexy in
Fig. 3b, bottom). dexy(Cf), as Fig. 3b, inset, demonstrates, correlates with
the initially imposed shear stresses ahead of the front. These initial stresses
have been shown to govern rupture velocity selection19–21. Higher order
contributions to this LEFM solution (see Extended Data Fig. 5) do not
correct these discrepancies. As ruptures where Cf R CR are commonplace
in both frictional failure and earthquake dynamics, understanding this
failure of the classical LEFM solution is important; the form of the singular
stress fields surrounding rapid ruptures has significant ramifications for
earthquake branching and fault bifurcation22.

Knowledge of C and Xc enables us to estimate elusive but long-
sought13,16–18 dynamical quantities at the interface that include peak
stresses and slip velocities. The contraction of Xc tells us (see Methods)
that quantities measured off-interface increasingly deviate from their
interface values as Cf R CR; for example, the peak value (strain 5

0.8 3 1023) of dexx (5{ _ux=Cf ), which corresponds to _ux< 1 m s21,
can be an order of magnitude higher on the interface18.

Whereas we have demonstrated that equations (1) and (2) provide
an excellent description of the fields that drive frictional motion in a
specific material under dry conditions, we expect the results to be
generally valid as long as the assumptions underpinning the LEFM
solution are obeyed. These are: (1) the dissipative scale is small com-
pared to the size of the elastic region in which the stress singularity
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develops; and (2) the residual stress, tr, remains fairly constant. So long
as the dissipative region is sufficiently confined, its precise nature (for
example, whether granular, powdered or consisting of contacting aspe-
rities) only contributes to the value of C(Cf). This description may have
to be adapted for lubricated boundaries where tr may be strongly slip-
rate dependent6, or even break down within highly damaged regions
whose spatial extent is large compared to the surrounding elastic
material.

The measurements in Figs 2 and 3 may therefore provide a precise
quantitative framework for describing frictional motion along rough,
nominally flat, surfaces. Such high-speed strain measurements14 are
rarely performed adjacent to natural faults. It is interesting to consider
if the universal description of strains observed here is also valid during
earthquakes. If so, high-speed single-point measurements of Deij adja-
cent to faults could provide sensitive measurements of both earthquake
velocities and C. These measurements could reveal rupture-velocity
dependence of both intrinsic values of C and values resulting from
near-fault damage. These measurements could also clearly differentiate
between different types of fracture modes such as supershear15 or slow
ruptures, which are increasingly observed in both experiments1,23–25 and
natural faults26. Our results indicate that the structure of slow ruptures is
characterized by LEFM. The mechanisms governing their appearance
are, however, not yet clear and may depend on properties of the under-
lying friction law (for example, a velocity strengthening range)27,28.

Let us now consider the threshold for frictional failure. Recent stud-
ies14,29,30 have shown that the static friction coefficient is not a material
property, but depends on the applied loading. The failure of bulk ma-
terials is described by the Griffith condition—the critical energy release
rate, Gcrit, being equal to C. We have shown that interface rupture pro-
pagation is described by, essentially, the same framework. This suggests
that an analogous ‘Griffith’ condition may exist for the onset of rupture
propagation for a frictional interface, and by incorporating applied
loading conditions it may be possible to calculate Gcrit.

METHODS SUMMARY
The Methods section contains additional material about sample preparation and
characterization together with detailed descriptions of the loading system, real
contact area measurements, slip and strain measurements. Also presented is a
comparison between direct measurements of the material velocities and derived
values obtained using the relation dexx 5 { _ux=Cf . More detailed descriptions of
the analysis techniques (comparison of LEFM to measured strains, converting
temporal to spatial measurements) used in the manuscript are also presented.
Included is additional information that demonstrates that both higher-order
(non-singular) strain field terms and the existence of a (simple) cohesive zone
of size Xc have negligible effects on the comparisons of equation (1) to the data
measured in our experiments. We additionally include a brief section that shows
how estimates of cohesive zone properties (peak stress, interface slip velocity, and
weakening distance on the interface) can be obtained from our measurements of C
and Xc. We also describe how we relate the measured value of C to measured bulk
values, Cbulk, of the fracture energy.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Sample construction. Our experiments were conducted using poly(methylmetha-
crylate) (PMMA) blocks of dimensions 200 mm 3 100 mm 3 5.5 mm (top block)
and 290 mm3 28 mm3 30 mm (bottom block) in the x, y and z direction, respect-
ively (see Fig. 1a). Material shear, CS, and longitudinal, CL, wave speeds were obtained
by measuring the time of flight of ultrasonic pulses, yielding CS 5 1,345 6 10 m s21

