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Abstract

The fracture of brittle amorphous materials is an especially challenging problem, because the way a large object
shatters is intimately tied to details of cohesion at microscopic scales. This subject has been plagued by conceptual
puzzles, and to make matters worse, experiments seemed to contradict the most "rmly established theories. In this review,
we will show that the theory and experiments "t within a coherent picture where dynamic instabilities of a crack tip play
a crucial role. To accomplish this task, we "rst summarize the central results of linear elastic dynamic fracture mechanics,
an elegant and powerful description of crack motion from the continuum perspective. We point out that this theory is
unable to make predictions without additional input, information that must come either from experiment, or from other
types of theories. We then proceed to discuss some of the most important experimental observations, and the methods
that were used to obtain the them. Once the #ux of energy to a crack tip passes a critical value, the crack becomes
unstable, and it propagates in increasingly complicated ways. As a result, the crack cannot travel as quickly as theory had
supposed, fracture surfaces become rough, it begins to branch and radiate sound, and the energy cost for crack motion
increases considerably. All these phenomena are perfectly consistent with the continuum theory, but are not described by
it. Therefore, we close the review with an account of theoretical and numerical work that attempts to explain the
instabilities. Currently, the experimental understanding of crack tip instabilities in brittle amorphous materials is fairly
detailed. We also have a detailed theoretical understanding of crack tip instabilities in crystals, reproducing qualitatively
many features of the experiments, while numerical work is beginning to make the missing connections between
experiment and theory. ( 1999 Elsevier Science B.V. All rights reserved.

PACS: 68.35.Ct; 83.50.Tq; 62.20.Mk; 46.50.#a; 81.40.Np
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1. Introduction

1.1. Brief overview of the paper

Fracture mechanics is one of the most heavily developed branches of engineering science and
applied mathematics [1}9]. It emerged from mathematical exercises in the early part of the 20th
century into a closely knit collection of theoretical concepts and experimental procedures that are
now widely used to ensure the safety of critical structures, ranging from airplanes to the housings of
microelectronic devices. Some practitioners of this "eld feel that its development is essentially
"nished. However, a group of physicists has recently begun to work in the area, and our number
appears to be growing. The "rst task is therefore to explain the new developments that have created
excitement in this mature area, and induced physicists to work on it after an absence, with few
exceptions [10], of many decades.

There are two separate lines of inquiry pulling people into fracture of brittle materials. The "rst is
a set of puzzles about the dynamics of cracks. It is often stated that cracks do not reach the terminal
velocity predicted by theory, and that they have an unexplained instability at a critical velocity. We
will show that these puzzles are real, but have been di$cult to solve because they are not correctly
stated. The real puzzle concerns energy dissipation at the crack tip, and the answer we will present is
that when energy #ux to a crack tip passes a certain critical value, e$cient steady motion of the tip
becomes unstable to the formation of microcracks that propagate away from the main crack. As it
undergoes a hierarchy of instabilities, the ability of the crack tip to absorb energy is enormously
increased. The second line of inquiry is the attempt to understand how things break from an atomic
level. There is a broad consensus that this problem is best met by a direct attack from molecular
dynamics simulations, watching cracks move one atom at a time. However, before moving to large
computer simulations, we believe it is important to study analytical results so as to understand the
qualitative e!ect of atomic discreteness upon crack motion. With these results in hand, many labor-
atory experimental results become comprehensible, the relation between simulations and laboratory
experiments becomes clearer, and molecular dynamics simulations can be made much more e$cient.

In fact, the puzzles in fracture dynamics, at both macroscopic and atomic scales, are manifesta-
tions of the same underlying phenomena. Our purpose in this review is to explain why the
conventional puzzles have arisen, how to recast them, and how to explain them. We do not pretend
to provide a general overview of fracture mechanics as a whole. For example, we focus upon brittle
materials, and do not deal with ductile fracture [11], although dynamic elastic}plastic fracture is
very well developed [7]. We will emphasize the dynamics of cracks once they start moving, rather
than the most important engineering topic, which is the matter of reliably determining the point of
initiation [9]. We are not challenging conventional fracture mechanics; all our "ndings must be
compatible with it. Instead, we are answering some questions that conventional continuum fracture
mechanics does not ask.

The basic structure of this paper is

f A summary of some of the principal features of dynamic fracture mechanics.
f An explanation of why dynamic fracture mechanics appears to fail, why it does not actually do

so, and why dynamic fracture mechanics is incomplete without certain crucial information about
the nature of the crack tip that must be provided by computations at scales too small for
continuum mechanics to follow.
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Fig. 1. Mechanically stable con"gurations are often far from their lowest energy state. For example, a solid completely
free of #aws would only pull apart when all bonds as long a plane snapped simultaneously, despite the fact that it would
generally be energetically advantageous for the solid to be split.

1.2. Scaling arguments

1.2.1. All objects are far from mechanical equilibrium
The world is farther from equilibrium than most of us realize. Consider a piece of rock, of area

A and height h. According to equilibrium principles the rock should not be able to sustain its own
weight under the force of gravity if it becomes tall enough. We begin with a simple estimate of what
the critical height should be. The gravitational potential energy of the rock is oAh2g/2 where o is
the density. By cutting the rock into two equal blocks of height h/2 and setting them side by side,
this energy can be reduced to oAh2g/4, for an energy gain of oAh2g/4. The cost of the cut is the cost
of creating new rock surface, which characteristically costs per unit area G"1 J/m2. Taking the
density to be o"2000 kg/m3, the critical height at which it pays to divide the rock in two is

h"J4G/og&1.4 cm . (1)

So every block of stone more than 2 cm tall is unstable under its own weight. A similar estimate
applies to steel or concrete. Yeats' observation that `Things fall aparta is a statement about
equilibrium which fortunately takes a long time to arrive.

1.2.2. The energy barrier seems immense, but this is experimentally wrong
If most objects are out of mechanical equilibrium, the next task is to estimate the size of the

barriers holding them in place. An easy way to obtain a rough value is by imagining what happens
to the atoms of a solid as one pulls it uniformly at two ends. At "rst, the forces between the atoms
increase, but eventually they reach a maximum value, and the solid falls into pieces, as shown in
Fig. 1. Interatomic forces vary greatly between di!erent elements and compounds, but the forces
typically reach their maximum value when the distance between atoms increases by around 20% of
their original separation. The force needed to stretch a solid slightly is (Fig. 1)

F"EAd/¸ , (2)
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Table 1
The experimental strength of a number of materials in polycrystalline or amorphous form, compared to their theoretical
strength (from [12,13])

Material Young's modulus
(GPa)

Theoretical strength
(GPa)

Practical strength
(GPa)

Practical/theoretical
strength

Iron 195}205 43}56 0.3 0.006
Copper 110}130 24}55 0.2 0.005
Titanium 110 31 0.3 0.009
Silicon 110}160 45 0.7 0.01
Glass 70 37 0.4 0.01
Plexiglas 3.6 3 0.05 0.01

where E is the material's Young's modulus, so the force per area needed to reach the breaking point
is around

p
=
"F/A"E/5 . (3)

As shown in Table 1, this estimate is in error by orders of magnitude. The problem does not lie in
the crude estimates used to obtain the forces at which bonds separate, but in the conception of the
calculation. The "rst scaling argument greatly underestimated the practical resistance of solid
bodies to separation, while this one greatly overestimates it. The only way to uncover correct
orders of magnitude is to account for the actual dynamical mode by which brittle solids fail, which
is by the propagation of a crack.

1.2.3. Cracks provide the most ezcient path to equilibrium
As we shall see in Section 2.3, the presence of a crack in an otherwise perfect material leads to

a stress singularity at its tip. For an atomically sharp crack tip, a single crack a few microns long is
su$cient to explain the large gaps between the theoretical and experimental material strengths as
shown in Table 1. The theoretical strength of glass "bers, for example, can be approached by means
of acid etching of the "ber surface. The etching process serves to remove any initial microscopic
#aws along the glass surface. By removing its initial #aws, a 1 mm2 glass "ber can lift a piano (but
during the lifting process, we would not advise standing under the piano). The stress singularity
that develops at the tip of a crack serves to focus the energy that is stored in the surrounding
material and e$ciently use it to break one bond after another. Thus, the continuous advance of the
crack tip, or crack propagation, provides an e$cient means to overcome the energy barrier
between two equilibrium states of the system having di!erent amounts of mechanical energy.

1.2.4. The scaling of dynamic fracture
The "rst analysis of rapid fracture was carried out by Mott [14], and then slightly improved by

Dulaney and Brace [15]. It is a dimensional analysis which clari"es the basic physical processes,
despite being wrong in many details, and consists of writing down an energy balance equation for
crack motion.

Consider a crack of length l(t) growing at rate v(t) in a very large plate where a stress p
=

is applied
at the far boundaries of the system, as shown in Fig. 2. When the crack extends, its faces separate,
causing the plate to relax within a circular region centered on the middle of the crack and with
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Fig. 2. As a crack of length l expands at velocity v in an in"nite plate, it disturbs the surrounding medium up to a distance
on the order of l.

Fig. 3. The energy of a plate with a crack as a function of its length. In the "rst part of its history, the crack grows
quasi-statically, and its energy increases. At l

0
the crack begins to move rapidly, and energy is conserved.

diameter of order l. The kinetic energy involved in moving a region of this size is Mv2/2, where M is
the total mass, and v is a characteristic velocity. Since the mass of material that moves is
proportional to l2, the kinetic energy is guessed to be of the form

KE"C
K
l2v2 . (4)

The region of material that moves is also the region from which elastic potential energy is being
released as the crack opens. Therefore, the potential energy gained in releasing stress is guessed to
be of the form

PE"!C
P
l2 . (5)

These guesses are correct for slowly moving cracks, but fail qualitatively as the crack velocity
approaches the speed of sound, in which case both kinetic and potential energies diverge. This
divergence will be demonstrated later, but for the moment, let us proceed fearlessly. The "nal
process contributing to the energy balance equation is the creation of new crack surfaces, which
takes energy Cl. The fracture energy C accounts not only for the minimal energy needed to snap
bonds, but also for any other dissipative processes that may be needed in order for the fracture to
progress; it is often orders of magnitude greater than the thermodynamic surface energy. However,

J. Fineberg, M. Marder / Physics Reports 313 (1999) 1}108 7



for the moment, the only important fact is that creating new surface scales as the length l of the
crack. So the total energy of the system containing a crack is given by

E"C
K
l2v2#E

24
(l) , (6)

with

E
24
(l)"!C

P
l2#Cl . (7)

Consider "rst the problem of quasi-static crack propagation. If a crack moves forward only slowly,
its kinetic energy will be negligible, so only the quasi-static part of the energy, E

24
, will be

important. For cracks where l is su$ciently small, the linear cost of fracture energy is always
greater than the quadratic gain of potential energy, and in fact such cracks would heal and travel
backwards if it were not for irreversible processes, such as oxidation of the crack surface, which
typically prevent it from happening. That the crack grows at all is due to additional irreversible
processes, sometimes chemical attack on the crack tip, sometimes vibration or other irregular
mechanical stress. It should be emphasized that the system energy E increases as a result of these
processes. Eventually, at length l

0
, the energy gained by relieving elastic stresses in the body exceeds

the cost of creating new surface, and the crack becomes able to extend spontaneously. One sees that
at l

0
, the energy functional E

24
(l) has a quadratic maximum. The Gri$th criterion for the onset of

fracture is that fracture occurs when the potential energy released per unit crack extension equals
the fracture energy, C. Thus fracture in this system will occur at the crack length l

0
where

dE
24
/dl"0 . (8)

Using Eq. (7) we "nd that

l
0
"C/(2C

P
) . (9)

Eq. (7) now becomes

E
24
(l)"E

24
(l
0
)!C

P
(l!l

0
)2 . (10)

This function is depicted in Fig. 3.
Much of engineering fracture mechanics boils down to calculating l

0
, given things such as

external stresses, which in the present case have all been condensed into the constant C
P
. Dynamic

fracture starts in the next instant, and because it is so rapid, the energy of the system is conserved,
remaining at E

24
(l
0
). Using Eqs. (6) and (10), with E"E

24
(l
0
) gives

v(t)"
C

P
C

K
A1!

l
0
l B"v

.!9A1!
l
0
l B . (11)

This equation predicts that the crack will accelerate until it approaches the speed v
.!9

. The
maximum speed cannot be deduced from these arguments, but Stroh [16] correctly argued that
v
.!9

should be the Rayleigh wave speed, the speed at which sound travels over a free surface.
A crack is a particularly severe distortion of a free surface, but assuming that it is legitimate to
represent a crack in this way, the Rayleigh wave speed is the limiting speed to expect. This result
was implicit in the calculations of Yo!e [17].

In this system, one needs only to know the length at which a crack begins to propagate in order
to predict all the following dynamics. As we will see presently, Eq. (11) comes astonishingly close to
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anticipating the results of a sophisticated mathematical analysis developed over 15 years. This
result is especially puzzling since the forms (4) and (5) for the kinetic and potential energy are
incorrect; these energies should actually diverge as the crack begins to approach the Rayleigh wave
speed. The reason that the dimensional analysis succeeds anyway is that to "nd the crack velocity
one takes the ratio of kinetic and potential energy; their divergences are of exactly the same form,
and cancel out.

2. Continuum fracture mechanics

In this section we will attempt to review brie#y the background, basic formalism and underlying
assumptions that form the body of continuum fracture mechanics. We will "rst schematically
describe the general `game plana pursued within fracture mechanics. The following subsections will
introduce the main `playersa or concepts on which the current continuum description of dynamic
fracture is based. As the work described in this review mainly deals with the dynamics of a crack in
thin plates or quasi-2D media, we will "rst discuss the reduction of linear elasticity to two
dimensions. Some basic concepts common to both static and dynamic cracks will then be
discussed. These will include the creation of a singular stress "eld at the tip of a static crack together
with criteria for the onset and growth of a moving crack. We then turn to a description of moving
cracks. We will "rst describe the formalism used to describe a crack moving at a given velocity and,
using this formalism, look at the dependence of the near tip stress "elds as a function of the crack's
velocity. The stage will then be set for a description of the general formalism used to determine an
equation of motion for a moving crack in an in"nite medium. The central result of dynamics
fracture mechanics, which is obtained by equating the (velocity dependent) elastic energy #owing
into the tip of a moving crack with the dissipative mechanisms absorbing it, will be described. This
result provides an equation of motion for a crack moving along a straight-line trajectory. We then
discuss criteria for determination of a crack's path and conclude the section by discussing a number
of points that the theory cannot address.

2.1. Structure of fracture mechanics

The structure of fracture mechanics follows the basic ideas used in the scaling arguments
described in the previous section. The general strategy is to solve for the displacement "elds in the
medium subject to both the boundary conditions and the externally applied stresses. The elastic
energy transported by these "elds is then matched to the amount of energy dissipated throughout
the system, and an equation of motion is obtained. For a single moving crack, as in the scaling
argument above, the only energy sink existing in the system is at the tip of the crack itself. Thus, an
equation of motion can be obtained for a moving crack if one possesses detailed knowledge of the
dissipative mechanisms in the vicinity of the tip.

2.1.1. Dissipation and the process zone
Unfortunately, the processes that lead to dissipation in the tip vicinity are far from simple.

Depending on the type of material, there is a large number of complex dissipative processes ranging
from dislocation formation and emission in crystalline materials to the complex unraveling and
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fracture of intertangled polymer strands in amorphous polymers. At "rst glance, the many di!erent
(and in many cases, poorly understood) dissipative processes that are observed would appear to
preclude a universal description of fracture. A way around this problem was proposed by Irwin and
Orowan [18,19].

Fracture, together with the complex dissipative processes occurring in the vicinity of the tip,
occurs due to intense values of the stress "eld that occur as one approaches the tip. As we will show
shortly, if the material surrounding the tip were to remain linearly elastic until fracture, a singular-
ity of the stress "eld would result at the mathematical point associated with the crack tip. Since
a real material cannot support singular stresses, in this vicinity the assumption of linearly elastic
behavior must break down and material dependent, dissipative processes must come into play.
Irwin and Orowan independently proposed that the medium around the crack tip be divided into
three separate regions as follows (Fig. 4).

f ¹he process zone: In the region immediately surrounding the crack tip, called the process zone
(or cohesive zone), all of the nonlinear dissipative processes that ultimately allow a crack to move
forward, are assumed to occur. Fracture mechanics avoids any sort of detailed description of this
zone, and simply posits that it will consume some energy C per unit area of crack extension. The
size of the process zone is material dependent, ranging from nanometers in glass to microns in
brittle polymers. The typical size of the process zone can be estimated by using the radius at
which an assumed linear elastic stress "eld surrounding the crack tip would equal the yield stress
of the material.

f ¹he universal elastic region: Everywhere outside of the process zone the response of the material
can be described by continuum linear elasticity. In the vicinity of the tip, but outside of the
process zone, the stress and strain "elds adopt universal singular forms which solely depend on
the symmetry of the externally applied loads. In two dimensions the singular "elds surrounding
the process zone are entirely described by three constants, called stress intensity factors. The
stress intensity factors incorporate all of the information regarding the loading of the material
and are related, as we shall see, to the energy #ux into the process zone. The larger the overall
size of the body in which the crack lives, the larger this region becomes. In rough terms, for given
values of the stress intensity factors, the size of this universal elastic region scales as J¸, where
¸ is the macroscopic scale on which forces are applied to the body. Thus the assumptions of
fracture mechanics become progressively better as samples become larger and larger.

f Outer elastic region: Far from the crack tip, stresses and strains are described by linear elasticity.
There is nothing more general to relate; details of the solution in this region depend upon the
locations and strengths of the loads, and the shape of the body. In special cases, analytical
solutions are available, while in general one can resort to numerical solution. At "rst glance, the
precise linear problem that must be solved might seem inordinately complex. How can one avoid
needing explicit knowledge of complicated boundary conditions on some complicated loop
running outside the outer rim of the process zone? The answer is that so far as linear elasticity is
concerned, viewed on macroscopic scales the process zone shrinks to a point at the crack tip, and
the crack becomes a branch cut. Replacing the complicated domain in which linear elasticity
actually holds with an approximate one that needs no detailed knowledge of the process zone is
another approximation that becomes increasingly accurate as the dimensions of the sample,
hence the size of the universal elastic region, increase. The assumption that the process zone
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Fig. 4. Structure of fracture mechanics. The crack tip is surrounded by a region in which the physics is unknown. Outside
this process zone is a region in which elastic solutions adopt a universal form.

in a material is encompassed within the universal elastic region is sometimes called the
assumption of small-scale yielding.

The dissipative processes within the process zone determine the fracture energy, C, de"ned as the
amount of energy required to form a unit area of fracture surface. In the simplest case, where no
dissipative processes other than the direct breaking of bonds take place, C is a constant, depending
on the bond energy. In the general case, C may well be a complicated function of both the crack
velocity and history and di!er by orders of magnitude from the surface energy de"ned as the
amount of energy required to sever a unit area of atomic bonds. No general "rst principles
description of the process zone exists, although numerous models have been proposed (see e.g.
[20]).

2.1.2. Conventional fracture modes
It is conventional to focus upon three symmetrical ways of loading a solid body with a crack.

These are known as modes, and are illustrated in Fig. 5. A generic loading situation produced by
some combination of forces without any particular symmetry is referred to as mixed mode fracture.
Understanding mixed-mode fracture is obviously of practical importance, but since our focus will
be upon the physics of crack propagation rather than upon engineering applications, we will
restrict attention to the special cases in which the loading has a high degree of symmetry.

The fracture mode that we will mainly deal with in this review is Mode I, where the crack faces,
under tension, are displaced in a direction normal to the fracture plane. In Mode II, the motion
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Fig. 5. Illustration of the three conventional fracture modes, which are characterized by the symmetry of the applied
forces about the crack plane.

of the crack faces is that of shear along the fracture plane. Mode III fracture corresponds to an out
of plane tearing motion where the direction of the stresses at the crack faces is normal to the plane
of the sample. One experimental di$culty of Modes II and III is that the crack faces are not pulled
away from one another. It is unavoidable that contact along the crack faces will occur. The
resultant friction between the crack faces contributes to the forces acting on the crack, but is
di$cult to measure precisely.

For these reasons, of the three fracture modes, Mode I corresponds most closely to the
conditions used in most experimental and much theoretical work. In two-dimensional isotropic
materials, Mode II fracture cannot easily be observed, since slowly propagating cracks spontan-
eously orient themselves so as to make the Mode II component of the loading vanish near the crack
tip [21], as we will discuss in Section 2.9. Mode II fracture is however observed in cases where
material is strongly anisotropic. Both friction and earthquakes along a prede"ned fault are
examples of Mode II fracture where the binding across the fracture interface is considerably weaker
than the strength of the material that comprises the bulk material. Pure Mode III fracture,
although experimentally di$cult to achieve, is sometimes used as a model system for theoretical
study since, in this case, the equations of elasticity simplify considerably. Analytical solutions,
obtained in this mode, have provided considerable insight to the fracture process.

2.1.3. Universal singularities near the crack tip
As one approaches the tip of a crack in a linearly elastic material, the stress "eld surrounding the

tip develops a square root singularity. As "rst noted by Irwin [22], the stress "eld at a point (r,h)
near the crack tip, measured in polar coordinates with the crack line corresponding to h"0, takes
the form

p
i,j
"Ka(1/J2pr) f a

i,j
(v,h) , (12)
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where v is the instantaneous crack velocity, and a is an index running through Modes I}III. For
each of these three symmetrical loading con"gurations, f a

i,j
(v,h) in Eq. (12) is a known universal

function. The coe$cient, Ka, called the stress intensity factor, contains all of the detailed informa-
tion regarding sample loading and history. Ka will, of course, be determined by the elastic "elds
that are set up throughout the medium, but the stress that locally drives the crack is that which is
present at its tip. Thus, this single quantity will entirely determine the behavior of a crack, and
much of the study of fracture comes down to either the calculation or measurement of this quantity.
One of the main precepts of fracture mechanics in brittle materials is that the stress intensity factor
provides a universal description of the fracture process. In other words, no matter what the history
or the external conditions in a given system, if the stress intensity factor in any two systems has the
same value, the crack tip that they describe will behave in the same way. The universal form of the
stress intensity factor allows a complete description of the behavior of the tip of a crack where one
need only carry out the analysis of a given problem within the universal elastic region (see
Section 2.1.1).

For arbitrary loading con"gurations, the stress "eld around the crack tip is given by three stress
intensity factors, Ka, which lead to a stress "eld that is a linear combination of the pure Modes:

p
i,j
"

3
+
a/1

Ka
1

J2pr
f a
i,j

(v,h) . (13)

2.1.4. The relation of the stress intensity factor to energy yux
How are the stress intensity factors related to the #ow of energy into the crack tip? Since one may

view a crack as a means of dissipating built-up energy in a material, the amount of energy #owing
into its tip must in#uence its behavior. Irwin [23] showed that the stress intensity factor is related
to the energy release rate, G, which is de"ned as the quantity of energy #owing into the crack tip per
unit fracture surface formed. The relation between the two quantities has the form

G"

3
+
a/1

1!l2
E

Aa(v)K2a , (14)

where l is the Poisson ratio of the material and the three functions Aa(v) depend only upon the
crack velocity v. This relation between the stress intensity factor and the fracture energy is accurate
whenever the stress "eld near the tip of a crack can be accurately described by Eq. (12). The
near-"eld approximation of the stress "elds surrounding the crack tip embodied in Eq. (13)
becomes increasingly more accurate as the dimensions of the sample increase.

2.2. Linear elasticity

2.2.1. Reductions to two dimensions
Most of the theoretical work that we will describe in this review is performed in 2-D (or

quasi-2-D) systems. In this subsection we will perform a reduction of the full 3-D elastic description
of a crack to two dimensions in three important cases; for Mode III fracture and Mode I fracture in
very thin and very thick plates. The "rst case, Mode III fracture, is an important model system
where much analytic work can be performed with the corresponding gain in intuition of qualitative
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features in fracture. The second case, Mode I fracture of a thick plate, describes stress and strain
conditions of importance in describing fracture in the immediate vicinity of the crack tip. The third
case, Mode I fracture in thin plates, corresponds to much of the experimental work that we will
describe.

Our starting point is the equation of motion for an isotropic elastic body in the continuum limit,

o R2u/Rt2"(j#k)+ (+ ) u)#k+ 2u , (15)

originally found by Navier. Here u is a "eld describing the displacement of each mass point from its
original location in an unstrained body and o is the density. The constants k and j are called the
LameH constants, have dimensions of energy per volume, and are typically of order 1010 erg/cm3.
We de"ne the linear elastic strain tensor [24]

e
ij
"

1
2A
Ru

i
Rx

j

#

Ru
j
Rx

i
B . (16)

When a linear stress}strain relation exists in a homogeneous isotropic medium, the stress tensor,
p
ij
, is de"ned by

p
ij
"jd

ij
+
k

e
kk
#2ke

ij
. (17)

2.2.2. Mode III
The simplest analytical results are for pure Mode III, illustrated in Fig. 5. The only non-zero

displacement is u
z
, and it is a function of x and y alone. The only non-vanishing stresses in this case

are

p
xz
"k Ru

z
/Rx (18)

and

p
yz
"k Ru

z
/Ry . (19)

The equation of motion for u
z

is

1
c2
R2u

z
Rt2 "+ 2u

z
, (20)

where

c"Jk/o . (21)

Therefore, the vertical displacement u
z

obeys the ordinary wave equation.

2.2.3. Mode I: plane strain
Consider a sample that is extremely thick along z (see Fig. 5), and where all applied forces are

uniform in the z direction. Since all derivatives with respect to z vanish, all "elds can be viewed as
functions of x and y alone. This situation is called plane strain. The reduction to two dimensions is
quite simple, but this geometry is rarely convenient for experiments.
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2.2.4. Mode I: plane stress
A third case in which the equations of elasticity reduce to two dimensions corresponds to pulling

on a thin plate in Mode I, and is called plane stress. If the scale over which stresses are varying
in x and y is large compared with the thickness of the plate along z, then one might expect that
the displacements in the z direction will come quickly into equilibrium with the local x and
y stresses. When the material is being stretched, (think of pulling on a balloon), the plate will
contract in the z direction, and when it is being compressed, the plate will thicken. Therefore,
one guesses that

u
z
"zf (u

x
,u

y
) , (22)

and that u
x
, and u

y
are independent of z. One can deduce the function f by noticing that p

zz
must

vanish on the face of the plate. This means that

jG
Ru

x
Rx#

Ru
y
RyH#(j#2k)

Ru
z
Rz "0 (23)

at the surface of the plate, which implies that

f (u
x
,u

y
)"
Ru

z
Rz "!

j
j#2kG

Ru
x
Rx#

Ru
y
RyH . (24)

So

Ru
x
Rx#

Ru
y
Ry#

Ru
z
Rz "

2k
j#2kG

Ru
x
Rx#

Ru
y
RyH , (25)

and one can write

pab"jI dab
Ruc
Rxc

#kA
Rua
Rxb

#

Rub
RxaB , (26)

where

jI "2kj/(j#2k) , (27)

and a and b now range only over x and y. Therefore, a thin plate obeys the equations of
two-dimensional elasticity, with an e!ective constant jI , so long as u

z
is dependent upon u

x
and

u
y
according to Eq. (24). In the following discussion, the tilde over jI will usually be dropped, with

the understanding that the relation to three-dimensional materials properties is given by Eq. (26).
The equation of motion is still Navier's equation, Eq. (15), but restricted to two dimensions.

