Multi-Photon Entanglement
Quantum Non-Locality
And One Way Computing

H.S. Eisenberg’s QUANTUM OPTICS group seminar 2008

Part of the slide are adaptations taken from talks by: Andreas Reinhard; Kevin Resch; Dan Browne; Sean Clark (no slide was bluntly stolen it is states explicitly)
GHZ-A new state (of mind)

GOING BEYOND BELL’S THEOREM

Daniel M. Greenberger¹, Michael A. Horne², and Anton Zeilinger³.

¹City College of the City University of New York, New York, New York
²Stonehill College, North Easton, Massachusetts
³Atominstitut der Oesterreichischen Universitaeten, Wien, Austria

GHZ state: \[|\psi\rangle = \frac{1}{\sqrt{2}} (|H_1\rangle |H_2\rangle |H_3\rangle + |V_1\rangle |V_2\rangle |V_3\rangle) \]

\[|H'\rangle = \frac{1}{\sqrt{2}} (|H\rangle + |V\rangle) \]

\[|V'\rangle = \frac{1}{\sqrt{2}} (|H\rangle - |V\rangle) \]

\[|R\rangle = \frac{1}{\sqrt{2}} (|H\rangle + i|V\rangle) \]

\[|L\rangle = \frac{1}{\sqrt{2}} (|H\rangle - i|V\rangle) \]
\[|H\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad |V\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

\[x \text{ measurement: } |H'\rangle \quad |V'\rangle \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

\[y \text{ measurement: } |R\rangle \quad |L\rangle \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \]
\[|\Psi\rangle = \frac{1}{2} (|R\rangle_1 |L\rangle_2 |H'\rangle_3 + |L\rangle_1 |R\rangle_2 |H'\rangle_3 \\
\quad + |R\rangle_1 |R\rangle_2 |V'\rangle_3 + |L\rangle_1 |L\rangle_2 |V'\rangle_3) \]

1. Any specific result obtained in any individual or in any two-photon joint measurement is maximally random

2. Given any two results of measurements on any two photons, we can predict with certainty the result of the corresponding measurement performed on the third photon

Same can be done for \(H'/V' \)

In every one of the three \(yxy \), \(yyx \) and \(xyy \) experiments, Third photon measurement (circular and linear polarization) is predicted with certainty
local realism

Assume we did the measurement and found perfect correlations

Each photon carries elements of reality for both x and y

Elements of reality

$$X_i \in \{(-1,1)\} \quad \text{for} \quad H'/V' \quad \text{polarization}$$

$$Y_i \in \{(-1,1)\} \quad \text{for} \quad R'/L' \quad \text{polarization}$$

$$|\Psi\rangle = \frac{1}{2} (|R\rangle_1 |L\rangle_2 |H'\rangle_3 + |L\rangle_1 |R\rangle_2 |H'\rangle_3$$

$$+ |R\rangle_1 |R\rangle_2 |V'\rangle_3 + |L\rangle_1 |L\rangle_2 |V'\rangle_3)$$

$$X_1 Y_2 Y_3 = -1$$

$$Y_1 Y_2 X_3 = -1$$

$$Y_1 X_2 Y_3 = -1$$
But what if we decide to measure xxx?

local realism

- x is independent the measurement performed on the other photon.

- And since always: $Y_i Y_i = +1$

\[
X_1 X_2 X_3 = (X_1 Y_2 Y_3) \cdot (Y_1 X_2 Y_3) \cdot (Y_1 Y_2 X_3)
\]

\[
X_1 X_2 X_3 = -1
\]

Odd number of V's

The possible results:

\[
\begin{aligned}
V'_1 & V'_2 & V'_3 \\
H'_1 & H'_2 & V'_3 \\
H'_1 & V'_2 & H'_3 \\
V'_1 & H'_2 & H'_3
\end{aligned}
\]
Quantum Mechanics?

\[|\Psi\rangle = \frac{1}{2} (|H'\rangle_1 |H'\rangle_2 |H'\rangle_3 + |H'\rangle_1 |V'\rangle_2 |V'\rangle_3 + |V'\rangle_1 |H'\rangle_2 |V'\rangle_3 + |V'\rangle_1 |V'\rangle_2 |H'\rangle_3) \]

