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modified parameters (7) to account for the present
experimental conditions. Our choice of parameters
reflects the reduced amount of TGA per CdTe,
resulting in a net decrease of the charge, an increase
of the face-face attraction energy, and a change in
the direction of the dipole moment as compared
with the conditions under which chains are obtained.

We used a recently developed technique for
predicting ordered assemblies of building blocks
with strong interactions via bottom-up building
block assembly (BUBBA) (26) to determine the
preferred local packing structure of tetrahedrons
within ribbons. Then, Monte Carlo simulations
were used to calculate the energy as a function of
ribbon width to ascertain whether, and under
what conditions, ribbons of finite width (rather
than chains or sheets) (/, §) were the minimum
energy structures. We found that NPs form four
interdigitated layers grouped in two bilayers with
tetrahedrons arranged hexagonally and inverted
in alternate layers for denser packing (Fig. 4),
which is consistent with TEM and SEM observa-
tions (Figs. 1, G to I, and 2B), albeit without the
packing perfection seen in the simulations. The
energy of the ribbon is minimized for a range of
widths of ~18 to 110 nm, which matches struc-
tural parameters of TRs very well (Figs. 1 to 3).
Increasing the charge resulted in more narrow
ribbons, whereas decreasing the charge resulted
in wider ribbons.

Overall, the multiparticle behavior and tran-
sition from packing into chains, ribbons, and sheets
can be understood in terms of a competition be-
tween the face-face attraction and the charge-charge
repulsion. For low charge and strong face attraction,
as was the case in previous studies (/), particles
pack very densely and would, if constrained to
the same packing structure, form infinite two-
dimensional sheets. By increasing the amount of
charge, an infinite sheet becomes energetically
unfavorable because of the long-range electrostatic
repulsion, and NPs assemble as ribbons. Further
increase of particle charge will eventually result in
chains, as was observed for higher concentrations

of TGA (6, 8). Note that this concerns the effect
of NP charge before the assembly. Once a larger
NP system is assembled and held together by
strong interparticle interactions, it may not be
able to transition freely from sheets to ribbons of
smaller width and then to chains. However, if
there are structural units more loosely attached to
each other, such as ribbons in bunches, they do
separate, as can be seen by the unraveling of the
bouquets of TRs (Fig. 3D and fig. S14).

The notion of evolving NP assemblies and
better understanding of parameters controlling
behavior of large numbers of nanoscale particles
as a whole will be useful for many other nano-
colloid systems. This study demonstrates that light
can induce microscale twisting of the matter due
to strong effect on the mutual interactions of nano-
scale building blocks in a multibody system. The
modulation in the pitch length for the TRs under
different light intensities creates a new approach
in the synthesis of nanostructures and new oppor-
tunities to generate nanomaterials with controlled
circular dichroism and other optical, electronic,
and mechanical properties.
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The Near-Tip Fields of Fast Cracks

Ariel Livne, Eran Bouchbinder,* Ilya Svetlizky, Jay Finebergt

In a stressed body, crack propagation is the main vehicle for material failure. Cracks create large stress
amplification at their tips, leading to large material deformation. The material response within this
highly deformed region will determine its mode of failure. Despite its great importance, we have
only a limited knowledge of the structure of this region, because it is generally experimentally
intractable. By using a brittle neo-Hookean material, we overcame this barrier and performed direct
and precise measurements of the near-tip structure of rapid cracks. These experiments reveal a
hierarchy of linear and nonlinear elastic zones through which energy is transported before being
dissipated at a crack’s tip. This result provides a comprehensive picture of how remotely applied forces
drive material failure in the most fundamental of fracture states: straight, rapidly moving cracks.

aterial failure occurs at small scales in
Mthe immediate vicinity of the tip of a
crack. The existence of a crack in an
otherwise perfect material dramatically amplifies

www.sciencemag.org SCIENCE VOL 327

applied stresses to values that approach a mathe-
matical singularity at the crack’s tip (/). The stress
fields formed by a crack transport remotely ap-
plied elastic energy to the crack’s tip, where the

energy is dissipated by material fracture. Even
small external stresses can generate sufficiently
large stresses within this small microscopic re-
gion to initiate fracture. Linear elastic fracture
mechanics (LEFM) provides the theoretical frame-
work for understanding this stress amplification.
LEFM assumes that the material under stress obeys
linear elasticity (that is, Hooke’s law) at every point
up to the very near vicinity of a crack’s tip. All of
the complex dissipative and nonlinear processes
that are involved in fracture and not described by
LEFM are assumed to occur within a sufficiently
small region around the tip. Nevertheless, this
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theory is very successful in describing the motion
of a single straight crack in brittle materials (2).