A few random useful facts: materials are frequently described by the Young's modulus E and
Poisson ratio l. In terms of these constants,

j"
El

(1#l)(1!2l)
, jI "

E
2(1!l2)

, k"
E

2(1#l)
. (28)

The following relation will be useful in discussing two-dimensional static problems. First note that

e )u"Ra(j#2k)paa . (29)
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Second, taking the divergence of Eq. (15), one "nds that

o
j#2k

R2paa
Rt2 "+ 2paa . (30)

Therefore, + ) u obeys the wave equation, with the longitudinal wave speed

c
l
"(j#2k)/o . (31)

Similarly, +]u also obeys the wave equation, but with the shear wave speed

c
5
"Jk/o . (32)

2.2.5. The transition from 2D to 3D
Near the tip of a crack in a plate, stresses become severe enough that the approximations leading

to two-dimensional plane stress elasticity fail. Nakamura and Parks [25] have discussed the way
this happens; if the thickness of the plate along z is denoted by d, then at distances from the crack
tip much larger than d all "elds are described by equations of plane stress. At distances from the
crack tip much less than d, and away from the x}y surfaces of the plate, the "elds solve the
equations of plane strain.

2.3. The Inglis solution for a static crack in Mode III

Why do cracks have a profound e!ect on the strength of materials? As we observed in Table 1,
a huge discrepancy exists between the practical and theoretical strengths of materials. The reason
for the discrepancy has been understood since the "rst decades of this century. If one takes a plate,
puts an elliptical hole in it, and pulls, then as "rst found by Inglis in 1913, the stresses at the narrow
ends of the hole are much larger than those exerted o! at in"nity, as shown in Fig. 6. We see then
that a crack acts as an `ampli"era of stresses, thereby causing elastic energy to be preferentially
focused into its tip. Thus, the existence of a crack will lead to a large decrease in the e!ective
strength of a material.

The ratio of maximum to applied stress is

Maximum Stress
Applied Stress

"2
l
o

, (33)

where l is the length of the crack and o the radius of curvature at its tip. This means that if one
assumes that typical solids have cracks with tips of size 1 A_ , and of length 104A_ , then one can
account for the discrepancies in Table 1. We will now derive Eq. (33).

Solving even the static equations of linear elasticity is frequently a complicated and di$cult
a!air. To simplify matters as much as possible, assume that the stresses applied to the plate
coincide to the conditions of anti-plane shear stress, as shown in Fig. 5, so the only nonzero
displacement is u

z
. Returning to Eq. (20), one sees that the static equation of linear elasticity is now

simply

+ 2u
z
"0 . (34)
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Fig. 6. The stresses at the tips of an elliptical hole in a solid are much greater than those applied o! at in"nity.

Eq. (34) is Laplace's equation, so the whole theory of complex variables can be brought to bear in
order to "nd solutions. For the boundary problem at hand, conformal mapping is the appropriate
technique. Since u

z
is a solution of Laplace's equation, it can be represented by

u
z
"1

2
(/(f)#/(f)) , (35)

where / is analytic, and f"x#iy.
One can easily write down the asymptotic behavior of /. Far from the hole, the displacement

u
z
(x,y) just increases linearly with y, so

/"!iRf . (36)

In Eq. (36), the constant R is dimensionless, but one can think of it measuring the stress in units of
the LameH constant k.

How does the presence of the hole a!ect the stress "eld? Because the edges of the hole are free, the
stress normal to the edge must vanish. If s is a variable which parameterizes the edge of the hole, so
that

[x(s),y(s)] (37)

travels around the boundary of the hole as s moves along the real axis, then requiring the normal
stress to vanish means that

Ru
z
Ry
Rx
Rs!

Ru
z
Rx
Ry
Rs"0 (38)
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Using the representation of u
z
in Eq. (35), one "nds that

R//Rs"R/M /Rs (39)

on the boundary, or since / is arbitrary up to a constant,

/(f)"/(f) (40)

when f lies on the boundary.
To illustrate the use of Eq. (40), let us de"ne u such that

f"l/2(u#m/u) , (41)

When u lies on the unit circle, in other words

u"e*h , (42)

with h real, f traces out an elliptical boundary. When m"0, the boundary is a circle of radius l/2,
and when m"1, the boundary is a cut along the real axis extending from !l to #l. Considering
/ as a function of u, one has

/(u)"/(u)"/M (1/u) , (43)

since uN "1/u on the unit circle. Eq. (43) can now be analytically continued o! the unit circle.
Outside of the hole / must be completely regular, except for the fact that it diverges as !iRf for
large f. But when f is large, u+f, so from Eq. (41),

/&!iRu as uPR . (44)

Consulting Eq. (43) one is forced to conclude that

/M (1/u)&!iRu , (45)

which means that

/M (u)&!iR/u as uP0 (46)

but has no other singularities within the unit circle.
Having determined all the possible singularities of /, it is determined up to a constant. It must be

given by

/(u)"!iRu#iR/u (47)

and, substituting Eq. (41), we have

/(f)"!iR
f
l
(1#1!ml2/f2)#iR

f
lm

(1!1!ml2/f2) . (48)

The case in which mP1 is particularly interesting. The hole becomes a straight crack along [!l,l].
Notice that / has a branch cut over exactly the same region. The displacement u

z
is "nite

approaching the tip of the crack, but the stress

p
yz
"k Ru

z
/Ry&1/Jz!l as zPl , (49)

diverges as one approaches the tip of the crack.
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2.3.1. Remarks about the singularity
Although this calculation concerns a particular case, the existence of a square root stress

singularity at the tip of a crack is of general validity, in accord with Eq. (12). Giving a crack a "nite
radius of curvature is one way to cut o! this singularity. A useful application of this idea is, for
example, a common mechanic's trick to arrest the advance of a crack in a damaged engine block.
To arrest the crack, the mechanic will drill a small hole at its tip. It may seem counter-intuitive at
"rst to `"xa a hole by making a larger one, but by increasing the radius of curvature at the tip, the
mechanic, in e!ect, is canceling the singularity in the stress "eld and thus considerably strengthen-
ing the engine block.

2.3.2. Static cracks in Mode I
The method of conformal mapping we described for Mode III cracks has been extended to Mode

I by Muskhelishvili [26]. Matters are somewhat more complicated, since one must solve the
biharmonic equation rather than Laplace's equation, and solve for two complex functions not one.
Muskhelishvili alone solved enough problems with these techniques to "ll several hundred pages,
and hundreds of publications have since been devoted to solutions of fracture problems using these
methods.

2.4. Linear elastic equations for moving solutions in Mode I fracture

Eq. (49) shows that in an elastic medium where uniform stress is applied at the boundaries, the
stress "eld at the tip of a static crack becomes singular. We now turn to the case of a moving crack
and examine the structure of the stress "eld at the tip of a moving Mode I crack. So as to be able to
compare eventually with experiment, and because this review focuses upon crack dynamics, we
carry out the analysis in the complicated case of Mode I loading.

The "rst step is to develop the general form of the stress and displacement "elds for a moving
crack. Begin with the dynamical equation for the strain "eld u of a steady state in a frame moving
with a constant velocity v in the x direction,

(j#k)+ (+ ) u)#k+ 2u"ov2 R2u/Rx2 . (50)

Divide u into transverse and longitudinal parts so that

u"u
5
#ul , (51)

with

ul"evl and u
5
"A
Rv

5
Ry ,!

Rv
5
RxB . (52)

It follows immediately that

C(j#2k)+ 2!ov2
R2
Rx2Dul"!Ck+ 2!ov2

R2
Rx2Du

5
,f (x,y) . (53)

In the end, it will be possible to set f to zero, but some intermediate steps are needed to see why this
is legitimate. Acting on the left-hand side of Eq. (53) with the operator [R/Ry,!R/Rx] gives zero,
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while acting on u
5
with [R/Rx,R/Ry] also gives zero. Therefore

Rf
y
Rx!

Rf
x
Ry"0 , (54a)

Rf
x
Ry#

Rf
y
Rx"0 , (54b)

meaning that f obeys Cauchy's equations, and f
x
!if

y
is an analytic function of x#iy. We then

have

Ca2
R2
Rx2

#

R2
Ry2D+ 2vl"0 , (55)

Cb2
R2
Rx2

#

R2
Ry2D+ 2v

5
"0 , (56)

where

a2"1!
ov2

j#2k
"1!

v2
c2l

, (57a)

b2"1!
ov2
k

"1!
v2
c2
5

. (57b)

Therefore, the general form of the potentials is

vl"v0l (z)#v0l (z)#v1l (x#iay)#v1l (x#iay) (58)

v
5
"v0

5
(z)#v0

5
(z)#v1

5
(x#iby)#v1

5
(x#iby) , (59)

subject to the constraint of Eq. (53), which gives a relation between v0l and v0
5
.

In fact, the purely harmonic pieces v0l and v0
5

disappear entirely from expression (51) for u. They
result from the freedom one has to add a harmonic function to vl and v

5
simultaneously, and can be

neglected; f could have been set to zero from the beginning. De"ning /(z)"Rv1l (z)/Rz and
t(z)"Rv1

5
(z)/Rz we have for u,

u
x
"/(za)#/(za)#ib[t(zb)!t(zb)] , (60a)

u
y
"ia[/(za)!/(za)]![t(zb)#t(zb)] , (60b)

where

za"x#iay, zb"x#iby . (61)

Eq. (60) gives a general form for elastic problems which are in steady state moving at velocity v.
De"ne also U"R/(z)/Rz and W"Rt(z)/Rz. Then the stresses are given by

p
xx
#p

yy
"2(j#k)[U(za)#U(za)](1!a2) , (62a)

p
xx
!p

yy
"2kM(1#a2)[U(za)#U(za)]#2ib[W(zb)!W(zb)]N , (62b)

2p
xy
"2kM2ia[U(za)!U(za)]!(b2#1)[W(zb)#W(zb)]N . (62c)
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It is worth writing down the stresses directly as well:

p
yy
"!k(1#b2)[U(za)#U(za)]!2ibk[W(zb)!W(zb)] , (62d)

p
xx
"k(1#2a2!b2)[U(za)#U(za)]#2ibk[W(zb)!W(zb)] . (62e)

The de"nitions of a and b in Eq. (57) have been used to simplify the expressions.
To solve a general problem, one has to "nd the functions / and t which match boundary

conditions. It is interesting to notice that when vP0, the right-hand side of Eq. (62a) goes to zero
as well. Since one will be "nding the potentials from given stresses at the boundaries, U must
diverge as 1/v, and the right-hand side of Eq. (62) will turn into a derivative of U with respect to a.
The static theory has, therefore, a di!erent structure than the dynamic theory, although the
dynamic theory is, in fact, more straightforward.

2.5. Mode I, structure near the tip, stress intensity factors

As a "rst application of Eqs. (60)}(62), we will "nd the form of the stresses around the tip of
a crack moving under Mode I loading. Assume the crack to lie along the negative x-axis,
terminating at x"0, and moving forward. The problem is assumed symmetric under re#ection
about the x-axis, but no other assumption is needed.

We know that in the static case, the stress "elds have a square root singularity at the crack tip.
We will assume the same to be true in the dynamic case also (The assumption is veri"ed in all cases
that can be worked explicitly.). Near the crack tip, we assume that

/(z)&(B
r
#iB

i
)z1@2 , (63)

t(z)&(D
r
#iD

i
)z1@2 . (64)

We "rst appeal to symmetry. Since the crack is loaded in Mode I, the displacements obey

u
x
(!y)"u

x
(y), u

y
(!y)"!u(y) . (65)

Placing Eq. (64) into Eq. (60) and using Eq. (65), we "nd immediately that B
i
"D

r
"0. Thus

U(z)&B
r
/z1@2, W(z)&iD

i
/z1@2 . (66)

We also observe that the square roots in Eq. (64) must be interpreted as having their cuts along the
negative x-axis, corresponding to the crack. On the crack surface the stresses are relaxed. We
thereby have two boundary conditions which require that p

xy
and p

yy
vanish on the surface of

a crack. Upon substituting Eq. (66) into Eq. (62) we "nd that the condition upon p
yy

is satis"ed
identically for x(0, y"0. However, substituting into Eq. (62d) with y"0 we "nd that

p
xy
"kiM2aB

r
!(b2#1)D

i
NM1/Jx!1/JxN . (67)

Thus

D
i
/B

r
"2a/(b2#1) . (68)

This relation is enough to "nd the angular structure of stress "elds around a crack.
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Using Eq. (68) to substitute Eq. (66) into Eq. (62) we "nd that

p
xx
"

K
I

J2p DC(b2#1)(1#2a2!b2)G
1

Jza
#

1

JzN a
H (69a)

!4abG
1

Jzb
#

1

Jzb
HD, (69b)

p
yy
"

K
I

2J2pDC4abG
1

Jzb
#

1

JzN b
H!(1#b2)2G

1

Jza
#

1

JzN a
HD, (69c)

p
xy
"

K
I

2J2pD
2ia(b2#1)G

1

Jza
!

1

JzN a
!

1

Jzb
#

1

JzN b
H, (69d)

with

D"4ab!(1#b2)2 . (69e)

Di!erent features of Eq. (69) have varying degrees of signi"cance. The feature of greatest physical
importance is the overall scale of the stress singularity, which is characterized by the Mode I stress
intensity factor

K
I
" lim

x?0`

y/0

J2pxp
yy

. (70)

As we mentioned in Section 2.1.3, and will calculate in the following Subsection, the stress intensity
factor is directly related to energy #ux into a crack tip.

In addition, Eq. (69) carries information about the angular structure of the stress "elds. This
information can be used in two ways. Experimentally, it can be used to check the predictions of
fracture mechanics, and to obtain measurements of the stress "elds surrounding rapidly moving
cracks, as we will discuss in Section 3.2. Theoretically, it can be used to make predictions about the
direction of crack motion, and the conditions under which a crack will bifurcate. We discuss these
uses further in Section 2.9.

It is important to note that although Eq. (69) was derived for cracks moving at a constant speed,
the same expressions are valid for cracks that accelerate and decelerate, just so long as the change
in crack velocity is small during the time needed for sound to travel across the region of the
universal elastic singularity. A demonstration of this claim is discussed by Freund [7].

2.6. Mode I, example of speci,c loading

We now brie#y sketch the solution of a speci"c case in which the "elds about the crack tip can be
worked out explicitly. A source in which to "nd problems of this type worked out in more explicit
detail is Ref. [26]. Suppose that a crack is loaded by two delta-function stresses, located a distance
l
0

behind the crack tip, moving with it in steady state at velocity v, and of strength !p
#
, as shown

in Fig. 7. That is,

lim
y?0`

p
yy
(x,y)"!p

#
d(x#l

0
) for x(0 . (71)
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Fig. 7. A crack is loaded by the application of two delta-function stresses of strength p
#
behind the tip.

Taking the tip of the crack to sit at the origin, the stress and displacement "elds are continuous and
di!erentiable apart from a branch cut starting at the origin and running backwards along the
negative x-axis. Denote by U

B
(x) the functions

U
B
(x), lim

y?0`

U(x$iy) , (72)

with W
B

(x) de"ned similarly. Because of the branch cut, for x(0, U
`

(x)"!U
~

(x), and
W

`
(x)"!W

~
(x). For Mode I loading, p

xy
"0 for yP0` and all x. From Eq. (62c)

2ia[U
`
!UM

~
]"(b2#1)[W

`
#WM

~
] , (73)

using the fact that W(x#ie)"WM (x!ie). A bar over a function means that if one expresses the
original function as a power series, one replaces all the coe$cients with their complex conjugates.
The function

F
`

(x)"2iaW
`
(x)!(1#b2#1)W

`
(x) (74)

is de"ned for all x, and can be analytically continued above the x-axis, where it is related to stresses,
and must be free of singularities. Similarly, F

~
must be free of singularities below the real axis.

Whenever two complex functions are equal, one without singularities above the x-axis, and the
other without singularities below the x-axis, the two must individually equal a constant. The
constant must be zero, since all stresses die o! to zero far from the crack. It follows that
F
`
"F

~
"0, and one has "nally

2iU
`
(x)"(1#b2)W

`
(x) and 2iUM

~
(x)"(1#b2)WM

~
(x) . (75)

We now turn to the boundary condition on p
yy

, which from Eq. (62d) is, for x(0,

p
yy
"!k(1#b2)(U

`
#UM

~
)!2ibk(W

`
!WM

~
)"!p

#
d(x#l

0
) . (76)
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Employing Eqs. (75) and (69), Eq. (76) becomes

p
yy
"!p

#
d(x#l

0
)"(kD/2ia)(W

`
!WM

~
) . (77)

Representing the delta function as

d(x#l
0
)"

i
p

1
x#l

0
#ie

, (78)

one can argue that the only complex function that decays properly at in"nity, has a singularity no
worse than a square root at the origin, and obeys Eq. (77) is

W
`

(x)"
ia

Dkp
p
#

x#l
0
#ieS

l
0
x

. (79)

The function W(z) can now be obtained by analytical continuation of W
`
(x). In particular, the stress

p
yy

can easily be found for x'0 from Eq. (77) and it is

p
yy
"

1
pS

l
0
x

p
#

x#l
0

. (80)

The stress intensity factor associated with this stress "eld is

K
I
"p

#
J2/pl

0
. (81)

This result will be useful in our discussions of cohesive zone models in Section 6.1.

2.7. The J integral and the equivalence of the Irwin and Gri.th points of view

What are the conditions under which a crack propagates? In the calculations above we have
calculated the value of the stress "elds at the tip of a moving crack, but have not addressed the
conditions under which a crack will actually move. In 1920, A.A. Gri$th [27] proposed that
fracture occurs when the energy per unit area released by a minute extension of a crack is equal to
that necessary to create new fracture surface, C. This idea is the "nal simplifying assumption of
fracture mechanics. In general form, it states that the dynamics of a crack tip depend only upon the
total energy #ux G per unit area into the process zone. All details about the spatial structure of the
stress "elds are irrelevant. The energy G creates new fracture surfaces, and also is dissipated in
numerous ways near the crack tip. The form the crack velocity v takes can be a general function,
v(G).

Conventionally, response of the crack is expressed in a di!erent way. It is usual to write !(v) to
represent the energy consumed in the process zone by a crack as a function of its velocity, in which
case the equation of motion for a crack is

G"C(v) . (82)

Engineering fracture mechanics is mainly concerned with the conditions under which a static crack
begins to move. The critical fracture energy C

#
is the minimal energy per unit area needed for

a crack to move ahead, irrespective of velocity. It is usually assumed that the velocity consuming
the minimal energy is a very small one, but this assumption is not necessarily correct. One can
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equivalently de"ne a critical stress intensity factor K
I#

at which the crack "rst begins to move. The
equivalence is provided by Eq. (14), which we will now derive.

In the following calculation, adopt the summation convention for repeated indices. Energy #ux
may be found from the time derivative of the total energy. We have

d
dt

[¹#;]"
d
dtPdx dyC

o
2

uR auR a#
1
2
Rua
Rxb

pabD , (83)

where ¹ and ; are, respectively, the total kinetic and potential energies within the entire medium.
The spatial integral in Eq. (83) is taken over a region which is static in the laboratory frame. So

d
dt

[¹#;]"Pdx dyCou( auR a#
RuR a
Rxb

pabD , (84)

where the symmetry of the stress tensor under interchange of indices is used for the last term. Using
the equation of motion

ou( a"(R/Rxb)pab , (85)

we have

PdxdyC
R
Rxb

pabuR a#
RuR a
Rxb

pabD (86)

"Pdxdy
R
Rxb

[pabuR a] (87)

"P
.S

uR apabnb , (88)

where the integral is now over the boundary, RS, of the system, and nL is an outward unit normal. As
we see from Eq. (88), energy is transported by a #ux vector j whose components are

ja"pabuR b . (89)

The total energy #ux J per unit time into the crack tip is called the J integral. A convenient contour
for the integration is indicated in Fig. 8. For a crack loaded in pure Mode I, using the asymptotic
forms, Eq. (69), for p

yy
and the corresponding expressions for u

y
from Eq. (69a), one "nds that J is

J"v(1!b2)
a
2k

1
4ab!(1#b2)2

K2
I

, (90)

where K
I
is the stress intensity factor de"ned by Eq. (70), with a subscript I to emphasize that the

result is speci"c to Mode I loading. Thus, the energy release rate G in the case of pure Mode
I loading is

G"J/v"(1!b2)
a
2k

1
4ab!(1#b2)2

K2
I
,

1!l2
E

A
I
(v)K2

I
. (91a)
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Fig. 8. The energy #owing to a crack tip can be computed by integrating the energy #ux across a contour that surrounds
it. The most convenient contour is depicted by the dotted line in this diagram; it runs along the x-axis just below the
crack, closes at in"nity, and runs back along the axis just above the crack. This contour is easier to handle analytically
than one that has a vertical segment at some distance to the right of the crack tip.

The corresponding result for pure Mode II loading is

G"(1!b2)
b
2k

1
4ab!(1#b2)2

K2
II
,

1!l2
E

A
II
(v)K2

II
, (91b)

while for Mode III loading it is

G"vK2
III
/2ak . (91c)

It is valuable to look at the quasistatic limit of Eq. (91) where vP0. In this limit each of the
functions Aa(v)P1 and Eq. (91a), for example, becomes

G
v?0

"((1!l2)/E)K2
I

. (92)

In the general case of mixed mode fracture, the energy release is given by linear combinations of
Eq. (91), as in Eq. (14).

2.7.1. Signixcance and limitations
The functions Aa(v), in Eq. (91), are universal function in the sense that they are independent of

most details of the system's loading or geometric con"guration. They do depend upon the
instantaneous velocity of the crack. Eq. (91) is of great signi"cance in the study of fracture.
Assuming that there is no energy sink in the system other than at the tip of the crack, it relates the
total #ow of energy from the entire elastic medium to the tip of the crack. Setting the #ow equal to
the energy dissipated in the process zone determines an equation of motion for the crack. It is
important to emphasize assumptions that were tacitly made in the derivation of this relation. The
"rst is that near "eld descriptions of stress and displacement "elds given by Eq. (69), Eq. (60) is valid.
If, for example, the process zone is on the order of 1mm in a sample whose dimensions are a few
centimeters, the value of the stress "eld on the contour RS used in Eq. (88) will not be approximated
well by the asymptotic forms of the stress and displacement "elds, invalidating Eq. (91).
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Table 2
See Fig. 5 for a de"nition of the coordinatesystem. c

R
is the

Rayleigh wave speed, determined by the zero of D in Eq. (69e),
usually around 90% of the transverse wave speed c

5

Mode I Mode II Mode III

u denotes u
y
(x,y"0`,t) u

x
(x,y"0`,t) u

z
(x,y"0`,t)

p denotes p
yy
(x,y"0`,t) p

yx
(x,y"0`,t) p

yz
(x,y"0`,t)

c denotes c
R

c
R

c
5

In obtaining an equation of motion for a crack, an additional ingredient is missing. Energy
balance carries no information about a crack's path. We have assumed that the crack travels in
a straight line. We will return to this issue in Section 2.9. The rules determining paths of slowly
moving cracks are known, but for rapidly moving cracks, the problem is largely unsolved.

2.8. The general equation for the motion of a crack in an inxnite plate

2.8.1. General formalism
An equation of motion for a crack now comes down to the calculation of either the energy release

rate, G or, equivalently, the dynamic stress intensity factor, K. We will now show how to "nd
a general expression for K as a function of the loading history of a crack, its length, and its velocity.
This general expression will then be used to derive an equation of motion for a moving crack in
a number of important situations. The calculation, due to Eshelby [28], Freund [7], Kostrov
[29,30], and Willis [31] is somewhat limited. It applies only to a perfectly straight semi-in"nite
crack in an in"nite plate, with loads applied to the crack faces. Given these restrictions the
calculation is exact, and holds with remarkable generality. The calculation is somewhat heavy
going, and in the end reproduces the scaling result of Eq. (11) with almost no modi"cation, as
a special case. Our presentation most closely follows Willis [31].

Because this calculation is performed in the context of linear elasticity, it must be posed as
a boundary-value problem. The most general problem to which a solution has been found is

1. The crack is a semi-in"nite branch cut running along a straight line an in an in"nite isotropic
two-dimensional elastic plate.

2. The velocity of the crack v(t) is not required to be constant. The position of the tip is
l(t)":tdt@ v(t@). In the boundary-value problem, l(t) and v(t) are assumed to be known. The only
restriction is that v(t) must be less than relevant sound speeds at all times.

3. External stresses p
%95

are permitted only along the crack line; They are allowed arbitrary time
and space dependence otherwise. The most faithful experimental realizations of this restriction
load cracks by placing wedges between the crack faces.

4. The calculation is carried out in the three symmetric loading modes, I, II and III. The symbols
u, p, and c will denote a displacement, a stress, and a sound speed in each case, as shown in
Table 2. In all cases, u(x,t)"0 for x'l(t), by symmetry.

5. The end result of the calculation is the energy #ux G as a function of the position l(t) of the crack,
of the instantaneous velocity v(t), and as a functional of the load p

%95
(x,t).
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The strategy is to look for a Green function, G operating on the displacement "eld such that:

G*u,Pdx@dt@G(x!x@,t!t@)u(x@,t@)"p(x,t) . (93)

The fracture problem is soluble if the Green function G has a special form. Writing

G(k,u)"Pdx@dt@ e*kx{~*ut{G(x@,t@) , (94)

the special form requires that G be decomposed as

G(k,u),G~(k,u)/G`(k,u) . (95)

Upon transforming back to real space, the two functions GB need to have the properties that
G`(x,t) vanishes for x(c

R
t, and G~(x,t) vanishes for x'!c

R
t, where c

R
is the Rayleigh wave

speed. That is, G` is nonzero only for x so large that a pulse beginning at the origin at t"0 could
never reach it in the forward direction, and G~ is de"ned similarly. In fact, for the cases to be
discussed below

G`Jd(x!c
R
t) and G~Jd(x#c

R
t) . (96)

It is far from immediately obvious that G can be decomposed in this way, or even that a function
G must exist to satisfy Eq. (93), but for the moment we simply assume these facts and examine their
consequences.

Decompose p into two functions

p"p`#p~ , (97)

and let us de"ne

u"u~ , (98)

where p` vanishes for x(l(t), p~ vanishes for x'l(t), and u~ vanishes for x'l(t). Thus,
p~ corresponds to the known function which describes the stresses along the crack faces and p` is
an, as yet unknown, function. The function u~, on the other hand, is an unknown function along
the crack faces and vanishes ahead of the crack tip.