One measurement decides who is right

local realism

- \(V'_1 V'_2 V'_3 \)
- \(H'_1 H'_2 V'_3 \)
- \(H'_1 V'_2 H'_3 \)
- \(V'_1 H'_2 H'_3 \)
Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement

Dik Bouwmeester, Jian-Wei Pan, Matthew Daniell, Harald Weinfurter, and Anton Zeilinger
Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
(Received 6 October 1998)

\[|\Psi^i\rangle_{1234} = \frac{1}{\sqrt{2}} \left(|H\rangle_1 |V\rangle_2 - |V\rangle_1 |H\rangle_2 \right) \]
\[\otimes \frac{1}{\sqrt{2}} \left(|H\rangle_3 |V\rangle_4 - |V\rangle_3 |H\rangle_4 \right) \]

\[|\Psi^f\rangle_{12'3'4} = \frac{1}{\sqrt{2}} \left(|H\rangle_1 |V\rangle_{2'} |V\rangle_{3'} |H\rangle_4 + |V\rangle_1 |H\rangle_{2'} |H\rangle_{3'} |V\rangle_4 \right) \]

A 4 photon GHZ state
\[|\Psi^f\rangle_{12'3'4} = \frac{1}{\sqrt{2}} \left(|H\rangle_1 |V\rangle_{2'} |V\rangle_{3'} |H\rangle_4 + |V\rangle_1 |H\rangle_{2'} |H\rangle_{3'} |V\rangle_4 \right) \]

\[|V'\rangle \quad |H'\rangle \]

\[|H'\rangle \quad |\Psi\rangle_{13'4} = \frac{1}{\sqrt{2}} \left(|H\rangle_1 |V\rangle_{3'} |H\rangle_4 + |V\rangle_1 |H\rangle_{3'} |V\rangle_4 \right) \]

\[|V'\rangle \quad |\Psi\rangle_{13'4} = \frac{1}{\sqrt{2}} \left(|H\rangle_1 |V\rangle_{3'} |H\rangle_4 - |V\rangle_1 |H\rangle_{3'} |V\rangle_4 \right) \]
Verification of multi-photon entanglement

Observation of the HHVH & VHHV components

200:1 ratio
Verification of actual entanglement by performing polarization test at a V'/H' basis

8 out of 16 combinations are possible all with even number of H'

$HHHV$ is suppressed with a visibility of 0.79 ± 0.06
Experimental Test of Quantum Non-Locality

First: perform \(yyx, yxy, \) and \(xyy \) experiments
Second : perform \(xxx \) experiments:

Q-M is ‘right’ 85% of the time

But… Are we sure that this means Q-M is right???

If our visibility is 74% \(P(xxx = +1) = 0.87 \pm 0.04 \)

Were does this prediction come from
To address this argument, a number of inequalities for N-particle GHZ states have been derived. For instance, Mermin’s inequality for a threeparticle GHZ state reads as follows: $|\sigma_x \sigma_y \sigma_x + \sigma_y \sigma_x \sigma_y + \sigma_y \sigma_y \sigma_x - \sigma_x \sigma_x \sigma_x| \leq 2$, where symbol \cdot denotes the expectation value of a specific physical quantity. The necessary visibility to violate this inequality is 50%. The visibility observed in our GHZ experiment is 71±4% and obviously surpasses the 50% limitation. Substituting our results measured in the yyx, yxy and xxy experiments into the left-hand side of, we obtain the following constraint: $\sigma_x \sigma_x \sigma_x \leq -0.1$, by which a local realist can thus predict that in an xxx experiment the probability fraction for the outcomes yielding a +1 product, denoted by $P(xxx = +1)$, should be no larger than 0.45±0.03 (also refer to the first bar in ….