Material failure, however, does not always oc-
cur via the propagation of individual straight cracks;
propagating cracks are known to either microscop-
ically branch or spontaneously oscillate if their
propagation speed is sufficiently rapid (3, 4). More-
over, how stresses are distributed and regularized
near a crack’s tip will determine the mode of fail-
ure (for example, brittle or ductile) and may hold
the key to resolving important open questions about
issues such as crack stability and path selection.
Thus, the key to understanding these effects may lie
in the structure of the near-tip region (3, 6), where
strains become so large that the linear stress-strain
response underpinning LEFM must break down.

Progress in understanding the structure of this
critical region has been, on the whole, limited by
our lack of hard data describing the detailed phys-
ical processes that occur within. Due to the mi-
croscopic size and near—sound speed velocity of
the near-tip region, direct measurements are very
difficult, with numeric or atomistic calculations
being the only means to assess it (7-9). As a
result, attempts to understand the near-tip region
have been largely empirical (/0-23), using a wide
variety of approaches. Many of these approaches
assume that the material response is linearly elastic
down to the immediate vicinity of the crack tip,
where energy is dissipated. However, because of
the large strains that always exist near a crack’s
tip, nonlinear elastic contributions must occur.

We studied the near-tip structure by using
polyacrylamide gels (24). Their measured elastic
response (up to strains of ~100%) is neo-Hookean
(24), which is an extension of Hooke’s law to large
deformations (25). This constitutive relation has a
well-founded statistical thermodynamic origin and
is inherently nonlinear at large strains (26). These
brittle materials provide a means to directly ob-
serve the detailed dynamics of rapid fracture, by
slowing crack propagation velocities by nearly
three orders of magnitude (typical crack speeds
of 1200 m/s in glass correspond to 2 m/s in gels).
Experiments have demonstrated that the dynam-
ics of tensile cracks propagating in these gels are
identical to those of other amorphous brittle ma-
terials (27). These include both single-crack dy-
namics (/, 28) and crack instabilities (3, 27) that
occur at high propagation velocities v. Here, only
single-crack modes for v < 0.9cg (where cg is the
shear wave speed) are considered, because crack
instabilities were suppressed (4).

We studied the structure of the deformation
fields of dynamic cracks at scales ranging from
the system size (Fig. 1A) to those well within the
region where nonlinear elasticity becomes im-
portant. We do this by tracking a passive tracer
field imprinted on the gel faces with a fast high-
resolution camera (Fig. 1B) (24). Comparison of
each photograph with the undeformed tracer field
provides the full displacement field, u(r, 7), sur-
rounding the crack tip (Fig. 2A, inset), where r
is the distance from the tip and ¢ is time. Differ-
entiation of u(r, #) yields the strain fields (for

example, Fig. 1B), so this method provides a
precise measurement of all of the fields that lo-
cally drive a moving crack.

Crack advance is understood as a balance
between the energy influx from the surround-
ing elastic fields and the energy dissipated at the
crack’s tip (fracture energy). In brittle materials,
all dissipative processes occur near a crack’s tip
and include plastic deformation and bond break-
ing. The extent of the dissipative region may be
determined by considering the energy flux through
different contours surrounding the crack tip (Fig.
2A). At all scales beyond the dissipative region,
the driving energy flux should be constant for
steady-state propagation. The rate of energy per
unit of sample width flowing through any closed
contour, C, surrounding the crack tip is provided
by the J integral (1)

J = Icl(U + Vpopduvn, + syndu)dC (1)