Using Eqs. (93) and (95), we can write

G*u"p (99)

NG(k,u)u(k,u)"p(k,u) (100)

NG~(k,u)u(k,u)"G`(k,u)p(k,u) (101)

PG`*p"G~*u . (102)

From Eq. (102) one can solve formally for the stress and strain "elds as follows. We "rst show that
for x(l(t) G`*p`"0. Consider x'l(t). Because p` is zero behind the crack

G`*u`"Pdx@dt@G`(x!x@,t!t@)p`(x@,t@) (103)
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is certainly zero whenever x@(l(t@). The only chance for the integrand to be nonzero is for x@'l(t@).
In this case

x@!x'l(t@)!l(t)"lQ (tw)(t@!t) , (104)

where tw is some time between t and t@. However, this means that

x!x@((t!t@)[c
R
] , (105)

since c
R

is the largest value the crack velocity can have. Eq. (105) is precisely the condition for
G`(x!x@,t!t@) to vanish. The conclusion is that

Pdx@dt@G`(x!x@,t!t@)p`(x@,t@)"0 for x(l(t) . (106)

An identical argument shows that

Pdx@dt@G~(x!x@,t!t@)u~(x@,t@)"0 for x'l(t) . (107)

De"ning

H(x,t)"h(x!l(t)) , (108)

where h is a Heaviside step function, one can deduce from Eq. (102) that

G`*p`"![G`*p~]H(x,t) , (109)

which has now been shown to be true both for x'l(t), and for x(l(t). But Eq. (109) can be
inverted to give

p`"!G`~1*M[G`*p~]HN . (110)

Since p~ is a known stress to the rear of the crack tip, Eq. (110) provides a formal solution in terms
of the decomposed Green function. The most interesting thing to pull from this formal expression is
the stress intensity factor

K" lim
e?0`

J2pe p(e#l,t) , (111)

which means identifying the terms that lead to a divergence of the form 1/Je as x"l(t)#e
approaches l(t) from above.

The detailed analysis to follow will demonstrate that G`~1 has a singularity for eP0 going as
1/Je3, while G`*p` is "nite. Therefore, in searching for the singularity in Eq. (110), G`*p` can be
evaluated at x"l(t) and pulled outside the convolution as a multiplicative factor. The stress
intensity factor can therefore be written

K"KI (l(t)) )K(v) , (112a)

where

KI (l),![J2G`*p~]
(l,t)

(112b)
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and

K(v), lim
e?0`

MJpeG`~1*HN
(l`e,t) . (112c)

The stress intensity factor is therefore the product of two terms. The "rst, KI (l,p) is the stress
intensity factor that would emerge at the tip of a static crack sitting at l for all times, subjected to
the load p~(t). KI does not depend upon crack velocity at all. The second term, K turns out to
depend only upon instantaneous velocity v of the crack, but is otherwise completely unaware of the
crack's history.

2.8.2. Application to Mode III
We shall now apply the general result (112) to the particular case of anti-plane shear, and recover

the result "rst found by Kostrov [29] and Eshelby [28]. Along the way it will be possible to verify
the various claims about the structure of the Green function G. By calculating the stress intensity
factor, we will, using Eq. (91), equate the energy release rate to the fracture energy thereby
obtaining the equation of motion for a Mode III crack. The qualitative features of the resulting
equation of motion are, as we shall see, applicable to Mode I.

The starting point is Eq. (20), the wave equation for u
z
. Fourier transforming in both space and

time by

Pdxdt e*kx`*ut (113)

one has that

R2u
z
/Ry2"[k2!u2/c2!2ibu]u

z
, (114)

where a tiny amount of damping, b, has been added to take care of some convergence problems
that will arise later. Only the solutions that decay as a function of y are allowed in an in"nite plate,
so Eq. (114) is solved by

u
z
(k,y,u)"e~yJk2~u2@c2~2*buu(k,u) . (115)

Right on the x-axis, taking u"u
z
(y"0) and p"p

yz
(y"0), one has that

G(k,u)"p/u"!kJk2!u2/c2!2ibu . (116)

Decompose G as

G"G~/G` (117)

with

G~"!kJik!iu/c#b (118)

and

G`"1/J!ik!iu/c#b . (119)
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To verify that this decomposition satis"es the conditions of the preceding section, "nd

G`(x,t)"P
dk
2p

du
2p

e~*kx~*ut

J!ik!iu/c#b
(120)

"P
dp
2p

du
2p

e~*px~*u(t~x@c)

J!ip#b
, (121)

with p"k#u/c

"d(t!x/c)P
dp
2p

e~*px

J!ip#b
. (122)

When x(0, one must close the contour in the upper half plane, and as the branch cut is in the
lower half plane one gets zero. When x'0, deform the contour to surround the branch cut, and get

P
=

0

dp
2p

2e~px

Jp#b
"

1

Jpx
. (123)

Therefore

G`(x,t)"d(t!x/c)h(x)/Jpx . (124)

To "nd G`~1 one must do

G`~1(x,t)"P
dk
2p

du
2p

e~*kx~*utJ!ik!iu/c#b (125)

"d(t!x/c)P
dp
2p

e~*pxJ!ip#b . (126)

One cannot legitimately deform the contour to perform this integral, but can instead write that

P
dp
2p

e~*pxJ!ip#b"
R
RxP

dp
2p

e~*px

J!ip#b
, (127)

obtaining in this way

G`~1(x,t)"d(t!x/c)
R
Rx C

h(x)

JpxD. (128)

Having now calculated G`~1(x,t), we are now in a position to "nd the stress intensity factor, K(l,t),
by using the general relation Eq. (112a). Using the expression for G`~1 derived in Eq. (128), the
velocity dependent, singular integral, Eq. (112), becomes

K(v)"JpePdx
1
dt

1
d(t

1
!x/c)C

R
Rx

1

h(x
1
)

Jpx
1
Dh(l(t)#e!x

1
!l(t!t

1
)) (129)
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"JpeP
dx

1
Jp C

R
Rx

1

h(x
1
)

Jx
1
Dh(e/[1!v/c]!x

1
) , (130)

since only very small x
1

are important

"JpeP
dx

1
Jp

h(x
1
)

Jx
1

d(e/[1!v/c]!x
1
) (131)

"J1!v/c . (132)

We will now use the expression obtained for G` (Eq. (124)) to calculate the expression for KI (l(t)) in
Eq. (112a):

KI "!J2Pdx
1
dt

1
d(t

1
!x

1
/c)

h(x
1
)

Jpx
1

p~(l(t)!x
1
,t!t

1
) (133)

"!J2Pdx
1

h(x
1
)

Jpx
1

p~(l(t)!x
1
,t!x

1
/c) . (134)

This is as far as one can take matters without an explicit expression for p~. However, for the
particular case where p~ is time independent and

p(x)"p
0
h(x) , (135)

one gets

KI "!p
0
(4/J2p)Jl . (136)

The reason for the minus sign is that stresses ahead of the crack tip always counteract those on
applied on the crack faces.

Notice that Eq. (132) reduces to unity when vP0. This means that in the case of time-
independent loading, KI is indeed the stress intensity factor one would have had if the crack had
been located unmoving at l for all time. For the moving crack, we have

K"J1!v/cKI (l(t)) . (137)

One computes the stress singularity that would have developed if one had a static crack of the
present length, l(t), and multiplies by a function of the instantaneous velocity. It should be stressed
that all details of the history of the crack motion are irrelevant, and only the velocity and loading
con"guration are needed to "nd the stress "elds su$ciently close to the tip. As a consequence, one
can use Eq. (91c) to determine the energy #ow to the tip of the crack. It is

J"v(1!v/c)KI 2/2ak . (138)

Finally, one can present the equation of motion for the crack. The rate at which energy enters the
tip of the crack must be equal to vC(v). There is nothing to prevent the fracture energy C from being
a function of velocity, but the notions of local equilibrium which have prevailed until now strongly
suggest that it should not depend upon anything else. So one must have

C(v)"(1!v/c)KI 2(l)/2ak , (139)
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which by writing out a and KI may be rewritten as

kCp/4lp2
0
"J(1!v/c)/(1#v/c) (140)

or de"ning

l
0
"kCp/4p2

0
(141)

as

l
0
/l"J(1!v/c)/(1#v/c) . (142)

2.8.3. Application to Mode I
The same analysis may be carried out for thin plates under tension. Everything proceeds as

before, except that it is not possible to display simple analytical expressions, although there are
excellent approximations that can be put in simple form. We will just record the "nal result,
discussed in more detail by Freund [7], that gives the energy #ux to the tip of the crack. The result
we quote is for plane stress, which is characterized by a LameH constant jI de"ned by Eq. (27). After
computing K(v), and multiplying by the function A

I
(v) from Eq. (91), Freund "nds that the energy

#ux per unit length extension of the crack is to a good approximation

G(v)"C(v)"
(1!v/c

R
)KI 2(l)

2jI
(143)

N

EC(v)
(1!l2)KI 2(l)

"1!
v
c
R

, (144)

where c
R

is the Rayleigh wave speed (the speed at which the function D given in Eq. (69c) vanishes),
KI is still given by Eq. (134), using p

yy
on the x-axis for p. In the case of time-independent loading

described by Eq. (135) one gets

l
0
/l"1!v/c

R
, (145)

with

l
0
"pCjI /4p2

0
(146)

or

v"c
R
(1!l

0
/l) . (147)

Surprisingly enough, the elaborate analysis above reproduces the result of the simplest scaling
arguments, Eq. (11). Placing the result in the form of Eq. (147) is a bit misleading, since it hides the
possibility that C and hence l

0
can depend strongly upon the crack velocity v. Large apparent

discrepancies between theory and experiment have been due to nothing more than assuming that
l
0

could be treated as a constant. We will discuss this subject more in Section 4.1.

2.8.4. Practical considerations
We now brie#y discuss some of the considerations implied by Eq. (143) in the design of

experiments. We discuss three experimental geometries; one where presumptions of the theory are
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Fig. 9. Stress phh in a polar plot for various values of v/c
4
. For v/c

4
, the maximum tensile stress clearly lies ahead of the

crack at h"0. For v/c
4
"0.7, the maximum has moved away from h"0, but the change is so slight it is scarcely visible,

while by v/c
4
"0.85 the maximum tensile stress is clearly far o! the axis. The small inner loops near the crack tip result

from compressive stresses near h"p.

met well, a second where they are satis"ed in an approximate fashion, and a third where they
clearly fail.

1. A thin plate has a crack running half-way through, and driven by wedging action in the middle.
For times less than that needed for sound to travel from the point of loading to system
boundaries and back to the tip of the crack, all the assumptions of the theory are obeyed.

2. A thin plate has a long crack as before, but now uniform static stresses p
=

are applied at the outer
boundaries, while the faces of the crack are stress-free. This problem is equivalent to one in which
the upper and lower outer boundaries are stress-free, but uniform stresses !p

=
are applied along

the crack faces. The reason for the equivalence is that an uncracked plate under uniform tension
p
=

is a solution of the equations of elasticity, so this trivial static solution can be subtracted from
the "rst problem, to obtain the second equivalent one. Unfortunately, in this new problem, stresses
are being applied to the crack faces all the way back to the left-hand boundary of the sample.
The problem needs to be mapped onto one where stresses are applied to the faces of a semi-
in"nite crack in an in"nite plate, and the correspondence is only approximate.

3. Finally, consider a semi-in"nite crack in an in"nitely long strip, shown in Figs. 9 and 10. The
strip is loaded by displacing each of its boundaries at y"$=/2 by a constant amount d. Far
behind the crack tip as xP!R all the stresses within the strip have been relieved by the
crack. Far ahead of the crack tip, as xP#R, the medium is una!ected by the crack with the
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Fig. 10. Some typical experimental loading con"gurations.

stress "eld linear in y. Thus, the energy per unit extension far ahead of the crack has a constant
value of

2Ed2/=(1!l2) , (148)

where E and l are, respectively, Young's modulus and Poisson ratio of the material. The
translational invariance of the system along x suggests that the crack should ultimately
propagate at a constant velocity v, for a given extension d. Balancing energy as usual,

G"C"2Ed2/=(1!l2) . (149)

Now assume that it is still valid to use Eq. (143). The stress intensity factor KI of a static crack in
a strip loaded with constant displacements d cannot depend upon where the crack is located, so
KI is a constant, and Eq. (143) would predict

G"C"

(1!l2)KI 2
E

(1!v/c
R
) . (150)

The velocity dependence on the right-hand side of Eq. (150) contradicts Eq. (149), and is simply
wrong. The reason for the failure of Eq. (143) in this case is that the assumption that the crack
tip does not feel the presence of the system's boundaries is obviously not valid. The translational
invariance of the system is in fact, crucially dependent on the presence of its vertical boundaries.
Energy is continuously re#ected back into the system as the amount of kinetic energy reaches
a steady state. In contrast, the kinetic energy within a system of in"nite extent increases
inde"nitely as ever farther reaches of material learn about the moving crack, while elastic waves
carrying the information propagate outward.
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2.9. Crack paths

We now brie#y discuss the path chosen by a moving crack. Energy balance provides an equation
of motion for the tip of a crack only when the crack path or propagation direction is assumed.
Although criteria for a crack's path have been established for a slowly moving cracks, no such
criterion has been proven to exist for a crack moving at high speeds.

2.9.1. Quasistatic crack paths
A slow crack is one whose velocity v is much less than the Rayleigh wave speed c

R
. The

path followed by such cracks obeys the `the principle of local symmetrya, "rst proposed
by Goldstein and Salganik [32]. This criterion states that a crack extends so as to set
the component of Mode II loading to zero. One consequence is that if a stationary crack is
loaded in such a way as to experience Mode II loading, upon extension it forms a sharp kink
and moves at a new angle. A simple explanation for this rule is that it means the crack is
moving perpendicular to the direction in which tensile stresses are the greatest. Cotterell and
Rice [21] have shown that a crack obeying this principle of local symmetry is also choos-
ing a direction so as to maximize the energy release rate. The distance over which a crack needs
to move so as to set K

II
to zero is on the order of the size of the process zone; Hodgdon

and Sethna [33] show how to arrive at this conclusion using little more than symmetry
principles.

Cotterell and Rice also demonstrated that the condition K
II
"0 has the following consequences

for crack motion. Consider an initially straight crack, propagating along the x-axis. The stress "eld
components p

xx
and p

yy
have the following form:

p
xx
"(K

I
/(2pr)1@2)#¹#O(r1@2) , (151a)

p
yy
"(K

I
/(2pr)1@2)#O(r1@2) . (151b)

The constant stress ¹ is parallel to the crack at its tip. Cotterell and Rice showed that if ¹'0, any
small #uctuations from straightness cause the the crack to diverge from the x direction, while if
¹(0 the crack is stable and continues to propagate along the x-axis. They also discuss experi-
mental veri"cation of this prediction.

Yuse and Sano [34] and Ronsin et al. [35] have conducted experiments by slowly pulling a glass
plate from a hot region to a cold one across a constant thermal gradient. The velocity of the crack,
driven by the stresses induced by the nonuniform thermal expansion of the material, follows that of
the glass plate. At a critical pulling velocity, the crack's path deviates from straight-line propaga-
tion and transverse oscillations develop. This instability is completely consistent with the principle
of local symmetry [36,37]; the crack deviates from straightness when ¹ in Eq. (151) rises above 0.
Adda-Bedia and Pomeau and Ben-Amar [38] have extended the analysis to calculate the
wavelength of the ensuing oscillations.

Hodgdon and Sethna [33] have generalized the principle of local symmetry to three dimensions.
They show that an equation of motion for a crack line involves, in principle, nine di!erent
constants. It would be interesting for an experimental study to follow upon their work and try to
measure the many constants they have described, but we are not aware of such experiments.
Larralde and Ball [39,40] analyzed what such equations would imply for a corrugated crack, and
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found that the corrugations should decay exponentially. They also performed some simple
experiments and veri"ed the predictions.

Thus, the principle of local symmetry is consistent with all experimental tests that have been
performed so far on slowly moving cracks. Nevertheless, it does not rest upon a particularly solid
foundation. There is no basic principle from which it follows that a crack must extend perpendicu-
lar to the maximum tensile stress, or that it must maximize energy release.

2.9.2. Dynamic crack paths
The absence of a rigorous basis on which to decide which direction a crack will move becomes

particularly perplexing in the case of rapid fracture. A variety of path selection criteria for rapid
fracture has been proposed in the literature. They can be divided into two types, those proposing
that a crack propagate in the direction of a maximal stress and those that are based on a maximum
dissipation of energy. In contrast to the case of quasistatic fracture, these criteria are not equivalent,
and none of them is broadly supported by experiment.

2.9.3. Yowe instability
Yo!e [17] proposed that one check the stability of a rapidly moving crack by returning to the

dynamic stress "elds recorded in Eq. (69), approaching the tip of the crack along a line at angle h to
the x-axis, and computing the stress perpendicular to that line. One wants to choose

za"r cos h#ria sin h, zb"r cos h#rib sin h , (152)

and to evaluate the stress

phh"[cos2h]p
yy
#[sin2h]p

xx
![sin(2h)]p

xy
. (153)

Below a velocity of about 0.61c
4
, depending upon the Poisson ratio, the maximal tensile stress

occurs for h"0. Yo!e noticed that above this critical velocity, the tensile stress phh develops
a maximum in a direction h'0. Above this velocity, the angle of maximum tensile stress smoothly
increases until "nally it develops a maximum at about $603 relative to the x-axis. Thus, above the
critical velocity a crack might be expected to propagate o!-axis. The physical reason for this
spontaneous breaking of the axial symmetry of the problem stems from purely kinetic e!ects. In an
elastic medium information is conveyed at the sound speeds. The stress "eld at the tip of a rapidly
moving crack is analogous to the electric "eld surrounding a point charge moving at relativistic
velocities. The stress "eld then experiences a Lorentz contraction in the direction of propagation as
the crack's velocity approaches the sound speed. As a result, symmetric lobes around the x-axis of
maximal tensile stress are formed above a critical velocity.

Yo!e's critical velocity was "rst considered to provide a criterion for crack branching until it was
noted, experimentally, that large-scale branching occurs in a variety of materials at velocities much
less than this one. In addition, branching angles of order 10}153 instead of the 603 angle predicted
by Yo!e are generally observed.

2.9.4. Other crack branching criteria
To address the failure of the Yo!e criterion as a prediction for crack branching, a number of

other criteria have been proposed [7,41]. The form of the stress "eld at the boundary of the process
zone around the crack tip has been used to derive criteria for the branching angle of a crack
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[42,43]. Criteria of this sort are based on the determination of the direction in which the
local energy density, evaluated at the edge of the process zone, is maximal. The underlying
assumption for this criterion, which was originally suggested by Sih [44], is that crack propag-
ation occurs in the radial direction along which the local energy density possesses a stationary
value. Variants of this criterion have yielded branching angles consistent with those experiment-
ally measured. On the other hand, these same criteria predict critical velocities for crack branching
that are nearly identical to the one that is predicted by the Yo!e criterion. The most recent
addition to this class of criteria was proposed by Adda-Bedia et al. [45]. They propose that
one draw contours of constant principal stress, and look for points where these contours are
perpendicular to lines drawn from the crack tip. The crack may choose to travel along such lines.
According to this criterion, there are two critical speeds, a "rst at which the crack must choose
between three possible directions, and a second at which it must choose between "ve possible
directions. This proposal is perfectly reasonable, but there is no argument or experimental test
that has shown it is to be preferred to other proposals. One rationale for all these models is the idea
that microscopic voids ahead of the crack would tend to initiate growth near the edge of the process
zone. Their direction would then be governed by the form of the stress "eld at the process zone
edge.

The actual branching angles predicted by the various branching criteria are not substantially
di!erent than those trajectories determined by the following `statica condition. Let us look
at the stress "eld formed ahead of a single moving crack. From this "eld one can compute [46,47]
the trajectories that satisfy the quasi-static K

II
"0 condition. If one now looks at the angle

determined by this trajectory at a distance r
#
from the crack tip, where r

#
is the typical size of the

process zone, one also obtains relatively good quantitative agreement with observed branching
angles.

2.9.5. Questions fracture mechanics cannot answer
Throughout the last section we have endeavored to provide an overview of continuum fracture

mechanics. In general, we have seen that by balancing the energy #owing into the vicinity of
a crack's tip with that required to create new surface we can predict the motion of a straight,
smooth crack. Fracture mechanics predicts both the strength and functional form of the near-"eld
stresses. These can be measured and, as we will show, agree well with the predicted values in
a variety of situations. What then don't we know?

1. What are the ingredients of the fracture energy in brittle materials? How should it be expected to
vary with crack velocity?

2. What sorts of processes are happening in the process zone?
3. When a rapidly moving crack follows a macroscopically curvy path, what determines its

direction of motion?
4. What are the conditions under which a crack bifurcates into two macroscopic cracks?
5. Fracture surfaces can go through transitions from smooth to rough appearance. Why?

In the "nal sections of this paper, we will describe a dynamic instability that occurs at a critical
energy #ux to a smooth, initially straight crack. We will demonstrate that this instability and its
resulting development may address many of the questions above, and thus present seemingly
disparate phenomena as a single coherent picture of fracture.
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3. Experimental methods in dynamic fracture

In this section, we will brie#y review some of the main experimental methods used in the study of
dynamic fracture. Depending on both the speci"c problem being investigated and on the experi-
mental resources at hand, experimental methods vary greatly. In a given experiment stress is
applied via externally controlled boundary conditions and the resulting behavior of the crack is
observed. Some of the quantities that can be measured as the crack progresses are the crack's
position and velocity, the instantaneous stress "eld at its tip, and the acoustic emissions resulting
from its motion. On completion of an experiment, the resulting fracture surface can be measured
and correlated with any of these dynamical measurements. Below, we will touch on typical ways by
which the various quantities can be measured.

3.1. Application of stress

3.1.1. Static stress application
The externally imposed stress distribution determines the stresses in the immediate vicinity of the

tip (or, equivalently, the stress intensity factor) and hence drive a crack. There are two general types
of loading that are typical in fracture experiments, static and dynamic.

In experiments using static loading either the boundary conditions or applied stresses are
constant throughout the duration of an experiment. Static loading conditions essentially imprint
an initial static stress distribution into the sample. Depending on the loading and boundary
conditions that are chosen, the stress intensity factor (or stored energy density) along the prospec-
tive path of a crack can increase, resulting in a continuously accelerating crack, or decrease, leading
to a decelerating or possibly arrested crack. Some examples of some common loading con"gura-
tions used are shown in Fig. 10 where `single edge notcheda (SEN) `double cantilever beama
(DCB), and `in"nite stripa loading con"gurations are shown. The `single edge notcheda con"gura-
tion is sometimes used to approximate crack propagation in a semi-in"nite system. When the
loading is performed via the application of constant stress at the vertical boundaries of the sample,
for a large enough sample K

I
JpJl and therefore the energy release rate, GJp2l, becomes

a linearly increasing function of the crack length. This con"guration could be used, for example to
study the behavior of an accelerating crack.

In the `in"nite stripa con"guration, loading of the sample is performed by displacing the vertical
boundaries by a constant amount. In this con"guration, G is constant for a crack that is su$ciently
far from the horizontal boundaries of the sample. This loading would be amenable to the study of
a crack moving in `steady-statea, where the energy release rate, controlled by the initial displace-
ment of the boundaries, is constant.

In the DCB con"guration, when a constant separation of the crack faces is imposed at
l"0, GJ1/l4 is a decreasing function of l and could be used to cause crack arrest. How can one
use con"gurations like the DCB to study dynamic fracture? An initially imposed seed crack of
length l"l

*/*5*!-
would propagate the moment that G exceeds the limit imposed by the Gri$th

condition (8). Under ideal conditions, the crack should propagate for an in"nitesimal distance and
immediately come to a stop, since in this con"guration G is a decreasing function of l. The Gri$th
criterion, however, assumes that the initial crack is as sharp as possible. However, initial seed
cracks prepared in the laboratory by cutting rarely prepare a tip that is as conducive as possible to
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fracture. One can think of the initially created seed crack having a "nite radius at its tip thereby
blunting the stress singularity. A blunt crack tip allows a substantially higher energy density to be
imposed in the system prior to fracture than that allowed by a `sharpa crack. This excess elastic
energy can then drive the crack beyond the constraints imposed by an initially sharp crack. In the
case of the DCB con"guration with constant separation imposed, the excess energy stored in the
sample prior to fracture initiation can cause a crack to propagate well into the sample before crack
arrest occurs.

Blunting of the singularity around a crack tip can also arise dynamically. This can be caused in
the tip region by mechanisms such as nonlinear material deformation around the tip [9], by plastic
#ow induced by the large stress build-up, or from crack-tip shielding that results from the
formation of either micro-cracks or minute bridges across the crack faces in the near vicinity of the
tip [20].

The DCB con"guration can also be used to generate an accelerating crack by imposing the
condition of constant stress instead of constant separation at the crack faces. Under these
conditions, the (quasi-static) energy release rate will increase quadratically with the crack length
[20] as

G"12P2l2/Ew2d3 (154)

where P is the stress applied at opposite points on the crack faces at the edge of the sample, and
w and d are, respectively, the thickness and half-width of the sample.

3.1.2. Fracture initiation
Due to the stress singularity at the tip of a crack as the radius of the crack at its tip approaches

zero, fracture initiation for static loading con"gurations is strongly dependent on the initial crack
tip radius and therefore on the preparation of the initial crack. The stress build-up preceding
fracture initiation can be used to advantage to load a system with an initial energy density prior to
the onset of fracture. Unfortunately, unless one is extremely careful, experimental reproducibility of
the stress at fracture initiation is di$cult. In Plexiglas we can achieve a reproducible stress at
fracture initiation by "rst bringing the system to the desired stress and then either waiting several
minutes for the material to fracture as a result of noise-induced perturbations or by `sharpeninga
the initial crack by gentle application of a razor blade at its tip, once the desired initial conditions
have been reached. These tricks do not work so well in more brittle materials, such as ceramics.

3.1.3. Dynamic stress application
In some applications (e.g. the study of crack initiation before the material surrounding the crack

tip has had time to react to the applied stress) very high loading rates are desirable. A common way
to achieve this is by loading an initially seeded sample by collision with a guided projectile. In this
way loading rates as high as KQ

I
&109MPaJms~1 [48] have been achieved. An alternative way to

produce high rate loading has been achieved by means of sending a very large current through
a folded conducting strip, inserted between the two faces of an initial crack. In this con"guration
magnetic repulsion between adjacent parts of the strip is induced by the current. This method
enables direct loading of the crack faces. A high loading rate can be produced by the discharge of
a capacitor-inductor bank through the strips. This method has been used to produce a pressure
pulse with a step function pro"le on the crack faces having loading rates on the order of

40 J. Fineberg, M. Marder / Physics Reports 313 (1999) 1}108



KQ
I
&105MPaJms~1 [49] in experiments designed to investigate the response of a moving crack

to rapidly changing stresses.

3.2. Direct measurement of the stress intensity factor

Optical methods can be used for a direct measurement of the stress intensity factor and energy
release rate. Two common methods are the `shadow-spota or `method of causticsa and photoelas-
ticity.

The method of caustics was originally derived by Manogg [50] with signi"cant contributions by
Theocaris [51] and Kaltho! [52] in transparent materials and by Rosakis [53] in opaque
materials. The method, applicable in thin quasi-2D plates, utilizes the de#ection of an incident
collimated beam of light as it either passes through (transparent materials) or is re#ected by
(opaque materials) the material surrounding the tip of a crack. Due to Poisson contraction
generated by the high tensile stresses near the tip, the initially #at faces of a plate will deform
inwardly. This deformation of the medium creates a lensing e!ect and diverts light away from the
crack tip. The diverted rays will form a three dimensional surface in space in which no light
propagates. When this light is imaged on a screen, a shadow (`shadow-spota) will be observed. The
shadowed region will be bounded by a caustic surface or a region of high luminescence formed by
the locus of the diverted rays. From the shape of the caustic surface, which can be recorded by
a high speed camera, the `instantaneousa value of the stress intensity factor may be derived. The
method works well with the caveat that the derivation of the stress intensity factor is based on the
assumption that the angular structure of the stresses is given by Eq. (69). In the immediate vicinity
of the tip, this assumption must break down as the yield stress of the material is approached. Thus,
care must be taken that the curve on the material that maps onto the caustic is well away from the
process zone surrounding the crack tip [54].