Bla Bla Bla Bla…
6 photon GHZ

Start by preparing 3 EPRs’

only if both incoming photons have the same polarization they can go to different outputs. Thus, a coincidence detection of all six outputs corresponds to the state

$$|\Phi^+\rangle_{ij} = \frac{1}{\sqrt{2}}(|H\rangle_i|H\rangle_j + |V\rangle_i|V\rangle_j),$$

$$|G_6\rangle = \frac{1}{\sqrt{2}}(|H\rangle_1|H\rangle_2|H\rangle_3|H\rangle_4|H\rangle_5|H\rangle_6$$

$$+ |V\rangle_1|V\rangle_2|V\rangle_3|V\rangle_4|V\rangle_5|V\rangle_6),$$
Characterization

Entanglement witness = An observable that has a positive expectation value on all biseparable states

For the six-photon GHZ state: $W_G = \frac{I}{2} - |G_6 \rangle \langle G_6|.$

Re-writing the state:

$|G_6 \rangle \langle G_6| = \frac{1}{2} [(|H \rangle \langle H|)^{\otimes 6} + (|V \rangle \langle V|)^{\otimes 6}] + \frac{1}{12} \sum_{n=-2}^{3} (-1)^n M^{\otimes 6}_{(n)},$

$M_{(n)} = \cos(n\pi/6)\sigma_x + \sin(n\pi/6)\sigma_y$ Are measurement on the x-y plane.
seven measurement settings are required

\[(W_G \rho_{\text{exp}}) = -0.093 \pm 0.025\]
W-STATES

GHZ state: \[|\psi\rangle = \frac{1}{\sqrt{2}} (|H_1\rangle |H_2\rangle |H_3\rangle + |V_1\rangle |V_2\rangle |V_3\rangle) \]

W state: \[|W\rangle = \frac{1}{\sqrt{3}} (|HHV\rangle_{abc} + |HVG\rangle_{abc} + |VHH\rangle_{abc}) \]

Which one is better?

- **GHZ** violates Mermin (Bell?) inequalities more (what does that mean?)

- **W-States** are less fragile than GHZ states
Experimental Realization of a Three-Qubit Entangled W State

Manfred Eibl1,2, Nikolai Kiesel1,2, Mohamed Bourennane1,2, Christian Kurtsiefer2,3, and Harald Weinfurter1,2

1Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
2Sektion Physik, Ludwig-Maximilians-Universität, D-80797 München, Germany
3Department of Physics, National University of Singapore, Singapore

(Received 25 August 2003; published 18 February 2004)
\[P_{HHH} = \frac{C_{HHH}}{\sum_{i,j,k=\{H,V\}} C_{ijk}} \]

\(C_{HHH} \) is the number of recorded \(HHH \) events

incoherent mixture

\[\rho_M = \frac{1}{3} (|HHV \rangle \langle HHV| + |HVH \rangle \langle HVH| + |VHH \rangle \langle VHH|) \]

equally weighted mixture of biseparable states

\[\rho_B = \frac{1}{3} \rho_a \otimes \rho_{bc} + \frac{1}{3} \rho_b \otimes \rho_{ac} + \frac{1}{3} \rho_c \otimes \rho_{ab} \]

\[\rho_a = |H \rangle \langle H| \quad \rho_{bc} = \text{bell state between modes } b \text{ and } c \]
L/R Basis

W-State

incoherent mixture

equally weighted mixture of biseparable states

\[
\rho_M = \frac{1}{3}\left(|HHV\rangle \langle HHV| + |HVH\rangle \langle HVH| + |VHH\rangle \langle VHH| \right)
\]

equally weighted mixture of biseparable states

\[
\rho_B = \frac{1}{3}\rho_a \otimes \rho_{bc} + \frac{1}{3}\rho_b \otimes \rho_{ac} + \frac{1}{3}\rho_c \otimes \rho_{ab}
\]
Characterizing the Entanglement

Measurement Basis

\[|k_j, \phi_j\rangle = \frac{1}{\sqrt{2}}(|R\rangle + k_j e^{i\phi_j} |L\rangle) \]

\[\hat{\sigma}_j = \sum_{k_j} k_j |k_j, \phi_j\rangle \langle k_j, \phi_j| \]

\[k_j = \pm 1 \quad j = a, b, c \]

correlation function

\[E(\phi_a, \phi_b, \phi_c) = \langle \hat{\sigma}_a(\phi_a) \hat{\sigma}_b(\phi_b) \hat{\sigma}_c(\phi_c) \rangle \]

\[= \sum_{k_a, k_b, k_c = \pm 1} k_a k_b k_c p_{k_a k_b k_c}(\phi_a, \phi_b, \phi_c) \]