Here, n is an outward unit vector on C, p is
the density of the undeformed material, U is a
functional describing the material’s elastic en-
ergy per unit of undeformed volume. For the in-
compressible neo-Hookean material described
here, U = p/2 [FF; + det(F)> — 3], where p is
the shear modulus and Fj; = §;; + du; (29). The

A T W

stress tensor s; = O;U defines the material’s
constitutive law, where i and j run over the crack
propagation direction x and the loading direction
y in the undeformed (two-dimensional) frame.
Their counterparts are x" and »' in the deformed
(laboratory) frame. We consider steady-state prop-
agation, so 0, = —v0, in Eq. 1. Under these condi-
tions, the J integral is independent of the contour
C if no dissipative regions (other than the imme-
diate crack-tip region) are enclosed within.

The energy flux G = J/v is the amount of
energy flowing into C per unit of crack extension.
Using the measured deformation field, G was
computed for different contours about dynamic
crack tips, with the encompassed area ranging
from ~100 mm?” down to ~500 um? (Fig. 2A). At
all measured scales, the energy flux computed
for the neo-Hookean constitutive law is constant
(Fig. 2A). This explicit demonstration of the path
independence of the J integral has several im-
portant implications. Foremost, no bulk dissipa-
tion is observed down to the smallest measured
contour, ~500 um?, implying a purely elastic re-
sponse (that is, no irreversible deformation) on
these scales. Furthermore, the constant G implies
that the neo-Hookean description of the gels’
elasticity, which is inferred from large-scale mea-
surements and moderate strains, holds up in the

P
-

4 8 12
X (mm)

Fig. 1. (A) The tip [at (x',y") = 0] of a rapidly moving tensile crack (v = 0.7¢s) as seen at different
scales. (Left) A schematic representation of the crack at the system size. (Center) A photograph of
the crack’s tip at a 5.2 x 5.4—mm scale demonstrating that its shape is close to the characteristic
parabolic shape (dashed line) predicted by LEFM. (Right) A closeup of the same crack shows devia-
tions from the parabolic crack-tip opening profile as the crack’s tip is approached. The scale of this
deviation is characterized by §, the distance between the true crack tip and the tip location predicted
by LEFM. (x',y') are the coordinates in the laboratory (deformed) frame, whereas (x,y) are the coor-
dinates in the reference (undeformed) frame. (B) (Left) Blowup of the near-tip region of a different
crack (v = 0.48cs) with a tracer field imprinted on the gel (24). The displacement field u = (u,u,)
about the moving crack is found by comparing the tracer locations to their reference (pre-crack)
state. (Right) The strain field, €,, = 6,u,, up to 200 um from the crack tip, is found by differentiating
the measured displacement field. e, diverges as the tip (located at the origin) is approached. The
extreme strains in this region give rise to thickness variations, manifested by the lensing observed in

the white region at the crack’s tip (left).
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near-vicinity of a crack tip, where extreme stresses
prevail and the constitutive law cannot be directly
measured.

Were we to assume a linear elastic material
response, we would not find G to be constant, as
demonstrated in Fig. 2A. Under these conditions,
G converges asymptotically to the neo-Hookean
value at large scales but deviates strongly as we
approach the crack tip. Thus, although results de-
rived from LEFM are correct for scales far enough
from the crack tip (where strains are roughly <0.1),
Fig. 2A shows that nonlinear elasticity becomes
important as the crack tip is approached.

Are the values of G provided by Eq. 1 correct?
By incorporating quadratic contributions to the
stress-strain relation (35, 30), a weakly nonlinear
theory was recently derived that extended LEFM
to strains of approximately 0.1 to 0.2. Whereas
LEFM predicts singular strains of the form 7~
in the near-tip vicinity (where r is the distance
from the crack tip), this weakly nonlinear theory
predicts additional strain contributions propor-
tional to ' and displacement contributions pro-
portional to log(7). At relatively large values of

r, but still in regions where the strains are large
enough to invalidate LEFM, this theory shows
that a crack’s tip has the same parabolic form
(demonstrated in Fig. 1A) that is predicted by
LEFM (I, 5). The curvature of these parabolas
provides an independent way to measure G
(1, 28). The comparison of this result in Fig. 2B
with the J integral calculation, using neo-Hookean
clasticity, indeed shows that the measurements
are practically identical over the wide velocity
range studied. This agreement is wholly non-
trivial, because it results from entirely different
measured inputs.