Photoelasticity coupled with high-speed photography can also be used to measure the stress
distribution, hence the stress intensity factor, induced by a moving crack [55]. This technique is
based on the birefringence induced in most materials under an imposed stress. Birefringence causes
the rotation of the plane of polarization light moving through the material. The induced polariza-
tion must depend upon features of the stress tensor which are rotationally invariant, and therefore
can depend only upon the two principal stresses, which are the elements in a reference frame where
the stress tensor is diagonalized. In addition, there should be no rotation of polarization when the
material is stretched uniformly in all directions, in which case the two principal stresses are equal.
So the angular rotation of the plane of polarization must be of the form

C(p
1
!p

2
) , (155)

where p
1

and p
2

are the principal stresses at every point (eigenvalues of the stress tensor), and C is
a constant that must be determined experimentally. Whenever stresses of a two-dimensional
problem are calculated analytically, the results can be placed into Eq. (155), and compared with
experimental fringe patterns obtained by viewing a re#ected or transmitted beam of incident
polarized light through a polarizer. The observed intensity is dependent on the phase di!erence
picked up while traversing the material and hence provides a quantitative measure of the local
value of the stress "eld. As in the method of caustics, quantitative interpretation of these
measurements is limited to the region outside of the plastic zone. In transparent materials the
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application of this method is straightforward. Photoelastic methods have also been extended to
opaque materials by the use of birefringent coatings which, when su$ciently thin, mirror the stress
"eld at the surface of the underlying material [56]. Surveys of experimental results obtained by the
methods of caustics and photoelasticity can be found in [52] and [57], respectively.

3.2.1. Direct measurement of energy
A direct measure of the energy release rate as a function of the velocity of a moving crack can be

obtained by constraining a crack to propagate along a long and narrow strip as shown in Fig. 10.
This method has the advantage that it relies solely on symmetry considerations and therefore does
not require additional assumptions regarding, for example, the size or properties of the process
zone, as we discussed in Section 2.8.4.

A series of experiments using a long strip geometry and varying the value of d, will result in
a direct measure of G(v). In experiments performed in polymethylmethacrylate (PMMA) [58]
steady-state mean velocities were indeed attained once the crack length surpassed roughly half the
strip height, and the measurements of G(v) obtained agreed well with results previously obtained in
PMMA by means of the methods of caustics [59].

3.3. Crack velocity measurements

In dynamic fracture, the tip of a crack will generally accelerate to velocities on the order of the
sound speed in the sample. As the duration of a typical experiment is of order &100ls, relatively
high-speed measurement techniques are necessary. Common methods, based on either high-speed
photography, resistance measurements, or the interaction of a moving crack with ultrasonic waves
are brie#y reviewed below.

3.3.1. Optical methods
The most straightforward method of velocity measurement is based on high-speed photography

of a moving crack. This method may be used in conjunction with instantaneous measurements of
the stress intensity factor by means of the method of caustics or photoelasticity. High-speed
photography has some major drawbacks as a velocity measurement method. Although the frame
rates of high speed cameras are typically between 200 kHz and 10MHz, these cameras are capable
of photographing only a limited number of frames (&30). Thus, by this method one can either
provide measurements of the mean velocity (averaged over the interval between frames) at a few
points, or, at the highest photographic rates, provide a detailed measurement of the crack velocity
over a short (&3ls) interval. An additional shortcoming of this method is that its precision is
limited by the accuracy at which the location of the crack tip can be determined from a photograph.
In the method of caustics, for example, the location of the crack tip falls within the rather large area
of the (asymmetric) shadow-spot.

These problems can partially be o!set by using a streak camera [60]. In this mode, "lm is pulled
past the camera's aperture at high speed. The sample is illuminated from behind so that, at a given
instant, only the light passing through the crack will be photographed. Since a crack can be made
to essentially propagate along a straight line, the exposed "lm provides a continuous record of its
length as a function of time. The intrinsic resolution of the measurement depends on the velocity of
the "lm and the resolution of the high-speed "lm used. The "nal resolution obtained is also

42 J. Fineberg, M. Marder / Physics Reports 313 (1999) 1}108



dependent both on the post-processing performed on the "lm in order to extract the velocity
measurement, and the stability of the "lm's travel velocity. The same type of measurement has also
been performed by high-speed measurement of the total beam intensity that penetrates the sample
[61]. Assuming that the crack does not change its shape, this intensity is linearly dependent on the
crack's length.

3.3.2. Resistive measurements
The velocity of a rapidly moving crack can also be measured without the use of a high-speed

camera. A simple way to do this is to adhere a grid of thin electrically conductive strips to a sample
prior to fracture. As a crack propagates, the crack faces and therefore the conducting strips, will
separate. If, for example, the strips are connected in parallel to a current source, measurement of the
total electric resistance of the grid with time will provide a jump at each instant that the crack tip
traverses the end of a strip. In this way the precise location of the crack tip at a number of discrete
times is obtained. The thickness of the strips used must be at least an order of magnitude less than
the crack face separation in order to be certain that the crack tip is not signi"cantly ahead of the
fracture of the strip. For small samples of materials such as glass, where, at fracture, the total
extension of the sample can be less than &1 lm, the thickness of the resistive coating should be on
the order of 200}300A_ to ensure precise measurement. The disadvantage of the conductive strip
method is that the discrete measurements inherent in the method can only provide a measure of the
mean velocity between strips. This method can be extended to the use of a continuous coating in
place of discrete strips. The advantage of using a continuous coating is, of course, that the location
of the crack tip is obtained as quickly as the voltage drop across the coating can be digitized. The
change in the resistance of the coating as a function of the crack length can be either measured or
calculated for any given sample geometry and electrode placement. This method has been used in
experiments where the samples themselves were highly conducting with either DC excitation [62]
or with skin e!ect conduction using RF "elds [63]. In experiments on nonconducting materials
a conductive coating must be used. In polymers and glass a 30 nm thick evaporated aluminum
coating was successfully used [64,65] to measure the crack velocity to a precision of better than
20m/s with a spatial resolution of order 0.5mm. Using this method, the precision of the measure-
ment is only limited by the background noise and the uniformity of the coating. With an
evaporated coating, precise velocity measurements are actually obtained only near the sample
faces. When the sample is e!ectively two dimensional, this does not present a limitation. This
property can actually be used to advantage when one wants to correlate the instantaneous velocity
with localized features formed on the fracture surface.

3.3.3. Ultrasonic measurements
A velocity measurement method called `stress wave fractographya was developed by Kerkho!

[66] and used in early studies of brittle fracture. In this method, a running crack is perturbed by an
ultrasonic wave generated from a sample boundary in a direction orthogonal to the direction of
crack propagation. The interaction of the sound with the crack tip causes it to be de#ected
periodically as it traverses the sample. The trace of this de#ection is imprinted on to the resulting
fracture surface. Since the temporal frequency of the modulation is that of the ultrasonic driving,
measurement of the distance between neighboring surface modulations yields a nearly continuous
measurement of the instantaneous velocity of the crack tip. This method has been used both in
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glass and brittle polymers. Its precision is only limited by the ultrasonic frequency used (typically in
the MHz range) and the precision of the surface measurement. A disadvantage of this method
relative to other techniques is that the method is a perturbative one, since the de#ection of the crack
is accomplished by altering the stress "eld at the crack tip. Thus, externally induced oscillations can
potentially mask intrinsic, time dependent e!ects.

3.4. Measurements of heat generation and the temperature rise near a crack

As fracture occurs, a moving crack transforms the elastic energy stored in the elastic "eld of
a material to either kinetic energy, the breaking of bonds or to heat. Two basic types of
measurements have been performed to measure the heat that is generated by a crack. The most
straightforward method has been to place small temperature sensors at a given distance from the
path of a crack and measure the temperature rise in the material as a function of time after fracture
has occurred. Since the time scale of fracture is orders of magnitude shorter (&100}300ls) than
the typical thermal di!usion times within the material, the problem can be approximated by
assuming that an instantaneous planar heat source is created along the fracture plane. Assuming
that the radiative losses are negligible over the period of measurement, the measured temperature
variation with time at a single point can be "t to the solution of the heat conduction equation.
Measurements of this sort were performed in Polymethylmethacrylate (PMMA) by Doll [67] in
glass by Weichert [68] and in steel by Zimmerman et al. [69]. The precision of these measurements
varied between 6 and 20%. In addition to the heat radiated from a moving crack, it is possible, with
the assumption of a black-body radiation spectrum, to estimate of the temperature rise in the
vicinity of the crack tip by the use of IR detectors. Such experiments have been conducted by Fuller
et al. [70] in careful experiments on cracks propagating in PMMA and polystyrene (PS) and in
AISI 4340 carbon steel [71] and Beta-C titanium [72] by Rosakis and Zehnder. In these
experiments, data were obtained by focusing the infrared radiation emitted by cracks moving at
di!erent velocities into an indium}antimonide infrared detector. The temperature of the crack was
then obtained using the assumption that the emission spectrum of a crack corresponds to a black
body spectrum.

The assumption of a black body spectrum may be suspect. This assumption can be checked in
molecular dynamic simulations of fracture in a crystalline material, where, at least in the immediate
vicinity of the tip, it does not appear to be even approximately true. As will be shown in Section 6.6
the energy excited by a moving crack is taken up by discrete phonon frequencies and there is no
sign that these modes are being rapidly thermalized.

Both the measurement of emitted heat and the local temperature of the crack tip can be
correlated with the crack's velocity. The results of these measurements will be discussed in the next
section.

3.5. Acoustic emissions of cracks

Measurement of acoustic emissions has long been used as a tool to detect either the onset or
precursors to fracture, where the existence, frequency of events and event locations can be
measured (see e.g. [73]). These techniques, however, have not been used extensively in dynamic
fracture experiments since, generally, both the existence and location of a crack are determined
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more accurately by other methods. On the other hand, monitoring the acoustic emissions of
a moving crack is a sensitive method to determine whether changes in the stress "eld are occurring
during fracture, because any rapid changes will invariably broadcast stress waves.

Most acoustic emissions used for #aw detection and fracture onset measurements have utilized
arrays of resonant acoustic transducers since the advantage of their high relative sensitivity
more than o!sets the loss of information of the spectral content of the signal. In dynamic
fracture, we shall see that the spectral content of the acoustic signal broadcast by a moving
crack carries important information. Therefore, broadband transducers should be used together
with relatively high ampli"cation to o!set the transducers' lack of sensitivity. Gross et al. [74]
used calibrated NIST-type transducers [75] with a #at response from 0.1 to 1MHz, and Boudet
et al. [76,77] used relatively broadband `pinducera probes to monitor acoustic emissions
during rapid fracture, and correlate them with velocity and fracture surface measurements. In
both experiments, although de#ections of the two dimensional sample normal to its surface
were measured, the probe was sensitive to both longitudinal and shear waves due to mode
conversion [78]. In the experiments by Gross et al., the acoustic probes were calibrated for shear
waves so that a quantitative estimate of the amount of acoustic energy released by the crack
could be obtained.

4. Phenomenology of dynamic fracture

4.1. Comparisons of theory and experiment

How do the predictions of linear elastic fracture mechanics compare with experimental measure-
ments? As long as the basic assumptions of fracture mechanics hold, the theory is quite successful in
predicting both the motion of a crack and the behavior of the stress "eld throughout the medium.
Once these assumptions break down, we will see that the linear theory loses its predictive power.

Fracture mechanics has been highly successful in predicting the value of the stress intensity
factor at the tip of both stationary and moving cracks for both static and dynamically applied
loads. An example is work by Kim [79] where the measured transient behavior of the stress
intensity factor was compared quantitatively to the predictions of Eq. (112). In this experiment, step
function loading was applied to the crack faces in a sheet of Homalite-100 that was large enough to
approximate an in"nite medium. The stress intensity factor was measured optically, using
a method developed by Kim where the relation of the transmitted light through the crack tip to the
stress intensity factor is used. Results of the experiment compared well with the calculated time
dependence of the stress intensity factor [7].

Experiments on crack arrest by Vu et al. in polymethylmethacrylate (PMMA) [80] indicated
similar agreement with theoretical predictions of the transient relaxation of the stress "eld within
the medium. In these experiments, strain gauges, with a temporal resolution of &1ls, were placed
throughout the sample and were used to measure the temporal behavior of the stress "eld
surrounding a crack at times immediately following crack arrest. As predicted by Freund [7], the
stress "eld at a point directly ahead (behind) the crack was seen to reach its equilibrium value (to
within a few percent) as soon as the shear (Rayleigh) wavefront passed.
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Fig. 11. Data of Kobayashi et al. [81] in PMMA. The data seem to indicate that cracks accelerate much more slowly
than linear elastic theory predicts.

How do theory and experiment compare at high crack velocities? Experiments have often
seemed to disagree with Eq. (147). One of the "rst experiments to test these predictions quantitat-
ively was by Kobayashi et al. [81] in polymethylmethacrylate (PMMA). These data are reproduced
in Fig. 11. Similar data have now been duplicated many times in a variety of brittle amorphous
materials, with similar results.

Theory clearly predicts that if the fracture energy is not a strong function of velocity, a crack
should smoothly accelerate from rest to the Rayleigh wave speed, c

R
. As observed in the data of

Kobayashi et al., although the crack initially accelerates rapidly, it becomes increasingly sluggish
and "nally reaches a "nal velocity well below the Rayleigh wave speed.

A brief look at Eq. (147) shows that there is a way out of this di$culty. One has only to suppose
that the fracture energy C is a function of velocity. Specifying in Eq. (146) that l

0
is de"ned in terms

of the minimal C(0) at which crack propagation "rst occurs, one obtains instead of Eq. (147):

v"c
R
(1!C(v)l

0
/C(0)l) . (156)

By allowing the possibility that the fracture energy C(v) increases rapidly as velocity increases, one
can obtain almost any pro"le of velocity versus crack length desired. Indeed, one can view Eq. (156)
as a way to extract the velocity dependence of fracture energy from experimental velocity
measurements. On the other hand, if one is interested in the question of whether the theory is
valid for all crack velocities, then this way out is rather unsatisfactory since it only demonstrates
the theory's plausibility. Validation of the theory cannot be accomplished without an inde-
pendent measurement of the fracture energy. Even with such validation, fracture mechanics
provides no fundamental explanation of the origin of any measured velocity dependence of the
fracture energy.
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Fig. 12. A comparison of directly measured values of the velocity dependence of the fracture energy, C(v), in PMMA with
values predicted by fracture mechanics from Eq. (156), [83]. Note the good agreement until velocities of approximately
400m/s&0.4c

R
.

The "rst comparison of theory and experiment where the velocity dependence of fracture energy
was explicitly taken into account was performed by Bergqvist [60]. He performed a series of
beautiful experiments on crack arrest in PMMA which a!orded direct comparison of calculated
energy release rates with experiment for crack velocities below 0.2c

R
((200m/s). In these experi-

ments 50]20 cm samples were loaded by the application of constant stress on opposing bound-
aries. After fracture initiation, a high speed camera in streak mode was used to obtain a continuous
record of the crack tip location with a temporal resolution of about 1 ls. To compare the velocity
data to theory, Bergqvist used independent measurements of the fracture energy of PMMA as
a function of the crack's velocity that were obtained in a strip geometry. By equating the measured
value of the fracture energy to the calculated value of the energy release rate, he predicted values of
the crack velocity. Comparison of the predicted and measured velocities showed agreement of the
two to within 10%. As the main goal of the experiments was to investigate crack arrest,
comparisons between theory and experiment for velocities higher than 0.2c

R
were not attempted.

Sharon and Fineberg [82] have also performed such a comparison between theory and
experiment for PMMA. To accomplish it, they "rst performed an independent measurement of the
fracture energy of a crack by the use of the strip geometry. An additional series of experiments was
then carried out in 40]40 cm samples, set up as in case 2 of Section 2.8.4. The velocity measure-
ments in this set of experiments were then input into Eq. (156) and the derived values of C(v) thus
obtained were then compared to the direct measurements. The results of these experiments are
shown in Fig. 12.

As in the experiments of Bergqvist, the data agree with Eq. (156) the theory for low velocities, less
than about 400m/s&0.4c

R
. Above this velocity there is a sharp divergence between observed and

predicted values of C(v). The reasons for this divergence, as we will see, are due to the growth of the
process zone around the crack tip to a scale where it invalidates the assumptions of fracture
mechanics in the samples used.
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Table 3
The maximal crack velocities observed in a number of
brittle materials

Material v
.!9

/c
R

LiFl 0.63 [84]
Rolled tungsten 0.85 [85]
Single-crystal tungsten 0.88 [86]
MgO 0.88 [85]
Weak interface PMMA 0.9
Grooved PMMA 0.8
Glass 0.47}0.66
PMMA 0.58}0.62
Homalite 0.33}0.41

4.1.1. The limiting velocity of a crack
An additional, rather robust, theoretical prediction is that of the limiting velocity of a crack.

Eq. (144) predicts that, barring divergent behavior of C as a function of v, a crack should accelerate
until asymptotically arriving at the Rayleigh wave speed, c

R
. As Table 3 indicates, in amorphous

materials such as PMMA and glass, the maximal observed velocity of a crack barely exceeds about
1/2 of the predicted value. On the other hand, in strongly anisotropic materials such as LiF [84]
tungsten [86,85] and MgO [85], a running crack indeed attains up to 90% of the predicted
asymptotic velocity as cleavage through a weak plane occurs.

Is strong anisotropy necessary to attain the limiting velocity of a crack? An interesting experi-
ment by Washabaugh and Knauss [87] indicates that this may indeed be the case. In this
experiment, plates of PMMA were "rst fractured and then rehealed to form a preferred plane in the
material that was substantially weaker than the material on either sides of it. Although the interface
did weaken the PMMA, the re-healed material used still had between 40 and 70% of the strength of
the virgin material. Fracture was performed by impulsively loading the faces of an initial `seeda
crack by means of the electromagnetic loading technique "rst introduced by Ravi-Chandar and
Knauss. Using an interferometer together with a high-speed rotating mirror camera, interfero-
grams of the crack tip were recorded at 20ls intervals. In this way, the crack's maximum velocity
was determined and velocities of up to 0.9c

R
were observed. Similar velocities were also observed in

PMMA which was weakened by drilling a line of holes spaced 0.5mm apart across the sample. The
authors noted evidence of non-steady crack propagation suggestive of a `jerking accelerating-
deceleratinga process in both virgin PMMA and the re-healed material but with the severity of the
uneven motion greatly reduced in the latter case.

In the experiments performed with the re-healed material, Washabaugh and Knauss noted that
none of the cracks propagating along the weakened interfaces produced branches beyond the point
of fracture initiation. The same type of behavior takes place in strongly anisotropic crystalline
materials. Field et al. [85] noted that in experiments on MgO and rolled tungsten (where the rolling
in the preparation of tungsten induces a preferred orientation in the material) branching of a crack
is suppressed until very high velocities. Thus, in strongly anisotropic materials (either crystalline or
arti"cially weakened materials), where microscopic crack branching is inhibited, cracks approach
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Fig. 13. A comparison of the energy release rate G, with the measured heat #ux Q (from Doll [88]) in PMMA. 50}60% of
the energy #owing into the tip of a crack in PMMA ends up as heat in the immediate region of the crack's tip.

the predicted limiting velocity. This fact is an important veri"cation of claims we will later make
about the consequences of dynamic instabilities for isotropic materials.

4.2. Phenomena outside of the theory

We will now brie#y mention some of the phenomena that occur in fast fracture that lie outside
the predictive power of linear elastic fracture mechanics.

4.2.1. The heat dissipated by fracture
We described in Section 3.4 the methods used to measure heat generated by a running crack.

These heat #ow measurements were then correlated with simultaneous velocity measurements in
PMMA by Doll and Zimmerman et al. [67,69] in glass by Weichert et al. [68] and in steel by
Zimmerman et al. [69]. Results of these experiments showed that heating accounted for most of the
elastic energy driving the crack. The experiments of Doll and Weichert indicated that the measured
heat #ux accounts for 50}60% of the energy release, for crack velocities ranging from 0.1 to 0.6c

R
(see Fig. 13). Later experiments by Zimmerman et al. for lower velocities 0.1 to 0.3c

R
in both

PMMA and steel estimated that the measured heat #ux accounted for virtually the entire energy
release.

Although these results indicate that nearly all of the elastic energy "nds its way into the
formation of heat, a central question is where this dissipation occurs within the sample. Is all of the
energy converted to heat within the process zone or does the heating occur as elastic waves
propagating away from the crack are attenuated within the sample? The answer to this question
was obtained by real-time infrared visualization of the crack tip during propagation.

These experiments, "rst performed by Fuller et al. [70] on PMMA and polystyrene, indicated
that temperatures at the crack tip in both materials were approximately constant as a function of
the crack's velocity with a temperature rise of order 500 K. Similar temperature rises were recently
measured in AISI 4340 carbon steel [71] and Beta-C titanium [72] by Zehnder et al. Besides the
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large temperature rise (in PMMA and polystyrene the temperatures at the crack tip were well
above the equilibrium melting temperature!) these experiments also established that, in PMMA,
the source of the heating was within a few lm of the crack's path or well within the process zone, as
de"ned by the material's yield stress. Thus, these experiments indicate that nearly all of the
dissipation in the material occurs in the near vicinity of a crack. The mechanism for the heat release
appears to be the extreme plastic deformation induced by the fracture process in the near vicinity of
the tip.

The statement that nearly all of the dissipation occurs within the plastic zone is supported by the
experiments of Kusy and Turner [89] in their investigation of the fracture energy of PMMA. These
authors found that the fracture energy of high ('105) molecular weight PMMA (the typical
molecular weight of commercially available PMMA is order 106) can be over two orders of
magnitude larger than the surface energy; i.e. the energy needed to break a unit area of bonds. This
large increase in the fracture energy was explained in terms of plastic deformation of the polymer
chains. Their model [89,90] predicts that below a molecular weight of about 105, no signi"cant
plastic deformation occurs in fracture and the fracture energy becomes comparable with the surface
energy. These predictions were borne out by a series of careful experiments where long polymers
were exposed to high energy radiation whose e!ect was to reduce systematically the mean
molecular weight of the polymer as the exposure duration was increased. As a result of the
radiation, the fracture energy of PMMA was observed to decrease by over two orders of magnitude
as the molecular weight of the molecule was reduced from 105 to about 3]104.

How do the heat and temperature measurements of the process zone in#uence basic understand-
ing of the fracture process? From the point of view of continuum fracture mechanics, the fracture
energy is in any case an external input into the theory. Thus, neither the extreme temperature rise
observed within the process zone nor the causes for this have any e!ect on the predictions of the
theory. What is important for fracture theories is that the observed dissipation is localized within
the process zone and not spread out throughout the medium. If the latter were to occur, the entire
rationale behind the balance leading to Eq. (112) would be invalidated. In Section 5 we will
demonstrate that in brittle amorphous materials the dissipation described above has a well-de"ned
structure related to the dynamic behavior of a crack. Thus, although the fracture energy is
a material dependent quantity which carries with it `baggagea such as plastic deformation within
the process zone, the total fracture energy observed is related to the amount of microscopic surface
actually created by the fracture process. The total surface created by the process will, in turn, be
intimately related to instabilities that occur to a single crack as a function of the energy that it
dissipates.

4.2.2. Analysis of fracture surfaces
There has been a great deal of work invested in the analysis of fracture surfaces, and the amount

of literature on this subject is correspondingly large (see, for example, Ref. [91]). Much of the
interest in this branch of engineering, called fractography, is concerned with the determination of
the location of the onset of fracture of a given structure together with the probable cause for its
failure. The visual inspection of a fracture surface is accomplished by using either optical or
electron microscopes, depending on the scale needed for analysis. Although every fracture surface is
di!erent, the proven utility of fracture surface analysis in the determination of di!erent fracture
processes stems from the fact that, empirically, a close relation exists between the deterministic
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dynamics of a crack and the fracture surface that it leaves behind. In many cases the mechanisms
leading to characteristic surface features are not known, but the fact that these features are at all
general is strong evidence that they are created by a deterministic process, independent of details of
the loading or initial conditions (e.g. initial defect structure or distribution) of the object under
study. It is one of the goals of the study of fracture to uncover these fundamental mechanisms and
to understand their generality.

4.2.3. Proxlometry
Besides the imaging of a fracture surface, it is often useful to measure its topography quantitat-

ively. Depending on the required scale, there are various methods to perform measurements of the
local fracture surface amplitude. For scales ranging from 1 to 100lm commercial contact type
scanning pro"lometers can be used to measure properties such as the rms roughness of a surface.
Due to the tip size of the contact probe, however, surface features that are under 10lm in size may
not be properly resolved. To this end, specialized x}y contact [64,64] and optical [76] pro-
"lometers have been used. The study of fracture surfaces at submicron scales has recently been
performed using both scanning tunneling and atomic force microscopy [92,93] where 1 nm
resolution is attainable.

4.2.4. Mirror, mist, hackle
From many studies of fracture surfaces formed in brittle materials, it was found that the surface

created by the process of dynamic fracture has a characteristic structure in brittle amorphous
materials. This structure, called `mirror, mist, hacklea, has been observed to occur in materials as
diverse as glass and ceramics, noncrosslinked glassy polymers such as PMMA and crosslinked
glassy polymers such as Homalite 100, polystyrene and epoxies. Inspection of the fracture surface
in a given experiment shows that near the location of fracture onset, the fracture surface appears
smooth and shiny, and is thereby called the `mirrora region. As a crack progresses further, the
fracture surface becomes cloudy in appearance, and is referred to as `mista. As the `generica crack
progresses still further, its surface progressively roughens. When it becomes extremely rough, the
fracture surface is said to be in the `hacklea region.

4.2.5. Microscopic crack branches
Is there any speci"c structure observed within these regions? In early studies of the fracture of

glass rods, Johnson and Holloway [94], by progressive etching of the fracture surface in the `mista
region, demonstrated the existence of microscopic cracks that branch away from the main crack.
Similar microscopic branched cracks (`micro-branchesa) were later observed by Hull [95] in
polystyrene, and Ravi Chandar and Knauss [96] in Homalite 100 by visualizing the fracture
surface in a direction normal to the faces of the fracture sample. Microscopic ((100lm) branched
cracks have also been observed to result from the rapid fracture of brittle tool steel [97]. As we will
discuss in Section 5, the formation and evolution of micro-branches are a major in#uence on the
dynamics of a crack (Fig. 14).

4.2.6. Parabolic surface markings
In addition to the appearance of small branches in the mist regime, small parabolic markings as

shown in Fig. 15 are commonly observed upon the fracture surface of amorphous materials. These
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Fig. 14. A typical view of microscopic branches as observed in PMMA. The main crack has propagated from left to right
along the center of the photograph. The arrow, indicating the propagation direction, is of length 125lm.