\(p_{k_a k_b k_c}(\phi_a, \phi_b, \phi_c) \) is the probability for a threefold coincidence with the results \(k_a, k_b, \) and \(k_c \) for the specific setting of phases \(\phi_j \).
correlation function

\[E(\phi_a, \phi_b, \phi_c) = \langle \hat{\sigma}_a(\phi_a) \hat{\sigma}_b(\phi_b) \hat{\sigma}_c(\phi_c) \rangle \]

\[= \sum_{k_a,k_b,k_c = \pm 1} k_a k_b k_c p_{k_a k_b k_c}(\phi_a, \phi_b, \phi_c) \]

For a W-state

\[E(\phi_a, \phi_b, \phi_c) = -\frac{2}{3} \cos(\phi_a + \phi_b + \phi_c) \]

\[- \frac{1}{3} \cos(\phi_a) \cos(\phi_b) \cos(\phi_c) \]

\[\phi_b = \phi_c = 0 \quad \Rightarrow \quad E(\phi_a, 0, 0) = - \cos(\phi_a) \]
$\phi_b = \phi_c = 0 \quad \Rightarrow \quad E(\phi_a, 0, 0) = -\cos(\phi_a)$

Note that $E_{GHZ}(\phi_a, \phi_b, 0)=0 \quad \text{While} \quad |E_w(\phi_a, \pi/2, \pi/2)| < 2/3$
Robustness of the entanglement

Correlation between a and b, depending on the measurement result of the photon in mode c
Quantum State Tomography

A test of the Peres-Horodecki criterion

A separable state \(\rho = \sum_A w_A \rho_A' \otimes \rho_A'' \)

\[\lambda^H = -0.5 \]
\[\lambda^H_{\text{exp}} = -0.348 \pm 0.019 \]

\[\lambda^V = -0.5 \]
\[\lambda^V_{\text{exp}} = -0.113 \pm 0.062 \]
W-States in multiqubit systems

The totally symmetric state including $N-1$ zeros and 1 ones

$$|W_N\rangle \equiv (1/\sqrt{N})|N-1,1\rangle$$

Example: $N=4$:

$$|W_4\rangle = (1/\sqrt{4})(|0001\rangle + |0010\rangle + |0100\rangle + |1000\rangle)$$

Reduced density operators ρ_{km}:

$$\rho_{\kappa\mu} = \frac{1}{N}(2|\Psi^+\rangle\langle\Psi^+| + (N-2)|00\rangle\langle00|)$$

No experimental W-state > 3 yet
Measures of entanglement using the density matrix

Fidelity - a measure of state overlap:

\[
F(\rho_1, \rho_2) = \left(\text{Tr} \left\{ \sqrt{\sqrt{\rho_1 \rho_2} \sqrt{\rho_1}} \right\} \right)^2
\]

\(\rho_1\) and \(\rho_2\) pure - simplifies to \(\text{Tr} \{\rho_1 \rho_2\} = |\langle \psi_1 | \psi_2 \rangle|^2\)
Tangle - The *concurrence* and *tangle* are measures of the non-classical properties of a quantum state.

Concurrence: For a non-Hermitian matrix

\[\hat{R} = \hat{\rho} \hat{\Sigma} \hat{\rho}^T \hat{\Sigma} \]

\[\hat{\Sigma} \equiv \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \]

For \(r_1 < r_2 < r_3 < r_4 \) eigenvalues of \(R \)

Concurrence:

\[C = \text{Max} \{ 0, \sqrt{r_1} - \sqrt{r_2} - \sqrt{r_3} - \sqrt{r_4} \} \]

Tangle:

\[T \equiv C^2 \]

For a product state: \(T = 0 \)

For a Bell state: \(T = 1 \)
Entropy and the Linear Entropy - The Von Neuman entropy quantifies the degree of mixture in a quantum state

\[
S \equiv -\text{Tr} \left\{ \hat{\rho} \ln [\hat{\rho}] \right\} = -\sum_i p_i \ln \{p_i\}
\]

The linear entropy for a two-qubit system:

\[
S_L = \frac{4}{3} \left(1 - \text{Tr} \left\{ \hat{\rho}^2 \right\} \right)
\]

\[
= \frac{4}{3} \left(1 - \sum_{a=1}^{4} p_a^2 \right)
\]

For a pure state: \(\rho^2 = \rho\) \(\implies\) \(\text{Tr}[\rho] = 1\)

\(S_L = 0\) for a pure state

\(S_L = 1\) for a completely mixed state
Cluster states and
One-way quantum computation

Slide adopted from Kevin Resch (Waterloo U)
Cluster States

Examples

In two qubits: Bell State

In three qubits: GHZ state

In general, “Cluster States” have no simple state vector representation (no. of terms increases exponentially in no. of qubits).