Just as the linear elastic description gives way
to the weakly nonlinear description of fracture dy-
namics, the latter theory must, itself, break down
at the smaller scales where even larger strains
occur. This is demonstrated in Fig. 1A, right,
where the far-field crack-tip profile breaks down
as the crack tip is approached, and large dis-
crepancies from its parabolic form are revealed.
This breakdown has been characterized (28) by a
velocity-dependent scale 8(v), defined as the dis-
tance from the measured crack tip to the one

Fig. 2. (A) The energy  p B 20

flux G is computed over 20 fipm-a--g-g-—g-FF--¥-¥

different contours using o W 2 g
Eq. 1 for both the neo-  ~'5/® 20 L
Hookean (red squares) £ ? £ @g

and linear elastic (blue =210 2 ®

circles) constitutive laws.  © G0

(Inset) The measured dis- °

placement field u, of the o * % (mm)

crack shown in F'Ig. 1B 0 20 40 60 80 100 0.2 0.4 0.6 0.8
(color bar in millimeters). Area (mm?) vicg

Dashed blue rectangles

mark every second contour used for calculating G. The results are independent of the contour symmetry
about the crack (denoted by the black line with its tip at the origin). (B) A comparison of G as a function of
v, derived at different distinct regions using very different machineries: red squares, G derived using
Eqg. 1 for a neo-Hookean stress-strain relation; blue circles, G derived according to the weakly nonlinear
theory (5) using the millimeter-scale parabolic crack-tip opening displacement [curvature data taken from
(28)]; light blue triangles, G, derived from the small-scale curvature and estimated values of b (defined in

Eq. 2) using the large deformation theory of Eq. 3.

Fig. 3. The material de-

formation adjacent to the
dissipative zone is quanti- 02
tatively described by the c
large deformation theory. £ 00
(A) Within ~40 um from ">,
the crack tip (here, mov-

3 J °
- - .

32000 T2 __nFr s

0.7 “

1
03 0.5

v/c

ing at v = 0.43¢s), the .04 gn 2
measured crack-tip pro- 08 P2
file (squares) corresponds
to the parabolic form pre-

( -0.1 0.0 0.4
X (mm)

1500 S

0.5 0.6 0.7
v/cg

dicted by Eq. 2. The near-tip parabolic form of the crack-tip profile differs from that predicted by LEFM,
which properly describes the measured profile at large scales. (B) The crack-tip curvature b/a® as a function
of v. Independent measurements of @ and b in the near-tip region, however, are hampered by lensing
effects as seen in Fig. 1B (left). In the large-deformation region, 6,u, = (b — 1) along the crack propagation
direction (6 = 0). (Inset) An estimate of b (dashed blue curve) by extrapolating the d,u,(v) measurements on
this axis at r = 200 um (typical measurement limit) by assuming a 1/r increase down to the typical outer
scale, r = 40 um, of the large-deformation region. This 1/r strain growth is predicted by the weakly
nonlinear theory (5) and should become more dominant as the crack tip is approached. For comparison,
the shaded region denotes values of b estimated from discrete d,u, measurements at scales of r = 120

to 170 um.
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predicted by LEFM (Fig. 1A, right). For » < (),
strong elastic nonlinearities become increasingly
important. We denote this region, where higher—
than—second-order corrections to the stress-strain
relations are needed, as “strongly nonlinear.”
Within this region, where strains are ~0.2 to 1, a
perturbative approach is of limited applicability.
Moreover, direct measurements of bulk deforma-
tion are, in general, difficult. The crack-tip pro-
file, however, can be measured to even smaller
scales.

The theoretical study of large deformations of
neo-Hookean materials very close to the crack tip
has a rich history (29, 37/-34). This work has
yielded a solution for the deformation field as-
ymptotically near a rapidly moving crack tip of
the form (33)

u(r,0) = a(v) m@®y) r'?,

u(r,0) = [b(v) — 1] cos(0) r ?2)

where the function m(8;v) is provided in (24) and
a and b are velocity-dependent coefficients.