Fig. 15. Parabolic markings typically observed on the fracture surface of PMMA.

markings appear in all three fracture regimes and are interpreted as being the result of microscopic
defects opening up ahead of the main crack front. To see how these markings come about, let us
imagine a microscopic void situated directly ahead of a crack. The intense stress "eld, generated at
the crack's tip, may cause the void to propagate some distance before the main crack catches up
with it. The intersection of the main crack front with the front initiated by the void will then lead to
the parabolic markings appearing on the fracture surface. As observed by Carlsson et al. [98], the
number of the parabolic markings increases with the crack velocity. As the stress intensity factor
increases with velocity, this observation is consistent with the above picture since an increasing
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Fig. 16. A photograph of typical rib-like patterns observed on the fracture surface of PMMA. The distance between ribs
is approximately 1mm. On smaller scales parabolic markings can be discerned.

number of voids should be activated ahead of the crack tip as the stress at the tip increases. Shioya
et al. found the depth of the parabolic markings in PMMA [99] to be approximately 1 lm and
Gross [100] was able to measure small velocity #uctuations resulting from the interaction of the
main crack with these voids (of order 10}25m/s) in PMMA for velocities between 150 and 330m/s
which correlated with the increase in microvoid density observed by Carlsson et al. Ravi-Chandar
et al. have recently completed a comprehensive study of the development of the parabolic markings
as a function of the velocity of a crack for four polymers; PMMA, Homalite-100, Solithane-113 and
polycarbonate [101]. As in the study by Carlsson, they "nd that the parabolic markings in all of
these materials increase in density with increasing values of the stress intensity factor.

4.2.7. Patterns on the fracture surface
In the `mista and `hacklea regions of many brittle polymers, rib-like patterns, as demonstrated in

Fig. 16, on the fracture surface are commonly observed.
Similar patterns have been observed in polystyrene [95], PMMA [65], Solithane-113 and

polycarbonate [101]. In these materials the typical distance between markings is on the order of
1mm, so that they can easily be seen by eye.

In PMMA, where extensive work has been performed to characterize these patterns, the patterns
initiate within the `mista regime. Initially, the width of these structures is much less than the
thickness of the sample, but the typical width of these structures increases with the crack velocity
and eventually, within the `hacklea zone extend across the entire thickness of the sample [102].
These patterns are not smooth undulations along the fracture surface but, instead, are discrete
bands of jagged cli!-like structures. As the crack velocity increases, these structures increase in
height and exist up to the point where a crack undergoes macroscopic crack branching.
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In PMMA, the spacing between ribs was found to be strongly related to the molecular weight of
the monomers used to form the material. Kusy and Turner [89], by varying the exposure time to
gamma-ray radiation, managed to control precisely the average molecular weight of their PMMA
samples. The results of these experiments clearly showed that the rib spacing was a strongly
increasing function of the mean molecular weight. The typical spacing was shown to increase by
over two orders of magnitude as molecular weight was varied between 1]104 and 1]106. These
authors also observed that the fracture energy is a strongly increasing function of the rib spacing.

4.2.8. Roughness of the fracture surface
Much recent e!ort has been directed to characterizing the fracture surface in terms of a `rough-

nessa exponent. This idea was pioneered by Mandelbrot et al. [103] who measured the fracture
surface of steel samples for a number of di!erent heat treatments. They then demonstrated that the
fracture surfaces obtained were scale-invariant objects with a self-a$ne character. Later studies
[104}106] of aluminum alloys, steel, ceramics and concrete indicated that the local height, z, of the
fracture surface scales as z&lf where l is the scale of observation within the fracture `planea and
z the local height of the fracture surface. These studies indicated that for both quasistatic and
dynamic fracture a `universala roughness exponent of f&0.8 is obtained for values of l greater
than a material-dependent scale, m

#
[107,93]. For values of l(m

#
, a di!erent roughness exponent of

f&0.5 is observed [92]. This latter has been interpreted as the result of crack front pinning by
microscopic material inhomogeneities in very slow fracture [108].

In many of the experiments where the roughness of the fracture surface was measured, the typical
scales where scaling behavior was observed were many orders of magnitude smaller that the typical
sample size. For example, the largest scale observed in recent measurements performed on
soda-lime glass [93] was order 0.1lm (or well within the `mirrora regime). Thus, in the context of
continuum dynamic fracture, this roughness does not constitute a departure from `straight-linea
propagation. It is conceivable, though, that the scaling structure observed may e!ect the observed
value of the fracture energy. To this date, no systematic measurements of how the roughness scales
with the velocity of a crack (at velocities of interest to dynamic fracture) have been performed.
Although it is known that the rms surface roughness increases with the velocity of a crack within
the `mista and `hacklea regions in PMMA [64,76], Homalite-100 [109], and crystals when cleaved
at high velocities [85,110] it is not known whether the above scaling persists in this regime.

The scales at which self-a$ne behavior of the fracture surface has been measured in these
experiments are, in general, well within the process zone. As a crack accelerates, however, the
surface structure within the `mista and `hacklea regimes may, depending on the overall system size,
become larger than scales at which the singular contribution to the stress "eld in the medium is
dominant. At this point the structure within the fracture surface may no longer be `swallowed upa
within the process zone, and the description of the dynamics of a crack goes beyond the realm of
linear fracture mechanics.

4.2.9. The velocity dependence of the fracture energy
The fracture energy, or the energy needed to create a unit fracture surface, is of tremendous

practical and fundamental importance. For this reason, measurements of the fracture energy, C, as
a function of the velocity of a crack have been performed for many di!erent materials. The most
common way to perform these measurements is by use of the method of caustics. In single crystals
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Fig. 17. The velocity dependence of the fracture energy, C(v) for (a) AISI 4340 steel from [53], (b) Homalite-100 from
[112], and (c) PMMA from [113]. The data are also shown in dimensionless form, with the velocity scaled by the shear
wave speed displayed versus the dimensionless measure of loading D"K

I
/K

#
.

measured values of the fracture energy necessary to initiate crystal cleavage agree well with
theoretical predictions [20]. In amorphous or polycrystalline materials, however, experiments
indicate that C(v) is a sharply increasing function of a crack's velocity, whose form is only
empirically known. Most of the fracture energy, as we have already seen, eventually ends up as heat
within the process zone. Additional sinks for this energy are the acoustic energy radiated from the
crack (i.e. the kinetic energy within the material) and `fracto-emissiona or the emission of photons
from excited molecules along the fracture surface [111].

In Fig. 17 we present some typical measurements of fracture energy C versus crack velocity v for
PMMA, Homalite-100 and AISI 4340 steel. We also present the data in dimensionless form. The
variable D is a dimensionless measure of loading, equal to K

I
/K

I#
"JG/G

#
, the stress intensity

factor divided by the critical value at which fracture "rst occurs. Velocity is made dimensionless by
dividing through by the Rayleigh wave speed c

R
. We will present relationships between fracture

energy and velocity in this same dimensionless form throughout the rest of this paper; see Figs. 40,
42, 47 and 49. A common feature in all of these, quite di!erent, materials is the sharp rise that
occurs in C as the crack velocity increases. In the case of steels, the rise in fracture energy can be
explained by modeling the process zone as a plastically deforming region, and calculating the
change in plastic dissipation as a function of crack velocity. These calculations are described by
Freund [7]. However, in brittle amorphous materials, such as PMMA and Homalite, dislocations
are immobile, and there is no reason to believe that the classical theory of plasticity can be used to
describe deformations near the crack tip. The origin of enhanced dissipation in these materials
must therefore be sought in other mechanisms.
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Fig. 18. High-speed photographs of the tip of a moving crack in Homalite 100 (from [109]). The photographs were taken
in the (a) mirror, (b) mist and (c) hackle regimes. Note that in the mirror region a single crack tip develops. In the mist
regime small caustics, indicative of multiple crack tips, develop at either side of the crack tip. In the hackle regime the
strength of the multiple caustics increases, and small crack branches behind the crack tip are in evidence.

4.2.10. The observation of a multiple-crack front
A view of fracture, suggested by experiments performed by Ravi-Chandar and Knauss [109], is

that dynamic fracture is not due to the propagation of a single crack but is due to the formation and
coalescence of microscopic voids ahead of a crack front. This view is based on a series of
experiments on Homalite-100. Fracture was induced via the electromagnetic loading technique
described in 3.1.3 where a trapezoidal pressure pro"le with a 25ls rise time and 150ls duration
was applied to the faces of a seed crack. The Homalite sheet used was large enough so that the "rst
re#ected waves from the sample boundaries would not interact with the crack throughout the
150ls duration of the experiment. Within the mist and hackle regions, a front of multiple
microscopic parallel cracks instead of a single crack was observed.

In the mirror region, as shown in Fig. 18, the authors noted that cracks tended to propagate
within a single crack plane. As the crack propagated within the mist region (Fig. 18b) caustics due
to the formation of multiple crack tips were observed. These increased in intensity within the hackle
regime (Fig. 18c) as the secondary cracks increased in size. The authors then went on to show that
the stress intensity factor, measured by means of the method of caustics, was correlated with the
depth of the parabolic markings observed at the same spatial location (see Fig. 15). The authors
interpreted the multiple micro-cracks, whose caustics were observed in the high speed photo-
graphs, as being due to the nucleation of microscopic material #aws, whose traces were indicated
by the parabolic markings left on the fracture surface. These voids, as had been proposed earlier by
Broberg [114], are nucleated by the high stresses ahead of the crack front. In this picture the
motion of the crack is then dictated by the interactions between these growing #aws and the front.

4.2.11. Microscopic and macroscopic crack branching
The question of when a crack has branched is rather a subtle one. If a crack begins to emit

branches that remain small enough relative to the size of the sample, they can simply be viewed as
part of the process zone. As shown in Fig. 18, above a certain energy #ux, cracks in the brittle
plastic Homalite-100 are actually composed of multiple microscopic cracks propagating in unison.
Section 4.2.2 shows that microscopic crack branches are observed in a variety of di!erent materials
within the `mista and `hacklea zones. However, in samples of any given size, an increase in size of
microbranches with energy release rate, G, must eventually bring the process zone to a size that
invalidates the assumptions of fracture mechanics.
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When the #ow of energy to the tip of a crack increases su$ciently, the crack branches into two or
more macroscopic cracks. Once a crack bifurcates, single crack models are, of course, no longer
valid. Therefore, a theory describing a single crack can, at best, provide a criterion for when crack
branching occurs. A number of such criteria for the onset of crack branching have been proposed.
The criterion due to Yo!e and extremal energy density criteria have already been mentioned in
Section 2.8.4. These criteria all su!er from the common problem that the velocities predicted for
the onset of branching are much too high. Additional criteria such as postulating a critical value of
the stress intensity factor, have not been consistent with experiments [41,115] since measurements
at the point of branching show considerable variation of the stress intensity factor K

I
. Eshelby

[116] suggested that a crack should branch when the energy going into the creation of a single
propagating crack is enough to support two single cracks. One problem with this criterion is that if
C were not a strongly increasing function of v, once branching occurred, one would necessarily
observe a large decrease in the branch velocities relative to the single crack velocity preceding the
branching event. In glass, however, post branching velocities are either observed not to decrease at
all [117] or at most undergo a decrease of &10% [66]. If C is a strongly varying function of v, as
presented in Fig. 17, the slight drops in velocity after branching would not necessarily present
a problem. At any rate, the Eshelby criterion is certainly a necessary one for crack branching. The
fact that a critical value for the stress intensity factor does not seem to work would preclude the use
of the Eshelby criterion as a su$cient condition.

Experimentally, there seems to be no basis for a critical velocity for macroscopic crack
branching, as predicted by the Yo!e criterion. For example, experiments in glass [97] have yielded
branching velocities between 0.18 and 0.35c

R
. In PMMA [118] branching velocities are consis-

tently about 0.78c
R
, and in Homalite branching velocities between 0.34 to 0.53c

R
have been

observed [115]. When using data on branching velocities to examine intrinsic properties, one must
ensure that branching occurred in a given experiment at locations that are far enough away from
the lateral boundaries to ensure that the system is e!ectively `in"nitea in extent. Otherwise, studies
by Ravi-Chandar and Knauss [119] have shown that branching can be induced by the arrival of
waves generated at the onset of fracture and re#ected at the lateral boundaries of the system back
into the crack tip.

Although the existence of a well-de"ned criterion for the onset of branching is not apparent in
experiments, the consistent values of branching angles that have been observed in many di!erent
materials suggest that there may be a degree of universality in the macroscopic branching process.
The branching angles, as quoted in the literature, are generally determined by measurement of the
tangent of a branched crack at distances of order a fraction of a millimeter from the crack tip.
Angles of 103 in PMMA [118] and glass [94], 143 in Homalite, 153 in polycarbonate [41] and
&183 in steel [97] have been reported for samples under pure uniaxial tension.

4.2.12. `Non-uniquenessa of the stress intensity factor
In an additional series of experiments on Homalite-100, Ravi-Chandar and Knauss [96]

discovered another apparent discrepancy between theory and experiment. In these experiments,
high-speed (5ls between exposures) photographs of the caustic formed at the tip of a crack
initiated by electromagnetic loading at high loading rates were performed. The velocity of the
crack, as deduced from the position of the crack tip in the photographs, was then compared with
the instantaneous value of the stress intensity factor, which was derived from the size of the caustic.
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At low velocities (below &300m/s"0.3c
R
) a change in the value of the stress intensity factor (e.g.

as induced by a wave re#ected from the boundaries) resulted in an `instantaneousa change in the
crack's velocity, exactly as the theory predicts. On the other hand, at higher velocities (above
&300m/s) signi"cant changes in the stress intensity factor produced no discernible corresponding
change in the crack's velocity. These experiments have been interpreted as indicating that the stress
intensity factor is not a unique function of crack velocity.

The puzzling questions that these experiments posed on the relation between fracture velocity
and fracture energy interested us and many others in the "eld of dynamic fracture. In the next
section we will provide an explanation for these questions that builds on this work.

5. Instabilities in isotropic amorphous materials

5.1. Introduction

Dally [112] spent many years studying dynamic fracture in amorphous polymers, and in steels.
In summarizing these experiments, he concluded that

1. The proper way to characterize a dynamic fracture experiment is through two dimensionless
numbers; the crack velocity divided by a wave speed, v/c, and the dynamic stress intensity factor
divided by the stress intensity factor at onset, K

I
/K

I#
, which is identical to the dimensionless

parameter D used in characterizing our experiments and theories. The functional relation
between these two numbers carries most of the dynamical information about fracture, and can
be measured reproducibly for a wide variety of geometries and loading histories.

2. The energy needed for fracture of brittle amorphous materials increases sharply past a certain
velocity, where the straight crack becomes unstable to frustrated branching events.

We will provide detailed experimental evidence for this point of view in what follows, and show
that it allows one to bring together many apparently con#icting experimental and theoretical
results.

When we began experiments on dynamic fracture of amorphous brittle materials there was
a general perception that theory and experiment did not agree. Freund [7, pp. 37}38], speci"cally
mentions in a short list of phenomena `not yet completely understooda the `apparent terminal
crack speed well below the Rayleigh wave speed in glass and some other very brittle materialsa. In
retrospect, the divergence between theory and experiment was not as great as it seemed. Unease
with the results of theory arose from the expectation that motion of cracks should be predictable on
the basis of linear elastic fracture mechanics alone. In a brittle material it seemed plausible that
fracture energy should not vary much as a function of crack velocity, despite unambiguous
experimental evidence that large variations in fact occurred. Thus, the apparent di$culty was that
cracks did not accelerate to the expected limiting speed or obey expected equations of motion,
while in fact the question needing an answer was why the fracture energy varied so strongly with
crack velocity.

Besides the question of the terminal speed of a crack, we were bothered by the apparent lack of
explanation of the many characteristics of brittle fracture, mentioned in the last section, which
elastic fracture mechanics could not answer. No satisfactory answers were available for basic
questions such as how and why structure arises on a fracture surface or why macroscopic
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Fig. 19. A schematic view of a typical experimental system used for monitoring the velocity of a crack (from [102]). The
center of the sample is coated with a thin (&30 nm wide) conductive coating. As a crack progresses across the sample, it
cuts the conductive layer thereby increasing its resistance. The resistance change is converted to a voltage by means of
a bridge circuit and the voltage is then digitized to 8}12 bit resolution at high rates (typically 10}20MHz). This provides
a `continuousa record of the position of the crack's tip with time.

branching occurs. We now have an answer to many of these questions which has arisen from
experimental work on isotropic amorphous materials, and is complemented by theoretical and
numerical work on crystals. The answer is incomplete since a compelling theory of amorphous
materials is absent, as are decisive experiments in brittle crystals. However, many of the experi-
mental and theoretical observations now "t neatly into a coherent scheme, which we now will
endeavor to explain.

5.2. Experimental observations of instability in dynamic fracture

We began performing experiments in dynamic fracture [64] in the hopes of obtaining detailed
dynamical records of crack motion, and correlating them with features left above and below the
crack surface. We measured crack velocities using the conductive strip technique described in
Section 3.3.2. A sketch of the experimental setup used in this type of velocity measurement is shown
in Fig. 19.

With this measurement system it was possible to obtain high resolution measurements of the
crack's velocity at 1/20ls intervals for about 10 000 points throughout the duration of an
experiment. The velocity resolutions obtained in the "rst experiments were order $25m/s. This
resolution was later improved to about $5m/s by analog di!erentiation of the signal [100,120]
prior to digitization. Thus, it became possible to follow the long-time dynamics of a crack in
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Fig. 20. A typical measurement of the velocity of a crack tip as a function of its length in PMMA. After an initial jump to
about 150m/s the crack accelerates smoothly up to a critical velocity v

#
(dotted line). Beyond this velocity, strong

oscillations in the instantaneous velocity of the crack develop and the mean acceleration of the crack slows.

considerable detail. In experiments on the fracture of PMMA a spatial resolution between
measurements of order 0.2mm was obtained [65,58]. An additional important advantage of this
technique is that information can constantly be stored into bu!ers and discarded. The crack can be
loaded very slowly, and when it "nally moves, simply refrain from throwing away the contents of
the bu!er. Thus, the initial motion of a crack can be recorded, although it begins to move rapidly at
an uncertain time.

These high-resolution measurements have yielded a rather di!erent picture of a crack's dynamics
than had previously been obtained. A typical measurement of a crack propagating in PMMA is
shown in Fig. 20, where the velocity of a crack as a function of its length is presented. The "gure
highlights the following features of the crack's dynamics. The crack "rst accelerates abruptly, over
a time of less than 1ls, to a velocity on the order of 100}200m/s. Beyond v

#
the dynamics of the

crack are no longer smooth, as rapid oscillations of the crack's velocity are apparent. As the crack's
velocity increases, these oscillations increase in amplitude.

5.2.1. Initial velocity jump
It is natural to wonder whether the initial velocity jump seen in Fig. 20 is an intrinsic feature of

the crack dynamics, or whether it is related to the initial conditions. The crack begins at rest, and
the tip has ample time to become slightly blunted and make it di$cult for the crack to begin
moving. Hauch [121] performed experiments where the energy available per unit length decreased
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Fig. 21. Crack velocity versus time in geometries designed to produce gradual crack arrest. In PMMA and Homalite,
cracks decelerate slowly towards zero velocity, on the scale of ls, while in glass, cracks are able to accelerate slowly from
zero velocity, and travel stably at very low velocities. These data show that jumps in velocity from zero are not intrinsic
properties of fracture dynamics in amorphous materials. Data of J. Hauch [121].

slowly through the length of the sample. We show some results from these experiments in Fig. 21.
In both PMMA and Homalite-100, cracks decelerated gradually to zero velocity, strongly indicat-
ing that initial trapping rather than any intrinsic dynamical e!ect was responsible for the velocity
jumps always seen when cracks begin to move. In the case of glass, it was possible to prepare very
sharp seed cracks so that crack motion could initiate gradually, and the crack would then
propagate steadily at velocities only a few percent of the Rayleigh wave speed. These data are also
shown in Fig. 21.

5.2.2. Velocity oscillations beyond a critical velocity
Are the oscillations evident in Fig. 20 randomly #uctuating or periodic in time? A blow-up of

a typical time series of velocity measurements of a crack moving within PMMA, after the onset of
the oscillations, is shown in Fig. 22.

In the "gure, it is apparent that, although the oscillations of the crack velocity are not perfectly
periodic, a well-de"ned time scale exists. In PMMA the value of this scale is typically between 2 and
3ls. Power spectra of experiments in which the crack accelerated throughout the experiment
indicate that the location of the peak in the frequency domain is constant despite changes of up to
60% of the mean velocity [65].

Evidence for the existence of a critical velocity for the onset of the oscillations is presented in
Figs. 23 and 24. The data presented in the "gure were obtained by plotting the velocity at which the

J. Fineberg, M. Marder / Physics Reports 313 (1999) 1}108 61



Fig. 22. Measurements of the velocity of a crack propagating in PMMA as a function of time (upper). The crack is
propagating in steady-state above v

#
. The corresponding power spectrum is shown in the lower plot. Note the existence of

a well-de"ned time scale (from [122]).

Fig. 23. Critical velocity as a function of the crack length at the moment of appearance of surface structure. Triangles,
1.6mm wide extruded PMMA surrounded by air; circles, 3.2mm wide cell-cast PMMA surrounded by air; squares,
3.2mm wide cell-cast PMMA surrounded by helium gas (data from [65]).

Fig. 24. Geometry of the fracture instability. The crack travels from left to right, creating a ribbed structure on the
fracture surface, the x}z plane, and microbranches beneath it, in PMMA.
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Fig. 25. Photographs of typical fracture surfaces in PMMA for v(v
#
(upper left), v&v

#
(upper right) and v'v

#
(lower

"gure). The photographs are all to scale where the width of the surfaces shown is 3 mm. Note that the pattern starts to
develop in the vicinity of v

#
(from [122]).

"rst deviation from a #at fracture surface was obtained [65]. As the value of v
#
obtained for PMMA

was suspiciously close to the speed of sound in air, experiments were also performed in helium gas
(where the sound speed is 965m/s) where no discernible change in the value of v

#
was obtained.

Experiments have since indicated that v
#

is independent of sample geometry, sample thickness,
applied stress, and the acceleration rate of as the crack. Whenever, in PMMA, the critical
steady-state velocity of 0.36c

R
is surpassed, both oscillations in the crack velocity and an increase in

the fracture surface area result.

5.2.3. The creation of surface structure via the instability
As mentioned previously, at high fracture velocities characteristic surface features are observed

along the fracture surface of brittle polymers. At low velocities, on the other hand, the characteristic
featureless `mirrora fracture surface is obtained. How does the fracture surface structure relate
to the dynamical behavior of the crack that was described above? In Fig. 25 typical photographs
of the fracture surface in PMMA are presented for values of v(v

#
, v&v

#
, and v'v

#
. From

the "gure it is evident that the surface structure appears in the near vicinity of v
#
. Pro"lometer

[65] measurements were performed to map out the topology of the fracture surface. These
were then correlated with measurements of the crack velocity taken when the fracture surfaces
were formed. As Fig. 25 indicates, in the near vicinity of v

#
structure starts to appear. Initially,

the surface structure is apparent on only a relatively small amount of the fracture surface. In
order to characterize the amplitude of this structure, the average height of the points not found
in the mirror-like regions within the fracture surface was plotted as a function of the mean
velocity of the crack. This plot is reproduced in Fig. 26. The following features are evident in the
"gure.
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Fig. 26. The rms value of the surface height (obtained as explained in the text) as a function of the mean crack velocity
in PMMA. The di!erent symbols indicate experiments performed with di!erent stresses and sample geometries
(from Ref. [65]).

f At v
#
"0.36c

R
, in PMMA, a sharp, well-de"ned transition occurs where surface structure is

created.
f The surface structure formed is a well-de"ned, monotonically increasing function of the mean

velocity of the crack.
f Both the transition point and functional form of the graph are independent of the details (e.g.

initial and boundary conditions) used in the experiment, and are therefore intrinsic to the
fracture process.

The dependence of the rms surface deviations with the mean velocity has also been measured over
a larger range of velocities in PMMA by Boudet et al. [76,77]. These authors have measured the
pure rms deviations of the surface (without accounting specially for the mirror-like regions as
described above). Qualitatively, these latter measurements agree with those in Fig. 26 although, in
the region of the transition the data look quantitatively di!erent, although it is reasonable to
assume that the di!erence is due to the fact that a pure rms calculation of the data gives little weight
to the areas where the fracture surface is non-trivial, since, for v&v

#
the mirror-like regions

dominate the fracture surface.
Fineberg et al. [64,65] also measured the cross-correlation between the local surface structure

and the instantaneous measurements of the velocity. The two types of measurements were
compared along the faces of the sample, where the local velocity of the crack was, in essence,
measured. The cross-correlation function obtained revealed the temporal oscillations at the 2}3ls
scale observed in the velocity measurements, although the degree of correlation (about 0.3) was
quite low. A higher degree of correlation (about 0.5}0.6) was later observed by Boudet et al. [77]
between the #uctuating part of the velocity and acoustic emissions of a crack.

In summary, both the existence of a sharp critical velocity for the onset of oscillatory behavior of
the crack together with the well-de"ned monotonic dependence of the surface structure created by
the crack beyond v

#
point to the existence of an instability of a moving crack beyond this critical

velocity. The behavior of the system is not in#uenced either by the boundary or initial conditions
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and is seen to be solely a function of the mean velocity of the crack, or, equivalently, the energy
release rate. This indicates that the instability is intrinsic to the system and dynamical in nature.
Although the quantitative measurements described above have been performed in PMMA, the
similarities of the fracture surface formed in such diverse amorphous brittle materials as PMMA,
glass and brittle ceramics suggest that the dynamical instability is not con"ned to this single
material, but is a general instability of brittle fracture. In this section, we will describe additional
experiments that will verify this conjecture. The following sections will describe both numerical
calculations and analytical models where behavior bearing close resemblance to the experiments is
observed.

5.2.4. Micro-branching as the instability mechanism
What is the mechanism that gives rise to the dynamic instability described above? An answer to

this question was provided by experiments performed by Sharon et al. [58]. As detailed in
Section 4.2.2, microscopic branches have been observed within the `mista region in a variety of
brittle materials ranging from PMMA to hardened steels. Sharon et al. analyzed these structures as
a function of crack velocity. In Fig. 27 we show photographs of the transverse structure observed
in PMMA for velocities prior to, at and beyond v

#
.

As Fig. 27 indicates, below v
#
no micro-branches are observed. At v

#
, branches begin to appear

and, as the mean velocity of the crack increases, the branches become both longer and more
numerous. In Fig. 28 a the mean length of a microbranch is plotted as a function of the mean
velocity of the crack. As in Fig. 26 we see that, although at a given crack length the size of
micro-branches varies widely, the mean branch length of a micro-branch is a smooth, well-de"ned
function of the mean velocity. As in the case of the surface amplitude, at v"v

#
there is a sharp

transition from a state having no branches to a state where both the main crack and daughter
branches are observed. As Fig. 29 indicates, the value of v

#
can be measured quite reproducibly for

a wide variety of initial conditions. Whether the experiment begins with a blunted seed crack that
accelerates rapidly to high velocities, or with a long sharp crack that stabilizes at lower velocities,
once v

#
is attained, we "nd micro-branches appearing. Presumably, a critical energy #ux to the tip

is achieved at the same time as well, but we did not measure energy #ux directly. The same value of
v
#

describes both the transition to micro-branches and the appearance of surface structure.
How does the appearance of micro-branches relate to the structure formed on the fracture

surface? In Fig. 28 the mean microbranch length (a) as a function of the mean velocity is compared
to the surface amplitude measurements (b). Although the two "gures are markedly similar, the
typical size of micro-branches, for a given velocity, is about 2 orders of magnitude larger than the
scale of the surface structure. This indicates that the surface structure is a result of the micro-
branching process. These measurements imply that the structure observed on the fracture surface
is, essentially, the initial stage of a micro-branch which subsequently continues into the sample in
a direction transverse to the fracture plane. This is illustrated in Fig. 24 where a section of the
fracture surface is shown together with a cut that reveals the branched structure beneath it.