Stabiliser formalism provides an easy and compact description.
Stabiliser Formalism

Operator O is stabiliser of state $|\psi\rangle$ if:

$$O|\psi\rangle = |\psi\rangle$$

Specifying multiple stabilisers can define a sub-space, or even a specific state.
Cluster States

Cluster states are pure quantum states of two level systems ~qubits! located on a cluster C.

This cluster is a connected subset of a simple cubic lattice Z_d in $d>1$

The cluster states $|\phi_{\{\kappa\}}\rangle_C$ obey the set of eigenvalue equations:

$$K^{(a)}|\phi_{\{\kappa\}}\rangle_C = (-1)^{\kappa_a}|\phi_{\{\kappa\}}\rangle_C$$

with the correlation operators:

$$K^{(a)} = \sigma^{(a)}_x \bigotimes_{b \in \text{neigh}(a)} \sigma^{(b)}_z$$

$$\{\kappa\} := \{\kappa_a \in \{0,1\} | a \in C\}$$
Stabilizers for the Cluster State

A cluster state on a given qubit array A is defined by the following stabilisers.

$$-1^{k_a} X^a \bigotimes Z^i$$

$i \in \text{ngbr}(a)$

$\forall a \in A$ where $\text{ngbr}(a)$ represents all nearest neighbours of qubit a.

$k_a \in \{0,1\}$

The state is completely defined by the stabilizer eigenvalue equations, all of its properties can be calculated in terms of the stabilisers.

For $k_a=0$, we have a special case
For: \(\kappa_a = 0, \quad \forall a \in \mathcal{C} \)

An Ising Hamiltonian will transform a lattice (1,2,3D) into a cluster state

\[
\exp \left[-i \frac{\pi}{4} \sum_{\langle j,k \rangle} \sigma_z^{(j)} \sigma_z^{(k)} \right] \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right)^ \otimes n
\]
Example Cluster States

• For one dim cluster with two qubits

\[\frac{1}{\sqrt{2}} (|00\rangle + |01\rangle + |10\rangle - |11\rangle) \]

• For one dim cluster with three qubits

\[\frac{1}{2\sqrt{2}} (|000\rangle + |001\rangle + |010\rangle - |011\rangle + |100\rangle + |101\rangle - |110\rangle + |111\rangle) \]

• For one dim cluster with four qubits

\[\frac{1}{4} (|0000\rangle + |0001\rangle + |0010\rangle - |0011\rangle + |0100\rangle + |0101\rangle - |0110\rangle + |0111\rangle \\
+ |1000\rangle + |1001\rangle + |1010\rangle - |1011\rangle - |1100\rangle - |1101\rangle + |1110\rangle - |1111\rangle) \]
Generating a Cluster State

- First produce the product state
 \[+ >_C = \bigotimes_{a \in C} + >_a \]
- Then apply the entangling operator
 \[S^{(C)} = \prod_{a, b \in C | b-a \in \gamma_d} S^{ab} \]

Where \(\gamma_d \) is the set of positive shifts by one place in one dimension (i.e. for \(d = 3 \) \(\gamma_3 = \{(1,0,0)^T, (0,1,0)^T, (0,0,1)^T\} \))

And
\[S^{ab} = \frac{1}{2} \left(1 + \sigma_z^{(a)} + \sigma_z^{(b)} + \sigma_z^{(a)} \otimes \sigma_z^{(b)} \right) \]

The resultant state can be shown to satisfy eigenvalue equations
How much entanglement is in there?

- Two measures of entanglement useful in characterizing the properties of a cluster state can be defined on the states of \(n \) qubits:
 - A state is **maximally connected** if any pair of qubits can be projected, with certainty into a pure Bell state by local measurements on a subset of the other qubits.
 - The **persistency of entanglement** is the minimum number of local measurements such that, for all measurement outcomes, the state is completely disentangled.