and CL 5 2,700 6 10 m s21. These provide CR 5 1,255 6 10 m s21, where CR is the
Rayleigh wave speed. The values yield dynamic values for the Poisson ratio of n < 1/3
and Young’s modulus of E 5 5.65 GPa. Note the value of E is significantly different
from the static value of E 5 3 GPa. This difference is due to the viscoelastic behaviour
of PMMA31. The contact face of the top block was diamond-machined to optical
flatness. The bottom block’s contact face was carefully polished first by 15-mm and
later by smoother 9-mm diamond standard lapping film, yielding a 3-mm r.m.s. sur-
face roughness.
Loading system. While the loading system was slightly modified and fitted for the
purposes of the current research, the experimental system is described in detail
elsewhere19,30. The top block is clamped at its top edge, while the bottom block is
mounted on a low-friction linear translational stage (Fig. 1a). External normal load,
FN, was fixed at the beginning of an experiment by pressing the blocks together in
the y direction. Subsequently, external shear force, FS, was quasi-statically (40 N s21)
applied (starting from FS 5 0) to the bottom block in the negative x direction via
a load cell of stiffness 107 N m21. Generally, this procedure results in an induced
torque and consequently, strong gradients of normal stresses at the interface (see
figure 1 in refs 19, 30). To partially compensate for this effect we varied the loading
conditions by slightly tilting the top block before applying FN.
Real contact area measurements. Changes in the real contact area along the entire
interface were measured by an optical method based on total internal reflection.
Basic principles are presented in detail elsewhere32,33. A sheet of light, incident on
the frictional interface at an angle well beyond the critical angle for total internal
reflection, is reflected everywhere except at contact points (Extended Data Fig. 1a).
This yields an instantaneous transmitted light intensity proportional to A over
the entire (x 3 z) 200 3 5.5 mm interface. The transmitted light is continuously
imaged (at a spatial resolution of 1,280 3 8 pixels) at 580,000 frames per second
using a high speed camera, Phantom v710. Data acquisition is continuous. The
data are temporarily stored in a circular buffer large enough to acquire 7 ms of data
both before and after each event. Storage of the data for each dynamic slip event is
triggered by a sensitive acoustic sensor that is coupled to the top plate of the system.

The frictional interface is quasi-1D, as its width (z direction), 5.5 mm, is much
smaller than any other dimensions of the block. The simultaneous measurements
of A(x,t) along the entire 1D interface is obtained by integration of the acquired
images over the 8 pixels in the z direction.

We use a high power LED (CBT-90) as our source of light. This is in contrast
to refs 32 and 33, where a laser sheet was used. One main advantage of a non-
coherent light source is the absence of interference patterns and, therefore, a higher
signal to noise ratio. Moreover, PMMA is a photo-elastic material, and non-
polarized light neutralizes photoelastic effects that could affect the intensity of
the transmitted light.
Strain measurements. We use miniature Vishay 015RJ rosette strain gauges for
local measurements of a 2D strain tensor. 19 such strain gages are mounted along
and ,3.5 mm above the frictional interface, on one side of the upper block (Fig. 1a).
All strain signals (57 channels) are amplified (gain ,400, ,1 MHz bandwidth) and
simultaneously acquired to 14 bit accuracy by an ACQ132 digitizer (D-tAcq Solu-
tions Ltd) which simultaneously acquires all strain signals at a 1 MHz rate. Acqui-
sition is synchronized with the contact area measurements.

Dimensions of the strain gauges are presented in Extended Data Fig. 1b. The
active size of each strain component is 0.34 3 0.38 mm. The measured strain
components, e1, e2, e3, are later converted to exy, exx, eyy by means of simple linear
transformations:

eyy~e1

exy~1=2(e3{e2)

exx~e3ze2{e1

ð3Þ

Direct displacement, ux, measurements:. Two Philtec D20 optical displacement
sensors were used to monitor the local motion in the x direction, ux, at different
locations along the top block (Extended Data Fig. 1c, for clarity only one is shown).
The original operation method of the Philtec sensor is based on measuring the
reflectance of the transmitted light from a mirror target moving in a direction
parallel to the light beam. As we need to measure displacement, ux, perpendicular
to the sensor’s axis (Extended Data Fig. 1c, right), we used the sensor in a different
way—making use of the fact that the sensor is, in essence, a reflectance sensor.