Equation 2 predicts an 7" variation of the
strain 6,u,, similar to the linear elastic prediction,
but at much smaller scales. Thus, the crack-tip
profile is parabolic in this limit, with the velocity-
dependent curvature b(v)/a*(v) presented in Fig.
3. Figure 3A demonstrates that this parabolic
profile differs significantly from the one at large
scales (see also Fig. 1A). Such parabolic profiles,
at comparable scales, are also observed in finite
element calculations for static cracks in neo-
Hookean materials (35).

Although the parabolic crack-tip profile,
which is observed within the highly nonlinear
region, is consistent with the asymptotic solution
given in Eq. 2, one can imagine that any crack-tip
profile that closes smoothly (that is, without a
cusp) can be reasonably described by a parabolic
form. To substantiate the theory, we now con-
sider the energy flux through a contour C;, taken
well within the nonlinear zone, at a scale of a few
tens of micrometers. In this region, the asymp-
totic solution in Eq. 2, when used in Eq. 1, yields
an expression for the asymptotic neo-Hookean
energy flux G

Gu(v) = uaz(v)il(e; Wde  (3)

where the function /(6;v) is provided in (24).

At r < 200 um, we are generally unable to
measure particle displacements because of the
extreme strains and lensing effects in this region.
We therefore use extrapolated values of b(v) to
extract a(v) from the data of Fig. 3B and calculate
G, in Eq. 3. Gy is compared with G measured at
the outer-millimeter scales in Fig. 2B. The values
of G, and G agree to well within our uncertainty
in b(v) and thereby provide direct validation of
both the solution in Eq. 2 and our interpretation
of the small-scale crack-tip profile. Furthermore,
because no dissipation is observed within the
nonlinear zone, we conclude that dissipation is
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confined to a region that is smaller than our
minimal observation scale (~20 pum).

These measurements provide experimental
validation of both the existence of the asymp-
totic solution (Eq. 2) and the scales at which it is
relevant. There is a long-standing conundrum in
fracture mechanics that is solved by the existence
of'this solution. LEFM predicts that 0,u, is larger
than d,u, ahead of the crack tip. Because one
would intuitively expect that the bonds that are
most deformed would fail first, this implies that
fracture should occur in the orthogonal direc-
tion () to the observed propagation direction (x).
Equation 2 solves this problem [as first noted in
(31)] if this asymptotic solution is indeed realized.
Our measurements now demonstrate this explic-
itly under fully dynamic conditions; indeed, o,u,
is greater than O,u, at the near-tip scales » < 30 to
40 um. This example demonstrates how the struc-
ture of the highly nonlinear region near the crack
tip may be critical in determining a crack’s path.

With the validity of Eq. 2 established, we can
combine this small-scale solution with the weakly
nonlinear solution (5) to construct both the overall
shape of the crack tip and §(v). An estimate of the
crack-tip location is obtained by extrapolating the
weakly nonlinear solution (5, 30) to the strongly
nonlinear zone until it closes. Although it is be-
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yond the theory’s formal range of validity, this
estimate yields values of 8(v) that agree well (see
Fig. 4B) with measured values over the entire
range of v. The scale of 3(v) is an intrinsic one and
is determined by the ratio of the linear and qua-
dratic terms in the stress-strain relation of a given
material. For neo-Hookean materials, 8(v) ~ G/u.

The crack-tip profile is then obtained from Eq.
2 by plotting the small-scale parabolic crack-tip
profile [using measured values of either b(v)/a(v)
or G and b(v)] from the estimated crack-tip loca-
tion until it intersects the weakly nonlinear solu-
tion. Concatenating these solutions yields profiles
(for example, Fig. 4A) that are in excellent agree-
ment with the measured ones. Surprisingly, even
in the strongly nonlinear zone, the form of the
divergences from a parabolic form of the crack-
tip profile is reasonably captured by the logarith-
mic corrections to the displacement fields that
are predicted by the weakly nonlinear theory
(5, 30), which justifies the only assumption made
in this approach. The weakly nonlinear solution
is uniquely defined once G and the constitutive
law are known.