- A cluster state of \(n \) qubits is maximally connected and has

\[
P_e = \max \{ p \mid p \leq n / 2 \}
\]
Logical and cluster qubits

- A distinction is made between cluster qubits as shown in the diagram and logical qubits which correspond to qubits in a register in a quantum network computation.

- The logical qubits can be thought to “flow” during the computation from input clusters qubits 1, 15 to output cluster qubits 7, 21.
Operations on qubits

• Prepare cluster state

Measure the state of qubit j in a chosen basis

\[B_j(\alpha) = \{ |+\alpha\rangle_j, |-\alpha\rangle_j \} \quad \text{where} \quad | \pm \alpha \rangle_j = \frac{1}{\sqrt{2}} \left(|0\rangle_j \pm e^{i\alpha} |1\rangle_j \right) \]

• Consecutive measurements on qubits 1, 2, 3 disentangle the state and completely determine the state of qubit 4.

• The state of „output“ qubit 4 is dependant on the chosen bases.

• Classical feedforward makes a OWQC deterministic
Realization of a CNOT gate

- Prepare the state: $|\Psi_{\text{in}}\rangle_{C_{15}} = |\psi_{\text{in}}\rangle_{1,9} \otimes \left(\bigotimes_{i \in C_{15}\setminus\{1,9\}} |+\rangle_{i} \right)$

- Entangle the 15 qubits of the cluster C_{15} via the unitary operation $S^{(C_{15})}$

- Measure all qubits of C15 except for the outputs $(7, 15)$ as in the following sketch

```
control 1 2 3 4 5 6 7
X Y Y Y Y Y Y O

8 Y

target 9 10 11 12 13 14 15
X X X X Y X X O
```

Measure in σ_x basis

Measure in σ_y basis
Dependent on the measurement results we get the following gate:

\[U'_{\text{CNOT}} = U_{\Sigma, \text{CNOT}} \text{CNOT}(c, t) \]

With the byproduct having the form:

\[U_{\Sigma, \text{CNOT}} = \sigma_x^{(c)} \gamma_x^{(c)} \sigma_x^{(t)} \gamma_x^{(t)} \sigma_z^{(c)} \gamma_z^{(c)} \sigma_z^{(t)} \gamma_z^{(t)} \]

\[\gamma_x^{(c)} = s_2 + s_3 + s_5 + s_6, \]

\[\gamma_x^{(t)} = s_2 + s_3 + s_8 + s_{10} + s_{12} + s_{14}, \]

\[\gamma_z^{(c)} = s_1 + s_3 + s_4 + s_5 + s_8 + s_9 + s_{11} + 1 \]

\[\gamma_z^{(t)} = s_9 + s_{11} + s_{13}. \]
Realization of a 4 qubit CNOT gate

• Prepare the state $|\psi\rangle_{C_4} = |i_1\rangle_{z,1} \otimes |i_4\rangle_{z,4} \otimes |+\rangle_2 \otimes |+\rangle_3$

• Entangle the 4 qubits of the cluster C_4 via the unitary operation $S^{(C_4)}$

• Measure σ_x of qubits 1 and 2

• You get the following quantum state:

$$|s_1\rangle_{x,1} \otimes |s_2\rangle_{x,2} \otimes U^{(34)}_{\Sigma} |i_4\rangle_{z,4} \otimes |i_1 + i_4 \text{ mod } 2\rangle_{z,3}$$

$$U^{(34)}_{\Sigma} = \sigma^x_{\Sigma}^{(3)s_1 + 1} \sigma^x_{\Sigma}^{(3)s_2} \sigma^z_{\Sigma}^{(4)s_1}$$

• You don’t keep the control:
General one qubit SU(2) rotation

\[\mathcal{U}_{\text{Rot}}[\xi, \eta, \zeta] = \mathcal{U}_x[\zeta] \mathcal{U}_z[\eta] \mathcal{U}_x[\xi] \]

\[\mathcal{U}_x[\alpha] = \exp\left(-i \alpha \frac{\sigma_x}{2} \right) \]

\[\mathcal{U}_z[\alpha] = \exp\left(-i \alpha \frac{\sigma_z}{2} \right) \]

