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OUTLINE

e Nucleon Structure 101.
e Measuring the nucleon Form Factors.
e Experimental Results.

e Impacts.



NUCLEON STRUCTURE

* Nucleons are spin-1/2 particles.

Hp ™~ 2.793,LLN

* But measured magnetic moment is
Ly, —1.91/LN

* Nucleons are not pointlike (also known from Deep
Inelastic Scattering).

* Complex internal structure generated by interactions
between pointlike (dressed?) constituents (quarks/
partons).

* Even more complex behavior comes from virtual
constituents (“sea” quarks, gluons).



ELECTRON SCATTERING CROSS-SECTION (1-Y)
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ELECTRON SCATTERING CROSS-SECTION (1-Y)
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IN THE BREIT FRAME....
TZ can be Showon CAL...
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T = iev(p') | (P + kEy) AV ;;B kES | v(p)

—
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J = —ex'T (7 x §s) x (F1 + kF2) = —ex'T (7 x ) xGum
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THE NAIVE INTERPRETATION

As wrong as You can be while still being somewhat
right...



What we kKnow

@ Experimentally found fo approximately
follow (to about 10%) the dipole form:

Fp(Q?) = (1+Q?/0.71)

@ Dipole form in Q space — exponential in r
space.

@ We know the limiting values at Q2=0.

@ But... We know that there are deviations
from dipole (very pronounced at high Q?).



Why We Care

FF are a basic property of the nucleon, related to the complex
internal structure.

Completely describe the EM structure of the nucleon ground
state.

Comparing Ge and Gm — difference between spatial distributions
of charge and magnetization.

Input to other calculations (more later).
Different theories constrained by different Q2 regions.

An important place to look for quark/gluon = hadron/meson
picture fransition.

EM structure expected to change in the nuclear medium.



Measurement Techniques
Rosenbluth Separation
or = (do/dQ) /(do /dV) oty = TGS, + eG4

* Measure the reduced cross section at several values of ¢
(angle/beam energy combination) while keeping Q2 fixed.

* Linear fit to get intercept and slope.

* But... Gm suppressed for low Q2 4

(and Gg for high). *’/

* Also normalization issues/ X 4 .
acceptance issues/ etc. make it +L :
hard to get high precision. >




Measurement Techniques
RECO LL Pola YLZ a ti,o N - : éf

o
N
X

E.+ E,.
loby = ;\Z V11 +7)G3, tan? =
Pr =0 (17)
GE - Pt Ee —+ Ee’ ‘

REG, T T

e A single measurement gives ratio of form factors.
e Interference of “small” and “large” terms allow
measurement at practically all values of Q°.



Measurement Techniques
Beam-Target Asymmetry

Polarized Cross Section: O0=2+hA normal

polarization
— axis (8, ¢ ')
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Measure asymmetry at two different target settings, say 07=0, 90.
Ratio of asymmetries gives ratio of form factors.
functionally identical to recoil polarimetry measurements.



The high @ discrepancy

* At high Q? Rosenbluth and polarization measurements
for the proton are in violent disagreement.
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L. Qattan ef al., Phys. Rev. Lett. 94, 142301 (2005).

* Almost certainly explained by multi-y etfects.
» But whad aboutt low &7



The high @ discrepancy

* At high Q? Rosenbluth and polarization measurements
for the proton are in violent /" *~agreement.
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why Low G*?
* Deviations from dipole form evident.

* Probe static properties (Q> — 0) and peripheral structure.

e Small Q4 does not allow for
pQCD, many competing EFTs.

» Hitting the 7 mass region.

* Potentially impacts many high
precision measurements (nucleon
GPDs, parity violation, Zemach
radius,...).




Low @2 Notable Results
Friedrich & Walcher analysis

s VS N 0 (2003 R
¢ Bump/dip (+2 dipoles) o )
structure in all 4 form factors. T e
® Possibly interpreted as effects
of a virtual meson cloud. T o
BLAST @ MIT Bates - proton
C.B. Cracford et al., Phys. Kev. Letd. 95, 105 |
052301 (2007 ¥ 41 |
® Beam target asymmetry e T~

~ —— Holzwarth [36]

~ ----- Cardarelli [37]

measurement using polarized H
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- —— Faessler [1] < Pospischil [28]
o o o | —— Friedrich [2 O Punjabi
® (Barely) consistent with unity and 085 ey o) X Gayou[29]
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the F&W analysis.
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The JLab Low G2 program
Proton FFs

* LEDEX - Single arm proton measurement
* Recoil polarization measurement of the FF ratio.
 Calibration run from yD measurement.

* 8 Q? data points (0.25 - 0.5 GeV?) with ~ 1.5% uncertainty on best data points.