As Fig. 28c demonstrates, the increase in the size of the velocity #uctuations is also a direct result
of the micro-branching instability. The #uctuations in the velocity can now be understood as
follows. As a crack accelerates, the energy released from the potential energy that is stored in the
surrounding material is channeled into the creation of new fracture surface (i.e. the two new faces
created by the crack). When the velocity of the crack reaches v

#
, the energy #owing into the crack
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Fig. 27. Images of local crack branches in the x}y plane in PMMA. The arrow, of length 250lm, indicates the direction
of propagation. All "gures are to scale with the path of the main crack in white. (top) v(v

#
(center) v"1.18v

#
(bottom)

v"1.45v
#
(from [58]).

tip is now sub-divided between the main crack and its `daughtersa which are formed by the
branching events. As a result, less energy is directed into each crack and the velocity of the crack
`ensemblea diminishes. The daughter cracks, which compete with the main crack, have a "nite
lifetime. This presumably occurs due to screening of the micro-branches by the main crack as it
`outrunsa them, because of its geometrical advantage of straight line propagation. The daughter
cracks then die and the energy that had been diverted from the main crack now returns to it. This
causes it to accelerate until, once again, the scenario repeats itself.

5.2.5. Micro-branch pro,les
As Fig. 27 indicates, at a given mean velocity both the lengths and distances between consecutive

micro-branches are broadly distributed. Sharon et al. [102] have shown that in PMMA, these
quantities are characterized by log normal distributions whose mean and standard deviation
values are linearly increasing functions of the mean crack velocity. As an example, the branch
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Fig. 28. (a) Mean branch length, (b) the rms value of the fracture surface amplitude, and (c) the rms velocity #uctuations
as functions of the mean crack velocity, v, in PMMA. The arrows indicate the critical velocity of 340m/s. The data in (a)
and (b) were obtained by measurements of accelerating cracks in plates having di!erent geometries and loading stresses.
Note the nearly two order of magnitude di!erence in scales between the mean branch length and fracture surface
amplitudes for the same values of v. The velocity #uctuation data were measured at steady-state velocities. Although
velocity #uctuations are observed prior to v

#
, a sharp rise in their amplitudes occurs beyond v

#
(from [113,102]).

Fig. 29. The critical velocity for the appearance of micro-branches (squares) as a function of the energy density stored in
the sample far to the right of the crack. For comparison, the terminal steady-state velocity (triangles) for the same
experiments are shown. The data, taken from [102], are from experiments performed on PMMA in the strip geometry.
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Fig. 30. A typical probability distribution of micro-branch lengths at a constant velocity of 585m/s in PMMA. Note the
"t to a log normal distribution (solid line) together with a minimum branch length of about 30lm. (inset) the mean
length, S¸T, (squares) and standard deviation (triangles) of the micro-branch length distributions in PMMA as a function
of the mean crack velocity. Both increase linearly with the same 1ls slope. Thus, the entire distribution scales linearly
with the mean crack velocity (from [102]).

length distribution at a single velocity together with (inset) the dependence of the mean length and
standard deviation of the length distributions with the mean crack velocity are shown in Fig. 30.
Although it is obvious from the broad distributions above that the instantaneous lengths of
micro-branches have a random character, one might want to look at the path that a given branch
takes as it moves away from the main crack. Although a given branch may choose its length from
a broad distribution, all micro-branches will propagate along an extremely well-de"ned trajectory.
This is demonstrated in Fig. 31a, where the pro"les of a number of micro-branches, formed at the
same mean velocity, are superimposed and shown to trace out a well-de"ned function. Log}log
plots of these trajectories in both PMMA and glass (Fig. 31b) show that the micro-branch pro"les
in both materials follow a power-law of the form

y"0.2x0.7 , (157)

where x and y are, respectively, the directions parallel and perpendicular to the direction of
propagation of the main crack, and the origin is taken to be the point at which the micro-branch
begins. Surprisingly, both glass and PMMA, two materials with greatly di!erent microscopic
structure, have nearly identical values for both the exponent and prefactor [83]. The nearly
identical branch trajectories observed in Fig. 31 in such highly di!erent materials suggests a univer-
sality of micro-branch pro"les in brittle materials whose origin is dictated by the universal
behavior of the stress "eld surrounding the crack tip. This conjecture is supported by the
observations by Hull [95] of the same type of trajectory in polystyrene, where the micro-branch
pro"les were attributed to craze formation. Hull's analysis of these structures indicated that the
branch pro"les follow the trajectory of maximum tangential stress of the singular "eld created at
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Fig. 31. Demonstration of the power-law scaling of micro-branch trajectories (from [102,83]). Shown are the mean
micro-branch pro"le in PMMA for (squares) v"374m/s (triangles) v"407m/s, and (circles) v"470m/s. All pro"les are
described by the same function: y"0.2x0.7 where x and y are, respectively, the distance from the branching point, in mm,
in the directions parallel and perpendicular to the direction of propagation of the main crack. (inset) log}log plot of
micro-branch trajectories measured in PMMA (triangles) and glass (squares). Note that in both materials the micro-
branch pro"les are described by the same law.

the tip of the main crack. Using this criterion, this trajectory is also described by Parleton's [46]
numerical calculation of the stress "eld of a single static crack.

How are micro-branches related to macroscopic branches? Let us examine the `branching
anglea predicted by Eq. (157). The power-law form of Eq. (157) would predict a branching angle of
p/2 as x approaches the point of branching. The maximum branching angle that has actually been
observed was limited, experimentally, by di!raction. The largest angle observed by Sharon et al.
[102] in PMMA was reported to be 303 at a 3lm distance from the bifurcation point. On the other
hand, the values of the `branching anglea for macroscopic branching that are quoted in the
literature are measured at distances typically of order 100}300lm from the branch onset. The
angles that are tangent to the branch trajectory at these distances range from 15 to 113. This is in
excellent agreement with the values of the branching angle (see Section 4.2.11) quoted in the
literature for brittle materials ranging from polymers to hardened steel. These observations suggest
that a smooth transition between microscopic and macroscopic crack branches occurs in brittle
materials and that the characteristic features of crack branches exhibit, at these scales, a high
degree of universality. If this picture is correct, the criterion for the formation of macroscopic crack
branches simply coincides with the onset of the micro-branching instability.

5.2.6. The transition from 3D to 2D behavior
Although the origin of crack branching may now be understood to result from the micro-

branching instability, a new question now arises: under what circumstances will a branched crack
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Fig. 32. The mean width of coherent zones on the fracture surface of PMMA as a function of the mean crack velocity. The
data shown were obtained from both 0.8mm wide (circles) and 3.0mm wide (squares and triangles) samples. At v"550m/s
the pattern width is on the order of the sample thickness, indicating a transition from a 3D to 2D state (from Ref. [102]).

Fig. 33. The surface ratio of a running crack as a function of its mean velocity, v. The surface ratio is de"ned as
(S

065
!S

*/
)/(S

065
!S

*/
) where S

065
and S

*/
are, respectively, the surface areas created by micro-branches along the faces

and center planes of the sample. The width of the PMMA sample used was 3mm. At velocities above 1.65v
#
, S

065
"S

*/
indicating a homogeneity of microcrack production across the entire width of the sample (from [102]).

survive and continue to propagate away from the main crack? A necessary condition for a micro-
branch to develop into a macroscopic crack is the coherence of the micro-branch over the entire
thickness of the sample. As shown in experiments on PMMA [102], near the instability onset, the
width of a micro-branch is quite small (on the order of 100lm). As the crack velocity increases
beyond v

#
, the branch width increases along with the branch length.

Sharon et al. [102] quanti"ed the increase of the `coherence widtha of the branches in two ways.
The "rst method used was to study the width of the patterns formed by the branches along the
fracture surface as a function of v. As can be seen in Fig. 25, the width of coherent `islandsa formed
along the fracture surface increases with v. The results of this analysis are reproduced in Fig. 32.
From microscopic widths near v

#
the pattern width increases sharply with the mean velocity of the

crack, until, at a velocity of about 1.7v
#
the pattern becomes coherent across the entire thickness of

the sample. Shortly above this velocity, macroscopic branching occurs.
An additional measure of this 3D to 2D transition can be seen in the micro-branch distribution

across the sample width. Near the onset of the instability, the distribution of the micro-branches as
a function of the distance away from the sample faces is very nonuniform. In PMMA the
production of micro-branches near onset falls o! sharply with the distance from the faces of the
sample. To quantify this fall-o!, Sharon et al. [102] measured the ratio of the amount of total
fracture surface produced by the crack and branches located at the sample faces with that produced
at the center of the sample (see Fig. 33). As Fig. 33 shows, the di!erence in surface production
between the outer and center planes decreases continuously until, at v"1.65v

#
, this di!erence

vanishes, indicating a homogeneity of micro-branch production across the sample.
Curves similar in behavior to Fig. 32 have also been observed in studies of the rms surface

amplitude and total sound emission of the crack by Boudet et al. [77]. In these experiments, the
acoustic emission and rms surface amplitude of cracks propagating through PMMA were mea-
sured as a function of the crack's velocity. Both the sound emissions and surface roughness were
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Fig. 34. The relative surface area (de"ned as the total area per unit width created by both the main crack and
micro-branches normalized by that which would be created by a single crack) as a function of the mean crack velocity, v.
The data in the "gure were obtained from cracks moving at steady-state velocities in the strip con"guration (crosses) as
well as from accelerating cracks (other symbols) driven by stored energy densities varying between 3.2]106 to
5.1]106 erg/cm2. Note that the total surface area at high velocities is many times greater than that created by the main
crack (from Ref. [113]).

observed to diverge as the mean velocity approached 1.8v
#
(600 m/s). These measurements, together

with the divergent behavior of the pattern widths at nearly the same velocity, suggest that a second
transition may be occurring at v&1.7v

#
. As the divergence of surface roughness observed by

Boudet et al. [77] is indicative of macroscopic branching, the transition from 3D to 2D behavior
described above may also be a su.cient condition for macroscopic branching to occur.

5.2.7. Energy dissipation by a crack
As we mentioned in Section 4.2.9, the fracture energy, C, increases sharply with the crack velocity

in a variety of di!erent brittle materials. In light of the micro-branching instability, can this sharp
increase in the energy needed to form a crack be explained? In PMMA, as demonstrated in Fig. 17,
the energy release rate increases by nearly an order of magnitude as the mean velocity of a crack
surpasses v

#
. Beyond v

#
we know that the micro-branching instability occurs and, as a result the

total amount of fracture surface created by the crack `fronta, must increase. This surface increase
must thereby lead to an increase in C. Sharon et al. [113,102] quanti"ed the amount of surface
formed by the crack ensemble, by de"ning the relative surface area as the total area per unit crack
width created by both the main crack and micro-branches, normalized by that which would be
formed by a single crack. Their measurement, in PMMA, of the relative surface area as a function
of the mean velocity of the crack is shown in Fig. 34. As only a single crack propagates prior to the
instability the relative surface area is unity for v(v

#
. Beyond this velocity, the total surface created

indeed rises steeply with v, with the surface contribution due to micro-branches a factor of six
greater than the surface contributed by a single crack at 600m/s.

The data shown in Fig. 34 were obtained in experiments performed both in strip geometries,
which yielded steady-state propagation, and large square aspect ratio samples where continuously
accelerating cracks were observed. The velocity dependence of the relative surface area formed in
both systems was the same, indicating the intrinsic character of the micro-branching instability.
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Fig. 35. The relative surface area as a function of the energy release rate, G, in PMMA. The data in the "gure were
obtained from experiments in the strip geometry, for steady-state mean crack velocities. After an initial jump (see text) the
relative surface area is linearly dependent on G. The inverse slope of the graph leads to a constant energy cost per unit
surface of 5]105 erg/cm2. This is equal to the fracture energy immediately preceding the branching instability (from Ref.
[113]).

In the experiments using the strip geometry, simultaneous measurements of the energy release rate,
G, and the relative surface area were possible. The relationship between these quantities is shown in
Fig. 35. The "gure shows that after an initial jump which occurs at around v'v

#
, the amount of

surface area formed is a linear function of the energy release rate. This means that both before and
after the instability onset, the fracture energy, given by the inverse slope of the curve, is nearly
constant. The fracture energy `increasea observed in Fig. 17 and Fig. 13 in PMMA is thus
explained entirely as a direct result of the micro-branching instability. The fracture energy
e!ectively rises because increasingly more surface is created due to micro-branch formation. The
cost, however, to create a unit fracture surface, remains constant and is close to the value of the
fracture energy immediately preceding the instability onset. Although, at this writing, experiments
verifying the constancy of C have only been performed in PMMA, it is conceivable that the
universally observed increase in the fracture energy of brittle materials, demonstrated in Fig. 17,
may be generally explained by this mechanism.

Some comments are in order. First, the micro-branching mechanism does not entirely explain
the rise with crack velocity of the fracture energy. A close look at Fig. 17 reveals that even prior to
the instability onset an increase in C with v is apparent. This increase, in itself, is not entirely
surprising. PMMA is a polymer consisting of long, tangled molecular strands. In this material, the
value of C may be determined by complex, rate-dependent processes which include plastic
deformation of the material together with the heat dissipation involved in craze formation [90].
However, the micro-cracking instability contributes much more to changes in dissipation than
these other processes.

An additional question arising from Fig. 35 is the origin of the jump in relative surface area that
occurs at approximately the instability onset in PMMA. The `jumpa in this "gure would indicate
that, initially, additional surface area is formed for `freea, i.e. at a very small energy cost. We
surmise that the reason for this jump is due to the size of the process zone surrounding the crack tip
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in PMMA. As the vast majority of the fracture energy goes into the deformation of the area around
the tip, the additional fracture energy contributed by a micro-branch within the process zone
formed by the main crack would be negligible. Thus, the initial part of a micro-branch, whose
additional area is counted in Fig. 35, dissipates nearly no additional energy. This conjecture is
supported by the observations, in PMMA, of the non-zero minimum length of a micro-branch seen
in Fig. 30 and that the minimum length is indeed consistent with estimates of the process zone size
[102].

In light of these remarks, the long-standing puzzle of why a crack never seems to approach the
Rayleigh wave speed in isotropic material, can now be answered. A crack does not need to dissipate
increasing amounts of energy by accelerating, thereby increasing the amount of kinetic energy in
the system. Beyond v

#
a crack now has the option of dissipating energy by creating an increased

amount of fracture surface at the expense of a reduction of the total kinetic energy throughout the
system. As increasing amounts of energy #ow to its tip, a crack forms a corresponding amount of
surface via microscopic branching. As the energy #ux to the crack tip increases further, the mean
length of the micro-branches increases, as Fig. 28 shows. If G is increased still further, a second
generation of micro-branches has been observed [102] to bifurcate o! of the "rst generation of
micro-branches. If this process continues, we see that the micro-branching instability may lead to
a well-de"ned mechanism for the creation of a fractal structure. As in the Kolmogorov theory of
turbulence, the smallest scale in this structure (analogous to the Kolmogorov or dissipation scale in
turbulence) may be determined by the size of G.

5.2.8. Evidence for the universality of the instability
Most of our experimental work on the micro-branching instability has been performed in

PMMA. An important question is whether the instability is a universal feature of dynamic fracture
or is limited to some types of brittle polymers, such as PMMA. Both experimental data together
with theoretical work, which will be described in later sections, indicate that the instability is indeed
of a general nature in brittle fracture. As noted previously, patterns on the fracture surface, similar
to those observed in PMMA, have been observed within the `mista region in a number of brittle
polymers such as polycarbonate and polystyrene. This observation would seem to, at least, suggest
the existence of a similar, pattern-forming instability in brittle polymers.

To what extent is the micro-branch aspect of the instability is universal? As described in
Section 4.2.2, microscopic branches have also been observed in all of the above materials. In
addition, micro-branches were also seen within the mist region in both hardened steels, and glass
as well as in brittle polymers. The claim for universality is also strengthened by the fact
that micro-branches in both glass and PMMA develop nearly identical trajectories, as noted
in Fig. 31. Additional experimental support for the universality of the functional form of
micro-branches is given by the description of micro-branches, identi"ed as `crazesa in
early experiments in polystyrene [95]. As noted earlier, a universal trajectory for micro-branches
would explain the consistent value of the macroscopic `branching anglea observed in a
large variety of brittle materials.

Is the existence of a critical velocity for the instability also a universal aspect of brittle fracture?
Irwin et al. [123], Ravi-Chandar and Knauss, 4.2.10) and Hauch and Marder [121] observed that
microbranches are initiated in Homalite beyond 0.37v

R
, which is within 2% of the critical velocity

observed in PMMA.
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A critical velocity also exists in glass, but its value is di!erent. Gross et al. [74], measured the
acoustic emission of both glass and PMMA as a function of v for accelerating cracks. In these
experiments, the acoustic spectra of these two very di!erent materials were measured within
windows centered at increasing velocities for both materials. The results of these experiments
showed that the behavior of the acoustic spectra changed dramatically in both materials at values
of v/c

R
"0.36"v

#
in PMMA and v/c

R
"0.42 in soda lime glass. Below this value, the acoustic

spectra were featureless whereas above the critical velocity, high intensity peaks in the acoustic
emissions were observed. In PMMA, the frequency of these peaks was on the order of the
characteristic time scale observed in the velocity oscillations (about 2}3 ls) and were Doppler-
shifted as a function of v. The spectra in glass were higher in frequency (2}3MHz) and had no
observable Doppler shifts.

The lack of Doppler shifts in glass might be understood in light of work by Lund [124], who
shows that the acoustic spectrum in glass is dominated by plate resonances. This prediction is
plausible in glass, where acoustic attenuation is relatively small. In PMMA, where attenuation is
much larger, the plate resonances are damped, and only the frequencies generated by moving crack
tip are picked up by the transducers.

Experiments by Sharon et al. [83] have recently measured the "rst velocity at which micro-
branches were observable in soda-lime glass, for both accelerating and steady-state cracks. As in
PMMA, this velocity, in glass, is equal to the same value, v"0.42c

R
that corresponds to the onset

of acoustic emissions.

5.2.9. An unanswered question
Many features of the instability in PMMA show up as a rough oscillation with a frequency scale

of 600 kHz. We believe that this frequency is closely connected with the distance a micro-branch
travels before it is screened by the main crack and stops traveling; the characteristic crack speed of
500m/s divided by the micro-branch length scale of 1 mm gives a frequency scale of 500 kHz. The
oscillations observed in crack velocity as well as on the fracture surface are all re#ections of the
birth and death of micro-cracks However, we do not know why 1mm is the characteristic distance
the micro-cracks travel, so the origin of the 600 kHz oscillations is still unexplained.

6. Theories of the process zone

The experiments described in the previous section have established the existence and some of the
characteristics of the micro-branching instability in the dynamic fracture of amorphous materials.
In order to describe theoretical work related to this instability, it is necessary to introduce some of
the concepts that have been used to describe the inner workings of the process zone. A huge
fraction of this work has been devoted to metals, where the process zone involves plastic
deformation. As our focus is upon brittle materials, we will not discuss this area.

6.1. Cohesive zone models

The stress "elds of linear elastic fracture mechanics diverge as 1/Jr approaching the crack tip. In
reality stress cannot diverge. The actual phenomena in the process zone that limit the stress are
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unquestionably complicated, so a variety of simple models has been proposed to show how the
apparent elastic singularity actually joins smoothly onto a region around the crack tip where all
"elds are "nite.

The cohesive zone of Barenblatt [125,126] and Dugdale [127] is the simplest possible view of the
process zone. Assume that from the tip of the crack back to a distance K, a uniform stress p

#
acts

between the crack surfaces, and then drops abruptly to zero at the point where the separation
between the surfaces reaches a critical separation of s, as shown in Fig. 36. If the crack moves in
a steady state so that the cohesive zone and all the elastic "elds translate in the x direction without
changing form, it is simple to "nd the energy absorbed by cohesive forces. Under these circumstan-
ces, the result of translating the crack by a distance dx is to increase by dx the length of material
that has passed through the cohesive zone. To bring a length dx of material through the cohesive
zone costs energy (per unit length along z)

dxP
s

0

dy p
#
"dxsp

#
. (158)

If all the energy going into the crack tip is dissipated by the cohesive forces, then the energy release
rate G equals sp

#
. The idea of the cohesive zone models is to choose s and p

#
precisely so as to

eliminate any singularities from the linear elastic problem. If any stress singularities remain after
introduction of the cohesive zone, they will deliver a #ux of energy into a mathematical point at the
crack tip. Therefore, the condition

G"sp
#

(159)

must coincide exactly with the condition for eliminating stress singularities. Using Eq. (81), it is
possible to determine the length of the cohesive zone K. The cohesive zone can be viewed as
a superposition of delta function stresses of the sort considered in that equation, but with tensile
stresses p

#
, rather than the compressive stresses used before. The stress intensity factor due to this

superposition is

K
I
"!P

0

~K

dl
0
p
#
J2/pl

0
"!p

#
J8K/n . (160)

It is negative because the cohesive zone is pulling the crack faces together, and canceling out the
positive stress intensity factor being produced by other forces outside the crack. According to
Eq. (91), at distances from the crack tip very large compared to the cohesive zone size K, the energy
release rate due to the apparently singular stress "eld is

G"

1!l2
E

A
I
(v)p2

#

8K
n

, (161)

which in combination with Eq. (159) determines K. As the velocity v of a crack approaches the
Rayleigh wave speed, A

I
(v) diverges, so the width of the cohesive zone, K, must drop to zero. The

reason is that the crack opens more and more steeply as the crack speeds up, and reaches the
critical separation s sooner and sooner.

Cohesive zones of this sort are frequently observed in the fracture of polymers, since behind the
crack tip, there still are polymers arrayed in a `craze zonea stretching between the two crack faces
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Fig. 36. Sketch of cohesive zone model of a crack tip. The faces of the crack are pulled together by a cohesive force
p
#
hich acts until the faces are separated by a critical distance s. The crack is traveling from left to right, and the shaded

region is the cohesive zone. Because the cohesive zone cancels out any externally generated stress intensity factor, the tip
does not open up quadratically, and all stresses are "nite.

Fig. 37. Crack velocities measured in "nite element simulations of Xu and Needleman [129]. When the crack is allowed
to branch, crack motion becomes unstable, and the mean velocity saturates at around half the Rayleigh wave speed.
When branching is suppressed, the crack reaches speeds very close to the Rayleigh wave speed (dotted line).

and pulling them together. In the case of metals, the cohesive zone is viewed as a very simple
representation of plastic #ow around the crack tip.

In cases where the ingredients of the cohesive zone model have a clear physical interpretation, it
provides a helpful way to describe the physics of the fracture energy. However, for the experimental
phenomena we have described in the previous section, it is not obviously helpful. The phenom-
enological parameter C has been replaced by two phenomenological parameters p

#
and s, and one

is no nearer than before to having a "rm sense of how dissipation should vary with crack velocity.
Cohesive zone models have played an important role in many attempts to understand brittle
fracture instabilities from a continuum viewpoint, as we now describe.

6.2. Continuum studies

6.2.1. Finite element simulations
The closest correspondence with experiments in brittle amorphous materials has been obtained

by Johnson [128], and Xu and Needleman [129], in "nite element calculations. Both sets of
authors observe frustrated branching, oscillations in crack velocities, and limiting velocities well
below the Rayleigh wave speed.

Johnson [128] performed "nite element calculations of fracture in an isotropic elastic material.
He implements a model for the process zone intended to simulate material weakening around the
crack that results from the nucleation of defects. In this model, the process zone is not a given size
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but is adaptive, changing its size and character in accordance with the behavior of the crack.
Cracks were driven by loading the crack faces with a number of di!erent loads. These resulted in
maximal crack velocities of 0.29, 0.44, and 0.55c

R
. At the lowest velocities (lowest driving), smooth

acceleration of a crack was observed. As the loading of the crack faces was increased, multiple
attempts at crack branching were observed. As in the experiments, the length of the attempted
branches increased with the crack loading. These observations were not dependent on the details of
the model. One of the goals of these simulations was to explore Ravi-Chandar and Knauss's
observation that the stress intensity factor, beyond a certain crack velocity, is no longer a unique
function of v. Similar behavior was indeed observed, and the cases where non-uniqueness of the
stress intensity factor occurred were, as in the experiments, accompanied by attempted crack
branching beyond a model-dependent threshold velocity.

Xu and Needleman also carried out "nite element simulations, but with a di!erent model of the
process zone, and with more extensive results. To model the crack tip, Xu and Needleman
implement a cohesive zone model similar to the one described in Section 6.1 which takes into
account both tensile and shear stresses, and allows for the creation of new fracture surface with no
additional dissipation added to the system. In order to permit cracks to branch o! the main crack
line, there is an underlying grid of lines on which material separation is permitted if a critical
condition is obtained. Therefore, this code combines features of "nite element models with lattice
models to be described below, but is more realistic in many respects than the lattice models. The
parameters used in the simulation were made to correspond to an isotropic elastic material with the
properties of PMMA. Results of these simulations looked much like the experiments in PMMA.
Beyond a critical velocity of 0.45c

R
, crack velocity oscillations together with attempted crack

branching were observed. Branching angles of 293 were obtained, which are close to the maximal
branching angles of 323 seen in experiment. Additional simulations were also conducted in
a fashion that constrained the crack to move in a straight line. In this case, the crack accelerates to
velocities close to c

R
, just as in the experiments of Washabaugh and Knauss [87] that were

discussed in Section 4.1. The crack velocities measured in the simulations are shown in Fig. 37.
These computations come closer than any other approach to describing instabilities in the fracture
of PMMA in a realistic fashion. However, they do not fully resolve the conceptual questions raised,
for example, in Section 6.2.3.

6.2.2. Three-dimensional crack propagation
There is a number of calculations that explore the possibility that crack tip instabilities naturally

result from a wiggly crack front moving through a heterogeneous medium. Rice et al. [130]
analyzed the stability of a straight-line crack front in a scalar model of a crack propagating through
such a heterogeneous solid. They found that although a single perturbation of the crack front was
damped, the decay of a perturbation in this model was algebraic, decaying as t~1@2 with time.
Building on this result, Perrin and Rice [131,132] showed that the scalar model predicts that
a crack propagating through a heterogeneous medium, where the crack front continually interacts
with randomly distributed asperities, will never reach a statistically steady state. Instead, heterogen-
eities in the fracture energy lead to a logarithmic divergence of the rms deviations of an initially
straight crack front. This result led to the suggestion that perhaps the roughness observed along
a fracture surface may be the direct result of a continuous roughening of the surface that is driven
by small inhomogeneities within the material. More recently Willis and Mochvan [133] calculated
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the coupling of the energy release rate to random perturbations to the crack front in the case of
planar perturbations to the crack in Mode I fracture. This analysis was recently extended by the
same authors to out of plane perturbations [134].

Ramanathan and Fisher [135] used the Willis and Mochvan result to calculate the dynamics of
planar perturbations to a tensile crack front. They found that, in contrast to the case of the scalar
model where Perrin and Rice observed logarithmic instability of the crack front, in Mode I fracture
weak heterogeneity of the medium can lead to a non-decaying unstable mode that propagates
along the crack front. This propagating mode is predicted to occur in materials having RC/Rv40,
where a constant value of C is a marginal case. For RC/Rv'0, the propagating mode is predicted to
decay. The propagation velocity of this new mode is predicted to be between 0.94}1.0c

R
. Numerical

simulations of Mode I fracture in a three-dimensional medium with a constant C by Morrissey and
Rice [136,137] support these results, indicating that the propagating mode is highly localized in
space and indeed propagates at the predicted velocities.