We have shown that linear elasticity, which
provides a good description at large scales (Fig.
4C, left), must be supplemented by a fully non-
linear elastic description as the crack tip is ap-
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Fig. 4. Addressing the different elastic zones in the vicinity of a crack tip provides a full description of
the material deformation down to the dissipation scales. (A) The circles indicate the measured crack-tip
profile of Fig. 3A, compared to concatenation of the predicted profiles of the (red line) weakly nonlinear
(5) and (blue line) asymptotic (see Eq. 2) theories. The dotted line is the LEFM solution. (B) Comparison
of measured values (squares) of &(v) with the estimated values (line) obtained by extrapolating the
weakly nonlinear solution (5, 30) to the strongly nonlinear zone until it closes. (C) A schematic sketch of
the different elastic regions surrounding a crack. Energy and stresses are transmitted from the large
scales, where material deformation is described by linear elasticity (left), through a hierarchy of non-
linear elastic regions (right) until dissipated by plastic deformation and fracture at the smallest scales
(circle). The asymptotic region, denoted by /, is where strains become larger than unity and Eq. 2 is valid.
Shown (squares) are measurements of the crack-tip profile extracted from Fig. 1A (right).

proached (Fig. 4C, right). These nonlinear fields
form the bridge to scales where irreversible de-
formation and fracture are really taking place (r <
20 um in our system).

This work describes a combined experimental
and analytic description of the nonlinear elastic
region that links LEFM to scales bordering dis-
sipative scales. This quantitative description of
the elastic fields surrounding a single straight crack
has been demonstrated here for a specific class of
materials. We expect, however, that the same qual-
itative picture holds true for any brittle material. In
the near-tip vicinity where extreme strains prevail,
linear elasticity cannot be expected to give a cor-
rect description of a material’s elastic response.
Addressing the nonlinear elastic response near
the crack tip extends LEFM to the small scales
where fracture takes place. Nonlinearity of elastic
fields must occur in the region of high strains that
is generated near a crack’s tip in any material
undergoing fracture, even in materials that mac-
roscopically appear to be ideally brittle, although
the complete separation of the nonlinear elastic
region from the dissipative zone as shown here
may not, necessarily, be general.

The existence of this nonlinear elastic region
may hold the key to resolving many previously
intractable puzzles in fracture mechanics. The cor-
rect description of the fields in this region has al-
ready presented concrete solutions to open problems
related to dynamic crack path selection. Other open
problems, such as LEFM’s failure to predict how
the straight single-crack states studied here become
unstable at high velocities (4, 27), may now be re-
solvable in this framework (36). Two possibilities
exist: Either the instabilities are critically depen-
dent on the dissipative mechanisms that were not
considered here or they are due to the elastic fields
surrounding the dissipative zone (/7). Identical
crack-tip instabilities have been observed in mate-
rials with wholly different dissipative mechanisms
(27); therefore, we view the latter possibility as
likely, although the former cannot be entirely
ruled out.
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Imaging Local Electrochemical Current
via Surface Plasmon Resonance

Xiaonan Shan,’? Urmez Patel,* Shaopeng Wang,* Rodrigo Iglesias,* Nongjian Tao™?*

We demonstrated an electrochemical microscopy technique based on the detection of variations in
local electrochemical current from optical signals arising from surface plasmon resonance. It
enables local electrochemical measurements (such as voltammetry and amperometry) with high
spatial resolution and sensitivity, because the signal varies with current density rather than current.
The imaging technique is noninvasive, scanning-free, and fast, and it constitutes a powerful tool
for studying heterogeneous surface reactions and for analyzing trace chemicals.

alytical method that has been used for a

wide range of applications, including trace
chemical analysis, glucose and neurotransmitter
monitoring, DNA and protein detections, and
electrocatalysis studies. Measurement of the total
electrochemical current or other related electrical
quantities of an electrode cannot directly provide
local reaction information from the electrode sur-
face, which is required for analyses of hetero-
geneous reactions, local activities of cells, and
protein and DNA microarrays. Scanning electro-
chemical microscopy (SECM) (7), which probes
local electrochemical current by scanning a micro-
electrode across the surface, can overcome this
limitation and has found numerous applications
(2). However, the sequential scanning of the mi-
croelectrode limits its speed, and the scanning
probe may perturb the local electrochemical pro-
cesses under study. The current measured by the
microelectrode in SECM scales with the size of
the microelectrode, making it increasingly diffi-
cult to improve the spatial resolution by shrinking
the microelectrode.