Thus, if a larger area of the light spot is incident on the reflective target, a larger
signal is measured. As the target moves (in the x direction), different fractions of
the spot area are reflected and the measured signal varies with ux (Extended Data
Fig. 1b, left). This signal is calibrated, and a ,0.1mm resolution at an acquisition
rate of 1 MHz is obtained. The sub-millimetre size of these sensors allows us to
therefore obtain local measurements at extremely high precision and rapid rates.
Local material velocity, _ux, measurements:. Local material velocity, _ux , is deter-
mined by the numerical time derivative of the displacement, ux, measured by the
displacement sensor. Measurements of ux, however, require delicate mounting
and calibration of the displacement sensor. It is, therefore, extremely difficult to
mount several sensors along the interface. In what follows, a more easily accessible
technique is presented.

If the rupture propagation velocity, Cf, varies adiabatically, we can assume

ux(x,t) 5 ux(x 2 Cf t). As exx~
Lux

Lx
, we can obtain the local material velocity via

Lux

Lt
~{Cf exx (for convenience, in the text we denote

Lux

Lt
by _ux). Therefore, the

measured exx combined with measurement of Cf can be used to measure the mater-
ial velocities at each strain gauge site. As we measure exx in 19 locations along the
interface and Cf is extracted from the instantaneous location of the rupture tip
(measurements of A(x,t)), this technique enables a relatively dense measurement
of _ux along the interface without any additional preparations.

This technique was checked explicitly in several experiments, when displace-
ment sensors were mounted slightly below one of the strain gauges and simulta-
neously measured. Extended Data Fig. 2 shows typical experiments where this
technique is compared with direct displacement measurements. As the figure
shows, the agreement between the two techniques is often within our measure-
ment error.
Converting temporal to spatial measurements. The distance between adjacent
strain gauges (,1 cm) is too large to provide good resolution of the spatial variation
of the rapidly propagating fronts (Fig. 2b). We implement a high temporal resolu-
tion (1ms) to overcome this difficulty. We assume that locally, the rupture is quasi-
steady, eij(x,t) 5 eij(x 2 Cf). Therefore, temporal measurements of eij(x 5 x0,t) (x0 is
the position of the strain gauge) and Cf, together with the transformation t R 2tCf,
allow us to dramatically increase our spatial resolution. Extended Data Fig. 2 demon-
strates typical examples where this quasi-steady assumption was verified. We com-
pensated for slow spatial variations of Cf(x) by using eij(x,t) 5 eij(x 2 #Cfdt) instead of
eij(x,t) 5 eij(x 2 Cf), where Cf(t) was obtained from A(x,t) measurements.
Comparing LEFM to measured strains. Strain gauge finite dimensions. Both the
finite dimensions (Extended Data Fig. 1b) of the strain gauges and the temporal
resolution of the acquisition system should be taken into account for proper
interpretation of the measured strain signals of rapidly propagating ruptures. In
order to accurately compare theory and measurements we convert the strain
components exy, exx, eyy, predicted by LEFM, to e1, e2, e3 (for orientation of the
measured strain components, see Extended Data Fig. 1b) by the inverse trans-
formation of equation (3). After e1, e2, e3 were spatially averaged in accordance
with both the geometry of the strain gauge components and the temporal differ-
ences due to the finite distances between the components, theoretical values cor-
responding to the measured eij were obtained. These were the basis of the
comparisons performed in Figs 2 and 3.

Boundary conditions. The universal LEFM solution is given10 for both plane
stress (szz 5 0) and plane strain (ezz 5 0) boundary conditions. Plane stress bound-
ary conditions are considered to be relevant when a thin plate with traction-free
faces is considered. This assumption should be violated close to the frictional
interface where the material is pinned—and therefore not allowed to expand freely
in z direction. Moreover, when short wavelength (compared to the width of the
sample) signals are considered, plane strain boundary conditions are generally
more appropriate. This might be relevant for rapid ruptures.

In our experiments we expect that some mixture of the two boundary conditions
might take place. Extended Data Fig. 3 demonstrates that while both solutions have
similar characteristic features some differences are apparent; measurements of exx

are slightly better described by the plane stress solution, whereas measurements of
eyy are significantly better described by plane strain.

These considerations, however, are beyond the scope of the current work and in
the main text we compare our measurements with the solution dictated by plane
strain boundary conditions alone.

LEFM coupled to simple cohesive zone model. The universal square-root sin-
gularity, predicted by LEFM, must be regularized by dissipative processes taking
place in the vicinity of the crack tip. Therefore, it should be interpreted as ‘inter-
mediate asymptotics’; the universal functional form is expected to describe the
elastic fields at distances far from the interface weakening region, Xc, but still small
compared to other dimensions of the system11. This assumption is known as ‘small
scale yielding’. For high Cf, Xc is sufficiently small to have a clear separation of
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scales. In the slow rupture regime the measurements were performed at a height
h 5 3.5 mm above the interface, which is a scale that is comparable to Xc (,2.5 mm
at low velocities). The measured strains, however, are surprisingly well-described
by the theory. This observation is perfectly compatible with simple cohesive zone
models11,22, as we demonstrate in Extended Data Fig. 4.