Both Ramanathan et al. and Morrissey et al. show that these localized modes lead to linear
growth of the rms deviations of an initially straight crack with its distance of propagation. This
may, as the authors suggest, provide a new mechanism for the roughness produced by a propagat-
ing crack in materials where the fracture energy does not increase rapidly with the velocity of
a crack. Both the calculations and simulations have been performed for in-plane disturbances to
a crack front. Disturbances of this type cannot, of course, create the out-of-plane roughness
typically observed along a fracture surface. It should be interesting to see whether fully three-
dimensional perturbations to the crack front produce analogous e!ects.

6.2.3. Dynamic cohesive zone models
A large body of calculations has been carried out by Langer and collaborators on dynamic

cohesive zone models. The cohesive zone is de"ned in a manner similar to that of Section 6.1, but
cracks are not presumed to move at a constant rate, or always in a straight line, and the cohesive
zone therefore becomes a dynamical entity, interacting with the crack in a complex fashion. The
question posed by these authors is whether crack tip instabilities will emerge from such an analysis,
and the results have been extremely puzzling.

In a "rst set of calculations, Barber et al. [138], Langer [139,140], and Ching [141] investigated
the dynamics of cracks con"ned to straight lines. Such cracks always traveled in a stable fashion,
consistent also with the results in Ref. [142], although there were various tantalizing hints of
instabilities. Therefore, attention turned to the dynamics of cracks allowed to follow curvy, out of
plane, paths [143}145]. Pathological short-wavelength instabilities of cracks now began to emerge
from the analysis, for a reason that has a simple underlying explanation.

The logic of the principle of local symmetry says that bonds under the greatest tension break
"rst, and therefore cracks loaded in Mode I move straight ahead, at least until the velocity
identi"ed by Yo!e when a crack is predicted to spontaneously break the symmetry inherent in
straight-line propagation. This logic is called into question by a very simple calculation, "rst
described by Rice [146].

Let us look at the ratio p
xx

/p
yy

right on the crack line. From Eq. (69) it is

p
xx

p
yy

"

(b2#1)(1#2(a2!b2)!4ab
4ab!(1#b2)2

(162)
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2(b2#1)(a2!b2)
4ab!(1#b2)2

!1 . (163)

The Taylor expansion of Eq. (163) for low velocities v is
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5
)
#2 , (164)

and in fact Eq. (163) greater than unity for all v. This result is surprising because it states that, in
fact, the greatest tensile forces are perpendicular to a crack tip and not parallel to it, as soon as the
crack begins to move. Therefore, it is hard to understand why a crack is ever supposed to move in
a straight line.

These remarks do not do justice to the calculations performed with the cohesive zone models. In
their most elaborate versions, the crack is allowed to pursue an oscillating path, and the cohesive
zone contains both tensile and shear components. In most, although not all of these models, crack
propagation is violently unstable to very short-length oscillations of the tip.

A summary of this work has been provided by Langer and Lobchevsky [147]. They consider
a large class of models, and correct subtle errors in previous analyses. They do "nd some models in
which a crack undergoes a Hopf bifurcation to an oscillation at a critical velocity. However, their
`general conclusion is that these cohesive-zone models are inherently unsatisfactory for use in
dynamical studies. They are extremely di$cult mathematically and they seem to be highly sensitive
to details that ought to be physically unimportant.a

One possibility is that cohesive zone models must be replaced by models in which plastic yielding is
distributed across an area, and not restricted to a line. Dynamic elastic}plastic fracture has not, to
our knowledge, considered cracks moving away from straight paths. Another possibility is that these
calculations signal a failure of continuum theory, and that the resolution must be sought at the
atomic or molecular scale. It is not possible right now to decide conclusively between these two
possibilities. However, the experimental observation that the dynamic instabilities consist of repeated
frustrated branching seems di$cult to capture in a continuum description of the process zone.

6.3. Dynamic fracture of lattice in Mode I

In contrast to cohesive zone models, where the correct starting equations still are not yet known
with certainty, and instabilities in qualitative accord with experiment are di$cult to "nd, calcu-
lations in crystals provide a context where the starting point is unambiguous, and instabilities
resembling those seen in experiment arise quite naturally. In this section we will record some
theoretical results relating to the instability. We will "rst focus on a description of brittle fracture
introduced by Slepyan [148], and Marder and Liu [149,120]. The aim of this approach to fracture
is to "nd a case where it is possible to study the motion of a crack in a macroscopic sample, but
describing the motion of every atom in detail. In this way, questions about the behavior of the
process zone and the precise nature of crack motion can be resolved without any additional
assumptions.

This task can be accomplished by arranging atoms in a crystal, and adopting a simple force law
between them, one in which forces rise linearly up to a critical separation, and then abruptly drop
to zero. We call a solid built of atoms of this type an ideal brittle crystal. A force law of this type is
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not, of course, completely realistic, but has long been thought a sensible approximation in brittle
ceramics [20]. It is more realistic in brittle materials than, for example, Lennard}Jones or Morse
potentials. A surprising fact is that this force law makes it possible to obtain a large variety of
analytical results for fracture in arbitrarily large systems. Furthermore, the qualitative lessons
following from these calculations seem also to be quite general.

A summary of results from the ideal brittle crystal is

f ¸attice trapping: For a range of loads above the Gri$th point, a crack can be trapped by the
crystal, and does not move, although it is energetically possible [150,10].

f Steady-states: Steady-state crack motion exists, and is a stable attractor for a range of energy #ux.
f Phonons: Steadily moving cracks emit phonons whose frequencies can be computed from

a simple conservation law.
f Fracture energy The relation between the fracture energy and velocity can be computed.
f <elocity gap: The slowest steady state runs at around 20% of the Rayleigh wave speed; no

slower-moving steady-state crack exists.
f Instability: At an upper critical energy #ux, steady-state cracks become unstable, and generate

frustrated branching events in a fashion reminiscent of experiments in amorphous materials.

One may wonder about the motivation for formulating a theory for the dynamic behavior of
a crack in a crystal. Is the lattice essential or can one make the underlying lattice go away by taking
a continuum limit? So far as we know, all attempts to describe the process zone of brittle materials
in a continuum framework have run into severe di$culties [147]. These problems do not arise in an
atomic-scale description.

The simplicity of the ideal brittle crystal is somewhat misleading in a number of respects.
Therefore, before introducing the mathematics, we will comment on a number of natural questions
regarding the generality of the predictions it makes.

f Does the simple force law employed between atoms neglect essential aspects of the dynamics? We
will demonstrate that the same qualitative results observed in the ideal brittle crystal occur in
extensive molecular dynamic simulations using realistic potentials.

f ¹he calculations are in a strip. Is this geometry too restrictive? To this question the general
formalism of fracture mechanics provides an answer. Fracture mechanics tells us that as long as
the conditions of small-scale yielding are satis"ed, the behavior of a crack is entirely governed by
the structure of the stress "elds in the near vicinity of the crack tip. These "elds are solely
determined by the #ux of energy to the crack tip. A given energy #ux can be provided by an
in"nite number of di!erent loading con"gurations, but the resultant dynamics of the crack will
be the same. As a result, the speci"c geometry used to load the system is irrelevant and no
generality is lost by the use of a speci"c loading con"guration. This fact is borne out by the
experimental work described in the previous section.

f Have lattice trapping and the velocity gap ever been seen experimentally? No, they have not, but
appropriate experiments have not yet been performed. Molecular dynamics simulations indicate
that lattice trapping disappears at room temperature. New experiments are needed to obtain
a detailed description of dynamic fracture in crystals at low temperatures.

f Are results in a crystal relevant for amorphous materials? This is still an open question. However,
the results of the lattice calculations seem to be remarkably robust. Adding quenched noise to
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Fig. 38. A sketch showing steady-state motion of crack moving in an ideal brittle crystalline strip loaded in Mode I.

the crystal has little qualitative e!ect. The e!ects of topological disorder are not known.
However, a certain amount is known about the e!ects of increasing temperature. When the
temperature of a brittle crystal increases above zero, the velocity gap closes [151], and its
behavior is reminiscent of that seen in experiments performed on amorphous materials.

Kulakhmetova et al. [152] "rst showed that it is possible to "nd exact analytical expressions for
Mode I cracks moving in a square lattice. They found exact relationships between the energy #ux
to a crack tip and crack tip velocity. They also observed that phonons must be emitted by moving
cracks, and calculated their frequencies and amplitudes. Later calculations extended these results
to other crystal geometries, allowed for a general Poisson ratio, showed that there is a minimum
allowed crack velocity, found when steady crack motion is linearly stable, calculated the point at
which steady motion becomes unstable to a branching instability, and estimated the spacing
between branches [120].

These calculations are extremely elaborate. The analytical expressions are too lengthy to "t
easily on printed pages, and most of the results were obtained with the aid of symbolic algebra. For
this reason, we will simply summarize some of the results, and then proceed to describe in detail
how the calculations work in the case of anti-plane shear, Mode III, where the algebra is much less
demanding but most of the ideas are the same.

6.3.1. Mode I equations
Let u

i
describe the displacement of a mass point from its equilibrium location. Assume that the

energy of the system is a sum of terms depending upon two particles at a time, and linearize the
energy to lowest order in particle displacements. Translational invariance demands that the forces
between particles 0 and 1 depend only upon u

1
!u

0
, which will be de"ned to be D

1
. However, the

force can be a general linear functional of D
1
. A way to write Figs. 38 and 39 such a general linear

functional is to decompose the force between particles 0 and 1 into a component along dK
1,

, and
a component that is along dK

1M
. The "rst component corresponds to central forces between atoms,

while the second component is a non-central force. Non-central forces between atoms are the rule
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Fig. 39. The geometry of the lattice used for fracture calculations.

rather than the exception in real materials, as "rst appreciated by Born. Their quantum-mechanical
origin is of no concern here, only the fact that they are not zero. Suppose that the restoring force
parallel to the direction of equilibrium bonds is proportional to K

,
, while that perpendicular to

this direction is proportional to K
M
. The force due to the displacement of the particle along

D
1
"u

i~1,j`1
!u

i,j
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Adding up contributions from other particles in this way we get for the force due to neighbors

F(m,n)"
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+
q/,,M
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) . (167)

By varying the constants K
,

and K
M
, one can obtain any desired values of shear and longitudinal

wave speeds, which are given by
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Fig. 40. Crack velocity versus loading parameter D"K
I
/K

I#
for strips 80 and 160 atoms high, in limit of vanishing

dissipation, computed for Mode I crack by methods of following section. D will be de"ned precisely in Eq. (178). The
spring constants have values K

,
"2.6 and K

M
"0.26, so that the non-central forces are relatively small. The fact that

the results have become independent of the height of the strip for such small numbers of atoms in the vertical direction
suggests that relatively small molecular dynamics simulations can be used to obtain results appropriate for the
macroscopic limit.

where m is the mass of each particle. In addition to forces between neighbors, it is possible to add
complicated dissipative functions depending upon particle velocities. In Ref. [120], a term was
added to the equations so as to reproduce the experimentally measured frequency dependence of
sound attenuation in Plexiglas. There is a slight technical restriction in the calculations of Ref.
[120]; right on the crack line, forces are required to be central. E. Gerde has found a way to
overcome this technical limitation, and the results do not change noticeably.

There is no universal curve describing Mode I fracture. Many details in the relation between
loading and crack velocity depend upon ratios of the sound speeds, and upon the frequency
dependence of dissipation. In the limit of central forces, K

M
"0, it turns out to be di$cult but

not impossible to have cracks in steady state. This means that the range of loads for which
cracks can run in a stable fashion is small, and depends in detail upon the amount of dissipation.
Crack motion is greatly stabilized by having nonzero K

M
. Fig. 40 displays a representative

result with some implications for the design of molecular dynamics simulations. In the limit of
vanishing dissipation, the relation between crack speed and dimensionless loading D"K

I
/K

I#
becomes nearly independent of the number of vertical rows of atoms for strips around 40 rows
high. The de"nition of D is that it describes the vertical displacement imposed upon the
top and bottom of the strip, but scaled so that D"1 when these boundaries have been
stretched just far enough apart so that the energy stored per length to the right of the crack tip
just equals the energy cost per length of extending the crack. It is de"ned precisely by
Eq. (178).
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Fig. 41. Dynamic fracture of a triangular crystal in anti-plane shear. The crystal has 2(N#1) rows of atoms, with N"4,
and 2N#1 rows of bonds. Heights of spheres indicate displacements u(m,n) of mass points out of the page once dis-
placements are imposed at the boundaries. The top line of spheres is displaced out of the page by amount u(m,N#1/2)"

;
N
"DJ2N#1, and the bottom line into the page by amount u(m,!N!1/2)"!;

N
"!DJ2N#1. Lines

connecting mass points indicate whether the displacement between them has exceeded the critical value of 2u
f
; see

Eq. (169b).

Rather than plunging into a series of graphs similar to Eq. (40), which would serve little purpose
but to demonstrate that Mode I lattice fracture can indeed be solved analytically in a wide range of
cases, we will move on to a simpler geometry in which the analytical methods can be displayed in
full detail, and in which almost all the ideas needed to understand Mode I can be explored with
much less elaborate algebra.

6.4. Dynamic fracture of a lattice in anti-plane shear, Mode III

6.4.1. Dexnition and energetics of the model
We now work in detail through some of the analytical results available for a crack moving through

an ideal brittle crystal loaded in Mode III. The main results are the relation between loading and
crack velocity, the prediction of a velocity gap, and the calculation of the point at which steady crack
motion becomes unstable. Linear stability of the steady states will not be considered here; the result
obtained in [120] is that the steady states, when they exist, are always linearly stable.

Consider a crack moving in a strip composed of 2(N#1) rows of mass points, shown in Fig. 41.
All of the bonds between lattice points are brittle}elastic, behaving as perfect linear springs until the
instant they snap at a separation of 2u

f
, from which point on they exert no force. The location of

each mass point is described by a single spatial coordinate u(m,n), which can be interpreted as the
height of mass point (m,n) into or out of the page. The force between adjacent masses is determined
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by the di!erence in height between them. The index m takes integer values, while n takes values of
the form 1/2,3/2,2,N#1/2. The model is described by the equation

u( (m,n)"!buR #
1
2

+
/%!3%45 m{,n{
/%*')"034

F[u(m@,n@)!u(m,n)] , (169a)

with

F(u)"uh(2u
f
!DuD) (169b)

describing ideal brittle springs, h the step function, and b the coe$cient of a small dissipative term.
There is no di$culty involved in choosing alternative forms of the dissipation, if desired. The
boundary condition which drives the motion of the crack is

u(m,$[N#1/2])"$;
N

. (169c)

It is important to "nd the value of;
N

for which there is just enough energy stored per length to the
right of the crack to snap the pair of bonds connected to each lattice site on the crack line. For
m<0 one has

u(m,n)"n;
N
/(N#1/2) , (170)

and the height di!erence between mass points with adjacent values of n is

;
3*')5

";
N
/(N#1/2) . (171)

Therefore, the energy stored per unit length in the 2N#1 rows of bonds is

1
2
][2 Upper Bonds/Site]][Rows]][Spring Constant]];2

3*')5
(172)

"1
2
2(2N#1) 1

2A
;

N
N#1/2B

2
(173)

"2Q
0
(;

N
)2 , (174)

with

Q
0
"1/(2N#1) . (175)

The energy required to snap two bonds each time the crack advances by a unit length is

1
2
][2 Bonds/Site]][Spring Constant]][Separation at fracture]2 (176)

"1
2
]2]1

2
](2u

f
)2"2u2

f
. (177)

Therefore, equating Eqs. (174) and (177) the proper dimensionless measure of the external
driving is

D";
N
JQ

0
/u

f
, (178)

a quantity which reaches 1 as soon as there is enough energy to the right of the crack to snap the
bonds along the crack line, and which is linearly related to the displacements imposed at the edges
of the strip.
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6.4.2. The detailed solution
The techniques used to solve problems of this type were found by Slepyan [148,152]. There are

di!erences between details of his solution and ours because Eq. (169) describes motion in a strip
rather than an in"nite plate, and in a triangular rather than a square lattice. The strip is preferable
to the in"nite plate when it comes time to compare with numerical simulations, while reducing to
the simpler in"nite plate results in certain natural limits. The velocity gap and nonlinear instabili-
ties were "rst found in [149,120].

6.4.3. Symmetries
Assume that a crack moves in steady state, so that one by one, the bonds connecting u(m,1/2)

with u(m#1,!1/2) or u(m,!1/2) break. They break because the distance between these points
exceeds the limit set in Eq. (169b) and as a consequence of the driving force described by Eq. (169c).
Assuming that the times at which bonds break are known, the original nonlinear problem is
immediately transformed into a linear problem. However, one has to come back at the end of the
calculation to verify that

1. Bonds break at the time they are supposed to. Imposing this condition determines a relation
between crack velocity v and loading D.

2. No bonds break when they are not supposed to. Imposing this condition leads to the velocity gap
on the low-velocity end, and to crack tip instabilities above a critical energy #ux.

Steady states in a crystal are more complicated than steady states in a continuum. In a continuum,
steady state acts as u(x!vt). The closest one can come in a triangular crystal is by having the
symmetry

u(m,n,t)"u(m#1,n,t#1/v) (179a)

and also

u(m,n,t)"!u(m,!n,t![1/2!g
n
]/v) (179b)

which implies in particular that

u(m,1/2,t)"!u(m,!1/2,t!1/2v) . (179c)

We have de"ned

g
n
"G

0 if n"1/2,5/22
1 if n"3/2,7/22 ,

mod(n!1/2,2) in general .

(180)

6.4.4. Eliminating the spatial index m
Assuming that a crack is in steady state, we can therefore eliminate the variable m entirely from

the equation of motion, by de"ning

u
n
(t)"u(0,n,t) , (181)
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and write the equations of motion in steady state as

u(
n
(t)"

1
2 C

#u
n`1

(t!(g
n`1

!1)/v) #u
n`1

(t!g
n`1

/v)

#u
n
(t#1/v) !6u

n
(t)#u

n
(t!1/v)

#u
n~1

(t!(g
n~1

!1)/v) #u
n~1

(t!g
n~1

/v) D!buR
n

(182a)

if n'1/2, and

u(
1@2

(t)"
1
2 C

#u
3@2

(t) #u
3@2

(t!1/v)

#u
1@2

(t#1/v)!4u
1@2

(t) #u
1@2

(t!1/v)

#[u
~1@2

(t)!u
1@2

(t)]h(!t) #[u
~1@2

(t!1/v)!u
1@2

(t)]h(1/(2v)!t)D!buR
1@2

(182b)

if n"1/2.
The time at which the bond between u(0,1/2,t) and u(0,!1/2,t) breaks has been chosen to be

t"0, so that by symmetry the time the bond between u(0,1/2,t) and u(1,!1/2,t) breaks is 1/2v.

6.4.5. Equations solved in terms of a single mass point on crack line
Above the crack line, the equations of motion (182a) are completely linear, so it is simple to "nd

the motion of every atom with n'1/2 in terms of the behavior of an atom with n"1/2. Fourier
transforming Eq. (182a) in time gives

!u2u
n
(u)"ibu#G

1
2
u
n`1

(u)[e*u(gn`1~1)@v#e*u(gn`1)@v]

#1
2
u
n
(u)[e*u@v!6#e~*u@v]

#1
2
u
n~1

(u)[e*u(gn~1~1)@v#e*u(gn~1)@v]H . (183)

Let

u
n
(u)"u

1@2
(u)ek(n~1@2)~*ugn@(2v) . (184)

Substituting Eq. (184) into Eq. (183), and noticing that g
n
#g

n`1
"1 gives

!u2u
1@2

(u)"ibuu
1@2

(u)#G
1
2
u
1@2

(u)ek[e*u(gn`1`gn~2)@(2v)#e*u(gn`1`gn)@(2v)]

#1
2
u
1@2

(u)[e*u@v!6#e~*u@v]

#1
2
u
1@2

(u)e~k[e*u(gn~1`gn~2)@(2v)#e*u(gn~1`gn)@(2v)]H (185)

Nu2#ibu#2cosh(k)cos(u/(2v))#cos(u/v)!3"0 . (186)

De"ning

z"
3!cos(u/v)!u2!ibu

2cos(u/2v)
, (187)

one has equivalently that

y"z#Jz2!1 , (188)

with
y"ek . (189)
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One can construct a solution which meets all the boundary conditions by writing

u
n
(u)"u

1@2
(u)e~*ugn@2vC

y*N`1@2~n+!y~*N`1@2~n+

yN!y~N D#
;

N
(n!1/2)

N
2a

a2#u2
. (190)

This solution equals u
1@2

for n"1/2, and equals ;
N
2a/(a2#u2) for n"N#1/2. The reason to

introduce a is that for n"N#1/2, u(m,n,t)";
N
. The Fourier transform of this boundary

condition is a delta function, and hard to work with formally. To resolve uncertainties, it is better to
use instead the boundary condition

u
N`1@2

(t)";
N
e~a@t@ , (191)

and send a to zero the end of the calculation. In what follows, frequent use will be made of the fact
that a is small.

The most interesting variable is not u
1@2

, but the distance between the bonds which will actually
snap. For this reason de"ne

;(t)"
u
1@2

(t)!u
~1@2

(t)
2

"

u
1@2

(t)#u
1@2

(t#1/2v)
2

. (192)

Rewrite Eq. (182b) as

u( 1/2(t)"
1
2 C

#u
3@2

(t) #u
3@2

(t!1/v)

#u
1@2

(t#1/v)!4 u
1@2

(t)#u
1@2

(t!1/v)

!2;(t)h(!t) !2;(t!1/2v)h(1/(2v)!t)D!buR
1@2

. (193)

Fourier transforming this expression using Eq. (190) and de"ning

;B(u)"P
=

~=

due*ut;(t)h($t) , (194)

now gives

u
1@2

(u)F(u)!(1#e*u@2v);~(u)"!

;
N

N
2a

u2#a2
, (195)

with

F(u)"G
y*N~1+!y~*N~1+

yN!y~N
!2zH cos(u/2v)#1 (196)

Next, use Eq. (192) in the form

;(u)"1
2
(1#e~*u@2v)u

1@2
(u) (197)

to obtain

;(u)F(u)!2(cos2u/4v);~(u)"!

;
N

N
2a

u2#a2
. (198)

Writing

;(u)";`(u)#;~(u) (199)
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"nally gives

;`(u)Q(u)#;~(u)";
N
Q

0G
1

a#iu
#

1
a!iuH , (200)

with

Q(u)"
F(u)

F(u)!2cos2u/4v
. (201)

To obtain the right hand side of Eq. (200), one uses the facts that F(0)"!1/N, and that a is very
small, so that the right-hand side of Eq. (200) is a delta function.

The Wiener}Hopf technique [153] directs one to write

Q(u)"Q~(u)/Q`(u) , (202)

where Q~ is free of poles and zeroes in the lower complex u plane and Q` is free of poles and zeroes
in the upper complex plane. One can carry out this decomposition with the explicit formula

QB(u)"expClime?0
P

du@
2p

lnQ(u@)
iuGe!iu@D . (203)

Now separate Eq. (200) into two pieces, one of which has poles only in the lower half plane, and one
of which has poles only in the upper half plane:

;`(u)
Q`(u)

!

Q
0
;

N
Q~(0)

1
(!iu#a)

"

Q
0
;

N
Q~(0)

1
(iu#a)

!

;~(u)
Q~(u)

. (204)

Because the right- and left-hand sides of this equation have poles in opposite sections of the
complex plane, they must separately equal a constant, C. The constant must vanish, or ;~ and
;` will behave as a delta function near t"0. So

;~(u)";
N

Q
0
Q~(u)

Q~(0)(a#iu)
(205a)

and

;`(u)";
N

Q
0
Q`(u)

Q~(0)(a!iu)
. (205b)

One now has an explicit solution for ;(u). Numerical evaluation of Eq. (203), and ;(t) from
Eq. (205) is fairly straightforward, using fast Fourier transforms. However, in carrying out the
numerical transforms, it is important to analyze the behavior of the functions for large values of u.
In cases where functions to be transformed decay as 1/iu, this behavior is best subtracted o! before
the numerical transform is performed, with the appropriate step function added back analytically
afterwards. Conversely, in cases where functions to be transformed have a step function discontinu-
ity, it is best to subtract o! the appropriate multiple of e~th(t) before the transform, adding on the
appropriate multiple of 1/(1!iu) afterwards. A solution of Eq. (205) constructed in this manner
appears in Fig. 43.

6.4.6. Relation between D and v
Recall that making the transition from the nonlinear problem originally posed in Eq. (169a) to

the linear problem in Eq. (182) relies on supposing that bonds along the crack line snap at time
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intervals of 1/2v. Because of the symmetries in Eq. (179), it is su$cient to guarantee that

u(t)"u
f

at t"0 . (206)

All displacements are simply proportional to the boundary displacement ;
N
, so Eq. (206) "xes

a unique value of;
N
, and its dimensionless counterpart, D. Once one assumes that the crack moves

in steady state at a velocity v, there is a unique D to make it possible.
To obtain Eq. (206), one needs to require that

lim
t?0~ P

du
2p

e~*ut;~(u)"u
f

. (207)

This integral can be evaluated by inspection. One knows that for positive t'0,

Pdu exp[!iut];~(u)"0 , (208)

and that any function whose behavior for large u is 1/iu has a step function discontinuity at the
origin. Therefore, Eqs. (207) and (205a) become

u
f
";

N
Q

0
Q~(R)/Q~(0) . (209)

Since from Eq. (201) it follows that Q(R)"1, one sees from Eq. (203) that

Q~(R)"Q`(R)"1 . (210)

As a result, one has from Eq. (209) and the de"nition of D given in Eq. (178) that

D"Q~(0)/JQ
0

. (211)

To make this result more explicit, use Eq. (203) and the fact that Q(!u)"QM (u) to write

Q~(0)"expCP
du@
2p

1
2C

lnQ(u@)
e!iu@

#

lnQ(!u@)
e#iu@ DD (212)

"expCP
du@
2p C

1
!2iu@

lnG
Q(u@)
QM (u@)H#

e
e2#u@2

lnQ(0)DD
NQ~(0)"JQ

0
expC!P

du@
2p

1
2iu@

lnG
Q(u@)
QM (u@)HD . (213)

Placing Eq. (213) into Eq. (211) gives

D"expC!P
du@
2p

1
2iu@

lnG
Q(u@)
QM (u@)HD . (214)

In order to record a "nal expression that is correct not only for the Mode III model considered
here, but for more general cases, rewrite Eq. (214) as

D"C expC!P
du@
2p

1
2iu@

MlnQ(u@)!lnQ(u@)ND , (215)
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where C is a constant of order unity that is determined by the geometry of the lattice, equaling 1 for
the triangular lattice loaded in Mode III, but 2/J3 for a triangular lattice loaded in Mode I [120].
When written in this form, Eq. (215) is suitable for numerical evaluation, since there is no
uncertainty relating to the phase of the logarithm.