Here, we report a method for imaging local
electrochemical current without the use of a scan-
ning probe or a microelectrode. Instead of mea-
suring the current with an electrode, it determines
the electrochemical current density from an opti-
cal signal of the electrode surface generated from

Electrochemical detection is a powerful an-
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a surface plasmon resonance (SPR) (3, 4). Im-
portant benefits of this approach include fast and
noninvasive electrochemical current imaging of
the surface. In addition, the measured local cur-
rent signal is proportional to the optical signal,
which does not scale with the area of a region of
interest. We imaged local electrochemical cur-
rents generated by heterogeneous surface reac-
tions, and we could perform the traditional
electrochemical detection methods—such as am-
perometry, cyclic voltammetry, and square-wave
voltammetry—Iocally, interrogating areas as small
as 0.2 um by 3 um with a current sensitivity of
0.3 pA. We also demonstrate sensitive and selec-
tive trace analysis with the technique.

An electrochemical reaction taking place on
an electrode always involves electron transfer
between the electrode and the reactant, which is
measured as an electrochemical current or related
electrical signal in the conventional electrochemi-
cal methods. The electron transfer process is al-
ways accompanied by a conversion of chemical
species between oxidized and reduced states, so
the electrochemical current can be determined by
monitoring the conversion of the chemical spe-
cies on the surface, which is the principle of the
present imaging technique. Relative to other opti-
cal detection methods such as phase-measurement
microscopy () that have been used to study local
molecular binding events and electrochemical re-
actions on surfaces (6, 7), SPR is extremely sen-
sitive to the species generated (or consumed) on
the electrode surface (Fig. 1A). We show that the
concentration of the species is directly related to
the electrochemical current via Fick’s law of dif-
fusion (8); more important, the electrochemical

current density #(#) can be easily calculated from
the local SPR signal according to

i(t) = bnFL'[s"*AOspr(s)] (1)
(9), where b = [BlorDR"? — aoDo?)], n is the
number of electrons involved in the redox re-
action, F' is the Faraday constant, L is the
inverse Laplace transform, and ABgpr(s) is the
Laplace transform of the SPR signal. In the ex-
pression for b, 0o and oy are the changes in the
local refractive indices per unit concentration for
the oxidized and reduced molecules, Do and Dg
are the diffusion coefficients of the oxidized and
reduced molecules, and B measures the sensitiv-
ity of the SPR signal to a change in the bulk
index of refraction, which can be calibrated
independently. According to Eq. 1, the measured
signal, i(#), does not scale with the image area,
which is in contrast to the conventional electro-
chemical detection methods. Note that double layer
charging current also contributes to the SPR signal
(10), which is, however, small (/) relative to
faradaic current.

We show below that (i) the electrochemical
current determined using Eq. 1 is indeed equiva-
lent to that obtained from the conventional elec-
trochemical methods; (ii) the new electrochemical
imaging technique provides local electrochemical
current (e.g., cyclic voltammograms) associated
with heterogeneous surface reactions; (iii) the
advantages of this imaging technique allow for
sensitive and selective trace analysis; and (iv) the
technique offers high current sensitivity, a fast
imaging rate, and good spatial resolution.

Two optical configurations were used in the
experiments. In the first configuration, the work-
ing electrode was an Au-coated glass slide at-
tached onto a prism via index-matching fluid.
An electrochemical cell made from Teflon was
mounted on top of the Au electrode. A Pt wire
counterelectrode and an Ag|AgCI|KCl (s, refer-
ence electrode, together with a potentiostat, were
used to control the potential of the working elec-
trode. A light-emitting diode (LED) with a peak
wavelength of 670 nm was used to excite the sur-
face plasmons in the Au electrode, and a charge-
coupled device (CCD) camera was used to record
the image. Calculating the current at each pixel
from the image by means of Eq. 1 creates an elec-
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