Measurement basis:

\[\mathcal{B}_j(\varphi_j) = \left\{ \frac{|0\rangle_j + e^{i\varphi_j}|1\rangle_j}{\sqrt{2}}, \frac{|0\rangle_j - e^{i\varphi_j}|1\rangle_j}{\sqrt{2}} \right\} \]
General one qubit SU(2) rotation

- Prepare the state: \[|\Psi_{in}\rangle_{C_5} = |\psi_{in}\rangle_1 \otimes \left(\bigotimes_{i=2}^{5} |+\rangle_i \right) \]
- Entangle the 5 qubits of the cluster C_5 via the unitary operation \(S^{(C_5)} \)

Measure qubits 1–4 in the following order and basis:
 - measure qubit 1 in \(\mathcal{B}_1(0) \),
 - measure qubit 2 in \(\mathcal{B}_2(-\xi (-1)^{s_1} t) \),
 - measure qubit 3 in \(\mathcal{B}_3(-\eta(-1)^{s_2}) \),
 - measure qubit 4 in \(\mathcal{B}_4(-\zeta(-1)^{s_1+s_3}) \)
General one qubit SU(2) rotation

Dependent on the measurement results we get the following gate:

\[U'_{\text{Rot}}[\xi, \eta, \zeta] = U_{\Sigma, \text{Rot}} U_{\text{Rot}}[\xi, \eta, \zeta] \]

With the byproduct having the form:

\[U_{\Sigma, \text{Rot}} = \sigma_x s_2 + s_4 \sigma_z s_1 + s_3 \]
Question: What do we do with the byproduct U_Σ?

Answer: propagate it forward using classical communication and re-interpret the final answer at according to the measurement results.

Generally:

$$ |\psi_{\text{out}}\rangle = \left(\prod_{i=1}^{|\mathcal{N}|} U_{\Sigma, g_i} U_{g_i} \right) |\psi_{\text{in}}\rangle $$

We use the following propagation relations:

- For CNOT gates:
 - $\text{CNOT}(c, t) \sigma_x^{(i)} = \sigma_x^{(i)} \text{CNOT}(c, t)$,
 - $\text{CNOT}(c, t) \sigma_x^{(c)} = \sigma_x^{(c)} \sigma_x^{(t)} \text{CNOT}(c, t)$,
 - $\text{CNOT}(c, t) \sigma_z^{(i)} = \sigma_x^{(c)} \sigma_z^{(i)} \text{CNOT}(c, t)$,
 - $\text{CNOT}(c, t) \sigma_z^{(c)} = \sigma_z^{(c)} \text{CNOT}(c, t)$,

- For arbitrary rotation:
 - $U_{\text{Rot}}[\xi, \eta, \zeta] \sigma_x = \sigma_x U_{\text{Rot}}[\xi, -\eta, \zeta]$,
 - $U_{\text{Rot}}[\xi, \eta, \zeta] \sigma_z = \sigma_z U_{\text{Rot}}[-\xi, \eta, -\zeta]$,

and

- For Hadamard and $\pi/2$ phase gates:
 - $H \sigma_x = \sigma_z H$,
 - $U_z[\pi/2] \sigma_x = \sigma_y U_z[\pi/2]$,
 - $H \sigma_z = \sigma_x H$,
 - $U_z[\pi/2] \sigma_z = \sigma_z U_z[\pi/2]$.
As a result:

\[|\psi_{\text{out}}\rangle = \left(\prod_{i=1}^{\mathcal{N}} U_{\Sigma,g_i} U_{g_i} \right) |\psi_{\text{in}}\rangle \]

\[\Rightarrow |\psi_{\text{out}}\rangle = \left(\prod_{i=1}^{\mathcal{N}} U_{\Sigma,g_i} |\Omega\rangle \right) \left(\prod_{i=1}^{\mathcal{N}} U'_{g_i} \right) |\psi_{\text{in}}\rangle \]

The byproduct is propagated to the end state.
6 photon Cluster State

If one is to apply a Hadamard to photon 4
6 photon Cluster State

Let's do it in two steps

1: Combine 3 and 2

$$\frac{1}{\sqrt{2}}(|H\rangle_1|H\rangle_2|H\rangle_3|+\rangle_4 + |V\rangle_1|V\rangle_2|V\rangle_3|\rangle_4),$$