When b becomes su$ciently small, Q is real for real u except in the small neighborhood of
isolated roots and poles that sit near the real u-axis. Let r`

i
be the roots of Q with negative

imaginary part (since they belong with Q`), r~
i

the roots of Q with positive imaginary part, and
similarly pB

i
the poles of Q. Then one can rewrite Eq. (215) as

D"CJ<r~
i
p`
i

/r`
i

p~
i

, for bP0 . (216)

One may derive Eq. (216) as follows: away from a root or pole of Q, the integrand of Eq. (215)
vanishes. Consider the neighborhood of a root r` of Q which falls to the real axis from the negative
side as bP0. For the sake of argument, take the imaginary part of this root to be !ib. In the
neighborhood of this root, say within a distance Jb, the integral to compute for Eq. (215) is

!

1
2pP

r``Jb

r`~Jb

du@
2iu@C

ln(u@!(r`!ib))

!ln(u@!(r`#ib))D . (217)

De"ning uA"u@!r`, and integrating by parts gives

!

1
2pP

Jb

~Jb

duA
2i

ln[uA#r`]
2ib

uA2#b2
(218)

"!1
2
lnr`#OJb . (219)

Similar integrals over other roots and poles of Q "nally produce Eq. (216).
Together with Eq. (205), Eqs. (215) and (216) constitute the formal solution of the model. Since

Q is a function of the steady-state velocity v, Eq. (214) relates the external driving force on the
system, D, to the velocity of the crack v. The results of a calculation appear in Fig. 42.

6.4.7. Phonon emission
Right at D"1 just enough energy is stored to the right of the crack tip to break all bonds along

the crack line. However, all steady states occur for D'1, so not all energy stored to the right of the
crack tip ends up devoted to snapping bonds. The fate of the remaining energy depends upon the
amount of dissipation b, and the distance from the crack tip one inspects. In the limit of vanishing
dissipation b, traveling waves leave the crack tip and carry energy o! in its wake; the amount of
energy they contain becomes independent of b. Such a state is depicted in Figs. 43 and 44, which
shows a solution of Eq. (205) for v"0.5, N"9, and b"0.01. For all nonzero b, these traveling
waves will eventually decay, and the extra energy will have been absorbed by dissipation, but the
value of b determines whether one views the process as microscopic or macroscopic.

The frequencies of the radiation emitted by the crack have a simple physical interpretation as
Cherenkov radiation. Consider the motion of a particle through a lattice, in which the phonons are
described by the dispersion

ua(k) . (220)
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Fig. 42. The velocity of a crack v/c, scaled by the sound speed c"J3/2, is plotted as a function of the driving force D.
The calculation is carried out using Eq. (216) for N"9.

Fig. 43. A plot of;(t) for v"0.5, N"9, and b"0.01, produced by direct evaluation of Eq. (205). Note that mass points
are nearly motionless until just before the crack arrives, and that they oscillate afterwards for a time on the order of 1/b.

Fig. 44. Graphical solution of Eq. (223), showing that for low velocities, a large number of resonances may be excited by
a moving crack.
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If the particle moves with constant velocity *, and interacts with the various ions according to some
function I, then to linear order the motions of the ions can be described by a matrix D which
describes their interactions with each other as

u( lk"!+
ll{

Dkl(Rl!Rl{)ul{l#+
l{

Ik(Rl{!*t) . (221)

Multiplying everywhere by e*k >Rl, summing over l, letting K be reciprocal lattice vectors, and letting
X be the volume of a unit cell gives

mu( k(k)"+
l

Dkl(k)ul(k)#
1
X

+
K

e** > (k`K)tIk(k#K) . (222)

Inspection shows that the lattice frequencies excited in this way are those which in the extended
zone scheme [154] obey

u(k)"* ) k . (223)

Pretending that the crack is a particle, one can use Eq. (223) to predict the phonons that the crack
emits.

There is another version of this argument that is both simpler and more general. The only way to
transport radiation far from a crack tip is in traveling waves. However, in steady state, the traveling
waves must obey symmetry (179a). In a general crystal with lattice vectors R and primitive vectors
a, applying this requirement to a traveling wave exp[ik )R!iut] gives

e**k > (R`na)~*u(k)(t`na@v)+"e**k >R~*u(k)t+ . (224)

Assuming a and * are parallel, Eq. (223) results again.
There are two phonon dispersion relations to consider. One gives the conditions for propagating

radiation far behind the crack tip, and the other gives the conditions for propagating radiation far
ahead of the crack tip. Far behind the crack tip, all the bonds are broken. Finding waves that can
travel in this case is the same as repeating the calculation that led to Eq. (198), but with ;~ set to
zero, since all bonds are broken, and with ;

N
"0, since phonons can propagate without any

driving term. Examining Eq. (198), one sees that the condition for surface phonons to propagate far
behind the crack tip is F(u)"0. Similarly, far ahead of the crack tip no bonds are broken
;~ should be set equal to;, and the condition for phonons is F(u)!2cos2u/4v"0. According to
Eq. (201), the roots and poles of Q(u) are therefore the phonon frequencies behind and ahead of the
crack, and these are the quantities appearing in Eq. (216). We do not know if Eq. (216) is more than
approximately correct for particle interactions more general than ideally brittle bonds.

6.4.8. Forbidden velocities
After making sure that bonds along the crack line break when they are supposed to, it is

necessary to verify that they have not been stretched enough to break earlier. That is, not only must
the bond between u

0`
and u

0~
reach length 2u

f
at t"0, but this must be the "rst time at which

that bond stretches to a length greater than 2u
f
. For 0(v(0.32 (the precise value of the upper

limit varies with b and N) that condition is violated. The states have the unphysical character
shown in Fig. 45. Masses rise above height u

f
for t less than 0, the bond connecting them to the

lower line of masses remaining however intact, and then they descend, whereupon the bond snaps.

J. Fineberg, M. Marder / Physics Reports 313 (1999) 1}108 93



Fig. 45. Behavior of ;(t) for v"0.2, b"0.05, and N"9. Notice that at t"0, indicated by the dashed line, u is
decreasing, and that it had already reached height 1 earlier. This state is not physical.

Fig. 46. Pictures of broken bonds left behind the crack tip at four di!erent values of D. The top "gure shows the simple
pattern of bonds broken by a steady-state crack. At a value of D slightly above the critical one where horizontal bonds

occasionally snap, the pattern is periodic. All velocities are measured relative to the sound speed c"J3/2. Notice that
the average velocity can decrease relative to the steady state, although the external strain has increased. As the strain
D increases further, other periodic states can be found, and "nally states with complicated spatial structure. The
simulations are carried out in a strip with half-width N"9, of length 200 and b"0.01. The front and back ends of the
strip have short energy-absorbing regions to damp traveling waves. The simulation was performed by adding unbroken
material to the front and lopping it o! the back as the crack advanced.

Since the solution of Eq. (182) is unique, but does not in this case solve Eq. (169a), no solutions of
Eq. (169a) exist at all at these velocities. Once the crack velocity has dropped below a lower critical
value, all steady states one tries to compute have this character. This argument shows that no
steady state in the sense of Eq. (179a) can exist. It is also possible to look analytically for solutions
that are periodic, but travel two lattice spacings before repeating. No solutions of this type have yet
been found. Numerically, one can verify that if a crack is allowed to propagate with D right above
the critical threshold, and D is then very slowly lowered through the threshold, the crack stops
propagating. It does not slow down noticeably; suddenly the moving crack emits a burst of
radiation that carries o! its kinetic energy, and stops in the space of an atom. That is why Fig. 45
shows a velocity gap.

6.4.9. Nonlinear instabilities
It was assumed in the calculations predicting steady states that the only bonds which break are

those which lie on the crack path. From the numerical solutions of Eq. (205), one can test this
assumption; it fails above a critical value of D. The sound speed c equals J3/2, and velocities will be
scaled by this value. For N"9, at a velocity of v

#
/c"0.6662, D

#
"1.1582, the bond between

u(0,1/2) and u(1,1/2) reaches a distance of 2u
f

some short time after the bond between u(0,1/2) and
u(0,!1/2) snaps. The steady-state solutions strained with larger values of D are inconsistent; only
dynamical solutions more complicated than steady states, involving the breaking of bonds o! the
crack path, are possible. To investigate these states, one must return to Eq. (169) and numerically
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solve the model directly. These simulations have been carried out [149,155] and some results are
contained in Fig. 46.

The diagram shows patterns of broken bonds left behind the crack tip. Just above the threshold
at which horizontal bonds begin to break, one expects the distance between these extra broken
bonds to diverge. The reason is that breaking a horizontal bond takes energy from the crack and
slows it below the critical value. The crack then tries once more to reach the steady state, and only
in the last stages of the approach does another horizontal bond snap, beginning the process again.
This scenario for instability is similar to that known as intermittency in the general framework of
nonlinear dynamics [156]; the system spends most of its time trying to reach a "xed point which the
motion of a control parameter has caused to disappear.

Here is a rough estimate of the distance between broken horizontal bonds. Let u
)
(t) be the length

of an endangered horizontal bond as a function of time. Actually, one needs to view matters in
a reference frame moving with the crack tip, so every time interval 1/v, one shifts attention to
a bond one lattice spacing to the right. When D is only slightly greater than D

#
, the length of such

a bond viewed in a moving frame should behave before it snaps, as

u
)
&2u

f
#(Ru

)
/RD)(D!D

#
)!due~bt . (225)

Here Ru
)
/RD means that one should calculate the rate at which the steady-state length of u

)
would

change with D if this bond were not allowed to snap, and du describes how much smaller than its
steady-state value the bond ends up after the snapping event occurs. Ref. [120] shows that deviations
from steady states die away at long times as exp[!bt]. From this expression, one can estimate the
time between snapping events by setting u

)
to 2u

f
and solving Eq. (225) for t. The result is that the

frequency l with which horizontal bonds snap should scale above the critical strain D
#
as

l&!b/lnA
1
du
Ru

)
RD [D!D

#
]B , (226)

a result that is consistent with the numerics, but hard to check conclusively. One can calculate
numerically that Ru

)
/RD"5.5 for the conditions of Fig. 46, but du is hard to "nd independently.

Assuming that Eq. (226) is correct, one "nds from the second picture of Fig. 46 that du"0.04.
Further increasing the external strain D makes a wide variety of complicated behavior possible,
including dendritic patterns, in the lowest panel of Fig. 46 that are reminiscent of experiment.

6.4.10. The connection to the Yowe instability
The basic reason for the branching instability seen above is the crystal analog of the Yo!e

instability, working itself out on small scales. The Mode III calculation "nds that the critical
velocity for the instability to frustrated branching events is indeed close to the value of 0.6c

R
predicted by Yo!e in the continuum. The critical velocity seen experimentally in amorphous
materials is 1/3 of the wave speed, not 2/3. This discrepancy could be due to some combination of
three factors.

1. The force law between atoms is actually much more complicated than ideal snapping bonds.
Gao [157], has pointed out that the Rayleigh wave speed in the vicinity of a crack tip may be
signi"cantly lower than the value of c

R
far away from the tip because material is being stretched

beyond the range of validity of linear elasticity.
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Fig. 47. The two lines, as indicated by the legend, compare analytical results for steady crack velocities in a strip 20
atoms high with simulation results in a strip 20 high and 60 wide. The symbols display the e!ect of random bond
strengths on crack velocities. The springs all snap at the same extension, but have spring constants that vary randomly by
the amounts indicated in the legend.

2. The experiments are at room temperature, while the calculations are at zero.
3. The experiments are in amorphous materials, while the calculations are in crystals.

6.5. The generality of the results in a ideal brittle crystal

It is easy to carry out numerical simulations that add various e!ects to the solvable model that
are di$cult to include analytically. For example, one can vary the interparticle potentials from the
simple form given in Eq. (169b), one can make the bond strengths in the lattice vary randomly, or
watch the crack propagate in a lattice maintained at nonzero temperature. A brief summary of
these numerical searches would be that small changes in the basic model, Eq. (169) do not alter the
qualitative conclusions obtained so far. For example, in Fig. 47, one can see the e!ect of making
bond strengths random by varying amounts. The randomness is implemented by setting the spring
constants between neighbors in Eq. (169) to (1#Kr

1
r
2
)1/2, where r

1
and r

2
are nearest neighbors,

and Kr
1
r
2
is a random variable ranging with uniform probability from !K to K. The springs still

snap at the extension of 2u
f
. The qualitative changes introduced by the randomness are that it

becomes possible for the crack to jump up or down by a lattice spacing, as shown in Fig. 48, and it
also becomes possible for the crack tip to encounter a particularly tough bond, and arrest
prematurely. Fig. 47 was produced by obtaining a moving crack at D"1.2, and then very slowly
ramping D down to 1, with velocities calculated by measuring the time needed for the crack to
progress 20 lattice spacings. The #uctuations visible in Fig. 47 are to be understood as resulting
from this procedure; if enough averaging were carried out, no #uctuations in velocity would be
visible despite the presence of randomness.

We have also carried out studies of the e!ect of temperature. We later found in molecular
dynamics simulations that three-dimensional calculations are quite di!erent from two-dimensional
ones, so we will not present the results here. There is a qualitative di!erence between static
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Fig. 48. In the presence of randomness, cracks no longer travel along straight-line paths. This simulation is carried out
with K"0.2, for a strip 20 atoms high and 80 long

randomness and thermal #uctuations that is quite important for fracture. If a crack encounters
a tough spot in a material, it can halt and sit there forever. Thermal #uctuations might halt a crack
temporarily, but are just as likely to take a static crack and give it energy to start moving.
Lattice-trapped cracks are not completely static in the presence of thermal #uctuations; they creep
ahead with some probability [158]. When the rate of creep rises to speeds on the order of the sound
speed, the distinction between creeping and running cracks vanishes, and the velocity gap vanishes.

The robustness of the branching phenomena described in this model was further illustrated by
recent numerical studies of Eq. (167) in the nonlinear regime, where micro-branches are observed.
Hieno and Kaski [159] have investigated some e!ects of changing the model parameters governing
Mode I fracture. A number of features similar to those observed in the experiments on amorphous
materials were observed. Disorder of the perfect crystal lattice, for example, was introduced by
imposing a random distribution of the local values of Young's moduli. The e!ect of the disorder
was to disrupt the periodicity of the frustrated branching events, and thus broaden the otherwise
sharp branching frequency spectrum. Additional numerical work in this model by Astrom and
Timonen [160] observed power-law dependence of the micro-branch trajectories with the same 0.7
power observed in experiments in both PMMA and glass.

6.6. Molecular dynamics simulations

The fracture of brittle solids is a physical process which naturally connects large and small scales
[7,8]. Stresses and strains which cause the fracture are applied on macroscopic scales, while the end
result is the severing of bonds on an atomic scale. Therefore, it seems reasonable to assume that
computer simulations of the fracture process that account for phenomena at the atomic level must
be very large. Several such simulations are now being carried out, in systems involving as many as
hundreds of millions of atoms [161}163].

6.6.1. Scalable molecular dynamics simulations
However, the goal in computer simulation should not be to build the largest simulation possible,

but to build the smallest one capable of answering speci"c physical questions. Many features of
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brittle fracture may pro"tably be studied in simulations that are comparatively small, involving
only thousands of atoms. The essential problem facing the simulations is one of length and time
scales. We are now in the midst of carrying out fracture experiments in silicon. The samples are
several centimeters long, several high, a millimeter thick and contain about 1022 atoms. The
duration of an experiment is around 50ls. The largest simulations now being performed follow 108
atoms for around 10~9 s. Direct atomic simulation of our samples therefore requires a 1018-fold
increase in computer power over what we now have.

How then is comparison to be performed? A "rst thought is to merge atomistic and continuum
simulations. Use atoms in the vicinity of the crack tip, and continuum elasticity everywhere else.
This approach has the potential to solve the problem of length scales, but not the problem of time
scales. We describe below what we believe to be a more elegant approach to the problem that takes
care of length and time scales at once.

The basic idea is to make greatest possible use of the conceptual framework of fracture
mechanics. Fracture mechanics allows the entire crack problem to be followed in the context of
continuum mechanics if only one is supplied with a relationship between the fracture energy, C, and
the velocity, v. The goal is therefore to obtain this relationship from an atomic simulation that is
absolutely as small as possible. The results can then be employed as input to continuum simula-
tions making all the macroscopic predictions desired. The analytical results of Sections 2 and 6.3
provide tremendous help in designing these simulations. The "rst suggestion of the theoretical
framework is that one look for steady states: con"gurations obeying Eq. (179a). Since states of this
sort repeat inde"nitely, observation over "nite time allows one to make predictions for an in"nite
time, solving the time scaling problem. The only question to be settled is how long it takes
a numerical simulation to pass through transients and reach the steady state. In a strip of height
¸ this time is proportional to the time needed for sound to travel from the crack tip to the top of the
system and return. In practice, steady states establish themselves fully after about 100 such transit
times. The taller a strip becomes, the longer this time, so one wants a strip that is as narrow as
possible.

The analytical work is particularly useful in establishing the minimum height of a strip.
Fig. 40 shows the relation between v and D for strips of height 80 and 160. Above a height of 50,
the curves become almost indistinguishable. The di!erences are certainly not measurable
in experiment. We conclude that for ideal brittle fracture in steady state, the relationship
between v and D may be established in a strip 50 atoms high. We have performed our molecular
dynamic simulation runs in strips 200 atoms high and 50 atoms high to make sure the results
do not change. The number of atoms in the simulations ranges between 100000 and
200000.

In order to keep the simulation running for the times needed to achieve steady states, we put it on
a conveyor belt [151]. Whenever the crack approaches within a certain distance (typically 100A_ ) of
the right end, we glue a slab of new unbroken material to that end, and chop an equal amount o!
the back. Finding the length needed in the x direction to obtain satisfactory results has been
a matter of numerical trial and error: a total system length of 500A_ makes the results independent
of length. The "nal test consists in obtaining a steady state. The three dimensional system has
spontaneously adopted a dynamical state with the periodicity of a unit cell (#at front) along the
z direction, obeying the symmetry Eq. (179a) where the behavior of atoms near the top is
independent of the length of the system along x, and the relationship between v and D is
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independent of the height of the strip. Therefore, this steady state provides one point on the curves
relating v and D, which we believe to be correct in the limit of in"nite size systems and long times.

The particular solid on which we have focused so far for our numerical studies is silicon. The
reason for this choice is that silicon single crystals with a variety of orientations are inexpensive,
thus making numerical predictions amenable to experimental veri"cation. Silicon is very brittle,
the crystal structure is well known, and considerable e!ort has been expended in developing
classical three-body potentials suitable for use in molecular dynamics. We employ Stillin-
ger}Weber potentials, with a modi"ed version of the three-body term, but keep an open mind as to
whether some other potential might provide better results. Indeed, given the severely non-
equilibrium nature of fracture, it is possible that no classical potentials provide a realistic account,
and in view of the emission of electrons and light that is observed in the vicinity of the crack tip, it is
entirely possible that density functional theory could fail as well. Only a detailed and patient
comparison of theory and experiment, which has not yet been performed, will be able to settle such
doubts.

Two additional points concerning the simulations:

1. In steady state, the energy consumed by the crack per unit length must equal the energy stored
per unit length to the left. This claim remains true even for strains large enough that applicability
of linear elasticity could be called into question. This claim relies on symmetry rather than the
matched asymptotics of fracture mechanics.

2. The simulation contains a complete description of the process zone. As more energy is fed to the
crack tip, as temperature increases, or as one moves to inhomogeneous or ductile materials, the
size of the process zone increases, and the simulation size will have to increase accordingly. We
do not expect molecular dynamics to provide easy predictions for materials where the process
zone is on the order of microns, let alone millimeters. The amorphous polymers on which our
experiments have focused provide a particularly great challenge.

6.6.2. Sample results in silicon
Simple predictions for the zero-temperature fracture of silicon on the (111) plane in the

(110) direction appear in Fig. 49. Not only is there a velocity gap of 1500m/s but there are
also plateaus and hysteretic loops that are essentially unexplained. It is natural to wonder
how much of this intricate structure should be preserved at room temperature. We have there-
fore performed simulations focusing on the "rst hysteresis loop at temperatures between 0 and
300K. An interesting result of these simulations is that lattice trapping is predicted to disappear
at a temperature of 150 K, and experiments will have to proceed to temperatures lower than
this to see it. Although this result was obtained in silicon, it implies an explanation for why
no lattice trapping has yet to be observed experimentally in either crystalline or amorphous
materials.

Cracks at zero temperature display a clear dynamic instability at a critical energy #ux corre-
sponding to D"2. Up until this point, phonons are able to carry away all excess energy. This
instability does not take the form of a simple micro-branching instability, partly because bonds can
easily rejoin above the main crack line in a single component solid with no environmental
impurities available. Instabilities at room temperature have not yet been explored either numer-
ically or analytically.
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Fig. 49. Steady state crack velocities in silicon as a function of the dimensionless loading parameter D for fracture along
(111) and (110) planes [151].

6.6.3. Large size molecular dynamic simulations
A number of very large-scale molecular dynamic simulations of dynamic fracture have been

performed [161}164]. The "rst of these is the work by Abraham et al. where the dynamics of
a crack were investigated within a 106 atom crystal, where the atoms are attached via a Lennard
Jones 6}12 potential. Stress was applied to the system by displacing opposing boundaries of the
system at a strain rate that is approximately equivalent to that obtained in explosive loading
applied to crack faces. These conditions were necessary to achieve su$cient acceleration of the
crack tip so as to achieve high enough crack velocities over the duration of the simulation to be
able to detect the existence of instabilities of the crack's motion. The results of these simulations
were surprisingly close to experimental observations in amorphous materials. The crack was
observed to accelerate smoothly until reaching a velocity of 0.32c

R
. At velocities beyond this the

instantaneous velocity of the crack tip was observed to become erratic, as large velocity #uctu-
ations occurred. These #uctuations were coupled with a `zig-zaga motion of the crack tip, which
formed in its wake a rough fracture surface. These interesting simulations highlight the robust and
general nature of the instability.

The robust nature of the instability was further highlighted by the work of Zhou et al. [165]
where crack propagation was investigated in a 400 000 atom crystal where the atoms were coupled
via a Morse potential. By varying the applied strain rates the maximal velocity that a crack could
achieve over the duration of a simulation was varied between 0.18 and 0.36c

R
, where the strain rates

used corresponded, as in the Abraham et al. work, to explosive loading of the system. At a velocity
of 0.36c

R
, instability of the crack was observed to occur by branching of the crack. The branching

process was seen to be immediately preceded by the nucleation of a dislocation in the crystal
together with a build up of the phonon "eld in the vicinity of the crack tip.

In both of the above large-scale simulations, the entire fracture process (from initiation to the
instability onset) occurred over a time corresponding to approximately 1 ns. For this reason both

100 J. Fineberg, M. Marder / Physics Reports 313 (1999) 1}108



the strain rates used and the amount of strain in the material at the onset of fracture (approximately
an order of magnitude larger than observed in real materials) had to be extremely large. Thus, the
close correspondence of the results of the simulations with the laboratory results obtained in
amorphous materials is rather surprising. The short time scales used in these simulations, of course,
preclude examination of steady-state properties of the system. It should therefore be interesting to
compare the results obtained in these experiments with steady-state results obtainable in the
smaller simulations described in Section 6.6.1.

7. Conclusions

We began working in the "eld of fracture with the misconception that there was a problem with
the terminal velocity of cracks needing to be explained. Gradually, we came to understand that the
di$culty in explaining the terminal velocity of cracks had been so persistent because the problem
had not been properly posed. The real question concerned the nature of dissipation near the
crack tip.

In a su$ciently brittle material, it is surprising to need to consider dissipation. It seems natural
to suppose that energy will mainly be consumed by the act of snapping bonds to create new surface,
and that this process should depend only weakly upon crack velocity. It should have been obvious
all along that this view cannot be correct. By loading cracks in di!ering fashions, greatly varying
quantities of energy can be forced into the crack tip. The tip must "nd some mechanism for dealing
with the energy not needed to break a minimal set of bonds, and once transfer into phonons and
other tame mechanisms has been exhausted, the crack tip begins a sequence of dynamical
instabilities, designed to digest energy by creating rami"ed networks of broken surface on small
scales.

These ideas o!er a detailed account of aspects of fracture that had been considered too
complicated to describe quantitatively, or were simply ignored. There is no con#ict with conven-
tional fracture mechanics. One of the basic tenets of fracture mechanics is that if the system of
interest is su$ciently large that the assumption of small-scale yielding is justi"ed, all of the complex
dissipative processes that go into creating a new fracture surface can be thrown together into
a phenomenological function of velocity called the fracture energy. In large enough systems, the
crack tip instabilities occur within the process zone, where the descriptive power of linear elastic
fracture mechanics does not operate. Thus, from the viewpoint of conventional fracture mechanics,
the instabilities simply rede"ne the value of C. On the other hand, without fundamental under-
standing of the structure of the process zone that yields C, the theory loses both its descriptive as
well as its predictive power.

We have now achieved a good understanding of the structure and dynamics of mechanisms for
dissipation within the near vicinity of the tip of a moving crack in a brittle material. We "nd that
fracture in brittle materials is governed by a dynamic instability which leads to repeated attempted
branching of the crack. The major features of this instability are summarized below.

1. There seems to be no material so brittle that the process zone always remains featureless.
Once energy #ux to the tip of a crack exceeds the maximum value that can safely be trans-
ported away by phonons or other dissipative mechanisms, the tip undergoes a progression of
instabilities.
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2. Beyond the instability threshold, an initial propagating crack changes its topology by creating
short-lived microscopic crack branches. The micro-branching process give rise to oscillations of
the velocity of the leading crack. In addition, the branching process forms the non-trivial surface
structure that is observed on the fracture surface of amorphous materials.

3. Once the micro-branching instability occurs, the amount of energy dissipated by the system
increases by an amount that is simply the total length formed by the micro-branches and main
crack times the fracture energy of a single crack. Experimentally, this can increase the total crack
length (and with it the dissipation) by up to an order of magnitude.

4. The mean length of the frustrated branches increases as a function of the energy #ux into the
crack. Eventually, the micro-branches evolve into macroscopic crack branches. The onset of the
micro-branching instability therefore provides a well-de"ned criterion for the process that
eventually culminates in macroscopic crack branching. There is evidence that a second
transition may occur at velocities larger than v

#
where the width of the micro-branches appears

to diverge. This transition may be a su$cient condition for macroscopic crack branching to
occur.

5. In crystalline materials, theory can account for the instability in some detail, and makes the
added prediction that a forbidden band of velocities exists for cracks. A crack may only
propagate stably above a "nite minimum velocity. Molecular dynamics simulations of crystal-
line silicon indicate that this forbidden band of states may disappear by room temperature, but
should be observable in low temperature experiments.

Thus the picture is still incomplete. The most detailed experiments are in amorphous materials at
room temperature, while the most detailed theory applies only to crystals at very low temperatures.
A theoretical description of fracture general enough to encompass the full range of brittle materials,
or even to provide a precise description of what `brittlea means has not yet been obtained.
Attempts to describe the process zone within some sort of continuum framework have not yet been
successful, but the limitations in the atomic point of view provide ample motivation for continued
e!ort along the continuum line.

Although the instability appears in dynamic "nite element simulations, it has no analytical
explanation in a continuum framework. In fact, many classical models of the process (cohesive)
zone have been shown to be ill-posed in that they admit a continuum of possible states under
identical conditions. Theories formulated on a lattice, on the other hand, do not exhibit these
di$culties. It remains to be seen whether a simple continuum limit exists, or whether a crucial
ingredient in understanding fracture is the discreteness of the underlying atoms.
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