The effect of higher order terms. The complete LEFM stress field consists of a
singular, r{1=2, term together with additional (non-universal) terms of the form
r1=2, r3=2, and so on, which vanish at the tip but may be significant at distances
away from the crack tip.

Following the general solution procedure described in refs 10 or 22 we can
derive the full angular dependence of these contributions to the stress field:

sxy r,hð Þ~Cn 2prð Þ
n
2

1
D vð Þ 4adasc

n
2
d cos

nhd

2

� �
{ 1za2

s

� �2
c

n
2
s cos

nhs

2

� �� �

syy r,hð Þ~{Cn 2prð Þ
n
2

2as 1za2
s

� �
D vð Þ c

n
2
d sin

nhd

2

� �
{c

n
2
s sin

nhs

2
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where the functions as,ad ,cs,cd ,hs,hd ,D are defined in ref. 10, n 5 21,1,3,5...(odd
terms are considered here) and Cn are numerical constants. For n 5 21 we recon-
struct the universal form with C-1 5 KII. Generally, for n . 21 the constants Cn

are not universal and cannot be easily determined.
We now demonstrate that these terms will not resolve the discrepancy, observed

for high Cf, in Dexy between the singular LEFM term and the measured signal, as
presented in Fig. 3b, bottom. For simplicity, we consider the contribution of the
terms n 5 1,3. We attempt to resolve the discrepancies inDexy in the range 0 , x 2

xtip by varying C1 and C3 under the constraint that we can still reasonably describe
Dexx and Deyy. As Extended Data Fig. 5 demonstrates, these terms are insufficient
to resolve the Dexy discrepancies in the range 0 , x 2 xtip , 25 mm while still de-
manding consistency with the measured data for jx 2 xtipj. 25 mm. Assuming that
the next terms (n . 3) will dominate at even larger distance, we conclude that, within
this framework, the observed discrepancy is not resolved.
Estimating cohesive zone properties. Our measured values of C and Xc can provide
rough estimates of cohesive zone properties. Let us assume a slip weakening model11,12

in which the stress singularity predicted by LEFM is regularized by a peak shear stress,
tp, that degrades to a residual strength, tr, over a slip distance, dc. For simplicity, the
weakening within the cohesive zone is assumed to be linear. It is then found that for

slow ruptures, X0
c ~

9p
32

|
K2

II

(tp{tr)
2, where KII is calculated from C 5 [(1 2 n2)/E]KII

2

(ref. 11). Using the values C and X0
c from the text and the dynamic values of the

Poisson ratio and Young’s modulus, we find tp 2 tr < 1.6 6 0.4 MPa. For the
conditions applied in the current experiments, tr < 3.7 6 0.4 MPa. This leads to
an estimation of tp < 5.3 6 0.8 MPa. The linear slip weakening model also esti-
mates that C 5 1/2(tp 2 tr)dc. This yields dc < 1.4mm, which is consistent with
the asperity size of our rough interface.

Using this value of dc, we can estimate, using simple scaling arguments27,34, the
maximal slip velocity vmax < Cf dc/Xc. Thus, the contraction of Xc in Fig. 4c indicates
strong growth of vmax, which was shown in recent numerical simulations34. Using
_ux~{Cf exx we obtain, for example in Fig. 2b at Cf 5 0.96CR, a maximal value of
_ux < 0.3 m s21 measured 3.5 mm above the interface. At the interface, for the same
Cf, the model then predicts 7 times larger velocity ( _ux < 2 m s21). Following this
procedure, our maximal measured velocity of ,1 m s21 (Fig. 3a) corresponds to at
least _ux< 10 m s21 at the interface.

This discussion suggests that caution should be used when interpreting mea-
surements at a finite distance from the interface as representative of processes at
the interface.
Considering the value of C. For our experimental conditions, A is approximately
0.5% of the nominal contact area4. For different applied normal stresses this value
will change. In addition, A is typically reduced (Fig. 4a) by about 20% during the
rupture process. As a result, the value of C < 1.1 J m22 results from a reduction
of approximately 0.1% of the nominal fracture area. C therefore corresponds to a
bulk fracture energy (a 100% reduction of the nominal fracture energy) of about
CBulk < 1,100 J m22. This value is close to the measured value of CBulk for mode I
fracture experiments in PMMA35 and had been previously estimated for frictional
dissipation using a thermal argument2.