2: Combine 5 and 4

$$|C_6\rangle = \frac{1}{2}(|H\rangle_1|H\rangle_2|H\rangle_3|H\rangle_4|H\rangle_5|H\rangle_6$$
$$+ |H\rangle_1|H\rangle_2|H\rangle_3|V\rangle_4|V\rangle_5|V\rangle_6$$
$$+ |V\rangle_1|V\rangle_2|V\rangle_3|H\rangle_4|H\rangle_5|H\rangle_6$$
$$- |V\rangle_1|V\rangle_2|V\rangle_3|V\rangle_4|V\rangle_5|V\rangle_6)$$
For the six-photon Cluster state a different witness is used:

\[
\text{Tr}(W_C \rho_{\text{exp}}) = -0.095 \pm 0.036.
\]
Scheme to construct various six-photon ‘graph’ states
SU(2) rotation & gates (Zeilinger)

- A general SU(2) rotation and 2-qubit gates

CPhase operations + single qubit rotations = universal quantum computer!
Doing the experiment (Zielinger of course)

\[|\psi\rangle = |HHHH\rangle + |HHVV\rangle + |VVHH\rangle - |VVVV\rangle \]
Quantum state tomography Reconstructed density matrix

\[
\left| \left\langle \phi_{\text{Cluster}} \left| \left(|A\rangle \otimes |B\rangle \otimes |C\rangle \otimes |D\rangle \right) \right|^{2} \right. \quad \text{with} \quad |A\rangle, |B\rangle, |C\rangle, |D\rangle \in \left\{ \frac{1}{\sqrt{2}} \left(|H\rangle + |V\rangle \right), \frac{1}{\sqrt{2}} \left(|H\rangle - i |V\rangle \right) \right\}
\]

Fidelity \(F = \left\langle \phi_{\text{Cluster}} \left| \rho \right| \phi_{\text{Cluster}} \right\rangle = (0.63 \pm 0.02) \)
Rotation

Disentangle qubit 1 from qubits 2, 3, 4

\[
|0\rangle_1 \otimes \left(|+\rangle_2 |0\rangle_3 |+\rangle_4 \right) = |0\rangle_1 \otimes \left\{
\begin{align*}
&|+\alpha\rangle_2 |+\beta\rangle_3 \otimes \left(e^{\frac{i\beta}{2}} \cos \frac{\alpha}{2} |+\rangle_4 + e^{-i\frac{\beta}{2}} \cdot i \sin \frac{\alpha}{2} |\rangle_4 \right) \\
&+ |+\alpha\rangle_2 |-\beta\rangle_3 \otimes \left(e^{\frac{i\beta}{2}} \cos \frac{\alpha}{2} |+\rangle_4 - e^{-i\frac{\beta}{2}} \cdot i \sin \frac{\alpha}{2} |\rangle_4 \right) \\
&+ |-\alpha\rangle_2 |+\beta\rangle_3 \otimes \left(e^{\frac{i\beta}{2}} \cdot i \sin \frac{\alpha}{2} |+\rangle_4 + e^{-i\frac{\beta}{2}} \cos \frac{\alpha}{2} |\rangle_4 \right) \\
&+ |-\alpha\rangle_2 |-\beta\rangle_3 \otimes \left(e^{\frac{i\beta}{2}} \cdot i \sin \frac{\alpha}{2} |+\rangle_4 - e^{-i\frac{\beta}{2}} \cos \frac{\alpha}{2} |\rangle_4 \right)
\end{align*}
\right\} + \text{other 3 terms}
\]

and project the state on $|+\alpha\rangle_2 |+\beta\rangle_3 \Rightarrow \text{post selection}$

Single qubit rotation
Single-qubit rotations

\[
\alpha = \begin{cases}
\frac{\pi}{2} \\
\frac{\pi}{4} & \beta = \frac{\pi}{2} \\
0 & F = \begin{cases}
0.86 \pm 0.03 \\
0.85 \pm 0.04 \\
0.83 \pm 0.03
\end{cases}
\end{cases}
\]
Two-qubit gates
Thank You