31. Read, B. E. & Duncan, J. C. Measurement of dynamic properties of polymeric
glasses for different modes of deformation. Polym. Test. 2, 135–150 (1981).

32. Rubinstein, S. M., Shay, M., Cohen, G. & Fineberg, J. Crack-like processes
governing the onset of frictional slip. Int. J. Fract. 140, 201–212 (2006).

33. Rubinstein, S. M., Cohen, G. & Fineberg, J. Visualizing stick-slip: experimental
observations of processes governing the nucleation of frictional sliding. J. Phys.
D 42, 214016 (2009).

34. Gabriel, A. A., Ampuero, J. P., Dalguer, L. A. & Mai, P. M. Source properties of
dynamic rupturepulseswithoff-faultplasticity. J.Geophys. Res.118, 4117–4126
(2013).

35. Sharon, E., Gross,S. P.&Fineberg, J. Energydissipation indynamic fracture. Phys.
Rev. Lett. 76, 2117–2120 (1996).
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Extended Data Figure 1 | Experimental techniques. a, A method based on
total internal reflection measures instantaneous changes in the real contact
area, A(x,t), along the entire interface. A sheet of light incident on the frictional
interface is totally reflected everywhere except at contact points. Top block,
pink; bottom block, blue. b, Geometry and dimensions (in mm) of a single
rosette strain gauge. The black rectangles represent the active area of the
measuring components, e1, e2 and e3. Yellow arrows represent the direction of

the measured strains. c, By placing a reflective displacement sensor at the edge
of a reflecting film (left), the change in the reflected signal is a monotonic
function of the displacement of the film. The reflecting area was calibrated
to obtain high resolution measurements of the motion of the strip edge in
the x direction (right). a–c, Measurements described above were acquired
continuously. A sensitive acoustic sensor, mounted on the top block, triggered
storage of all data bracketing every slip event.
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Extended Data Figure 2 | Comparing different techniques for measuring
u
:

x. In several experiments, direct displacement measurements were performed
slightly below the strain gauge. The numerical time derivative of the
corresponding signal is presented in blue. We reconstruct _ux by an alternative
method (green) that is based on measuring Cf, Dexx and the assumptions

presented in the text. a, b, Comparisons of _ux by using both methods for two
typical examples at Cf 5 0.3CR (a) and Cf 5 0.9CR (b) show good agreement
between the measurements. x axes are the times relative to the time, ttip, when
the rupture fronts passed each measurement location.
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Extended Data Figure 3 | LEFM solution for plane strain and plane stress
boundary conditions. a, b, Strain measurements of slow (a) and rapid
(b) ruptures as presented in Fig. 2b. The top (bottom) panels are the strain
components exx (eyy) relative to their initial values immediately prior to rupture.
The data presented are coloured as noted in the keys in the upper panel of a and

b. The solution for plane strain boundary conditions is shown in black. The
solution for plane stress boundary conditions is shown in yellow. We see that
plane strain conditions, as might be enforced by frictional pinning at the
interface, provide a better fit to the data.
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Extended Data Figure 4 | Comparing LEFM to linear cohesive zone model
predictions. Strain measurements of a slow rupture as presented in Fig. 2a.
Top, the strain component exy, relative to the residual strain after the rupture
passage. The centre (bottom) panels are the strain components exx (eyy) relative
to their initial values immediately prior to rupture. The data presented are
coloured as noted in the key in the upper panel. Black solid line, the universal
LEFM solution at 3.5 mm above the interface. Yellow dashed line, prediction of
LEFM coupled to a linear slip weakening model11,22 for Xc 5 2.5 mm and using
the same value of C as used in the LEFM solution 3.5 mm above the interface. In
the slow rupture regime, for h/Xc < 1 (h is distance of the strain gauge above the
interface) linear slip weakening model is indistinguishable from the singular
LEFM solution.
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Extended Data Figure 5 | Contributions of higher-order terms to LEFM.
Strain measurements of a rapid rupture as presented in Fig. 2b. Top, the strain
component exy, relative to the residual strain after the rupture passage. The
centre (bottom) panels are the strain components exx (eyy) relative to their initial
values immediately prior to rupture. The data presented are for three different
measurements in which Cf 5 0.96CR. The key in the upper panel denotes the
terms that were considered for each coloured line. No value of the r1/2 (C1) and
r3/2 (C3) coefficients could both resolve the discrepancy in Dexy and reasonably
fit Deyy and Dexx.
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