Led to the proposal of:



The JLab Low G2 program
Proton FFs

* LEDEX - Single arm proton measurement
* Recoil polarization measurement of the FF ratio.
 Calibration run from yD measurement.
* 8 Q? data points (0.25 - 0.5 GeV?) with ~ 1.5% uncertainty on best data points.
* Led to the proposal of:
* E08-007 - Two arm experiment (proton + tagged electron for bck suppression)
* A dedicated 2 part experiment to map the proton FF ratio at low Q2.
e First part used recoil polarization to achieve:

o ~ 1% uncertainty (bes? ever actieved) at Q?~ 0.3 - 0.7 GeV2.

 Second part will use beam target asymmetry (more later).
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A Sense of Scale
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A Sewnse of Scale
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A Sewnse of Scale
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Mainz A1l Measurement
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what we've Learned - Recent FLts

* Plots compare (2007) AMT

fit to fit using newest data.

* New fits reduce Gg by ~
2%.

GGy

* Slope as Q? — 0 changed

(impacts radii).

09 e
r - Updated global fit ) o
[ ====- Armrington, Melnitchouk & Tjon fit

lllllllllllllllllll




upGe/Gy

Extracting the tndividual FFs

1.05

al .00[

o
G0.95

0.90

1.05¢

0::1 .00_

o=
00.95

0.90

0.

0.2 0.4

® (°-0.389 GeV?

..........

0 02 04g06 08 10

Table 1.
Differential cvoss sections: The quoted errors are only
random errors. A normalization error of + 4% has to

be added.
. do . _34 cm?
2% 8O s,GeV) agy 1077 eer)
2 25.25 0.660 32800 £ 990
3 25.25 0.815 18570 + 550
3.065 35.15 0.605 8630 + 260
5 25,25 1.064 8410 + 260
35.15 0.784 4000 +120

8 25,25 1.364 3610 £ 90

10 25.25 1.537 2285 46
31.74 1.249 1328 + 926
32,27 1.231 1310 ¢ 26
35.15 1.142 1080 ¢ 22
50.06 0,848 460.3 + 9.4
64.72 0.696 252.9 £ 41
90,27 0.556 117.8 + 2.3

High precision cross section and FFR
combined — High precision individual form

factors.

Deviation from unity (at least for Q? ~
0.39 GeV?) caused by Ge.

Will eventually combine with high
precision Mainz XS database.

G. Kon et al., Phys. Kev. Let?. 99, 202002 (2007



what we’ve Learwned
Charge Denstties

e Sachs FFs cannot be related to charge/ - _
magnetization densities: 0Ch ( b) — 1 F, (QZ)

o Relativistic effects (Lorentz contraction). P M (5) = 7+ F 2 (QQ)

e Initial /Final states not identical (cannot be
interpreted as density).

e Can be shown that F; & F; are 2D transforms of
charge and magnetization densities.

[
M

IG

[
E

* Low Q? expansion gives:

nG

‘o,
. LEDEX Reanalysis e

2 2 _ B2 px2 2 0.9/ @ cono-
(0%)a — (0%)or = 25(Ry; — RE) + 32 i
: . {5 ('.“"wf‘ ot FINDF=13.33114
* And fit to data gives: | 0 Dt IR
2 0.0 0.5 1.0
e b<) . = 0.0909 £ 0.0039 fm

G. Miller, Phys. KRev. Let?. 99, 12001 (200
G. Miller, £ Piasetzky & G. Kon, Phys. Kev. Let?. 101, 052002 (200%)



what we’ve Learwned
Charge Denstties

e Sachs FFs cannot be related to charge/

magnetization densities: 0Ch ([;) — F1]

o Relativistic effects (Lorentz contraction). PM (b) =7

e Initial /Final states not identical (cannot be

interpreted as density). 1.1

e Can be shown that F; & F» are 2D transforms of

charge and magnetization densities.

P
IGh

[
E

* Low Q? expansion gives:

nG

" — e = =508 o) Need more
data
* And fit to data gives: S
00

<b®> - <b®> =0.10960 = 0.00678

Z2INDF=13.33/14

(b?),, — (b*) . = 0.0909 + 0.0039 fm”

G. Miller, Phys. KRev. Let?. 99, 12001 (200
G. Miller, £ Piasetzky & G. Kon, Phys. Kev. Let?. 101, 052002 (200%)
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what we’ve Learwned
Charge Denstties

p

° A C’/Z(é(d//y needs to be rodified.
- i .
But overall conclusion stays. pcn(b) = F I 1(Q )
o Relativistic effects (Lorentz contraction). P M(E) — F ! F 2(Q2)
y

e Initial /Final states not identical (cannot be
interpreted as density).

e Can be shown that F; & F; are 2D transforms of
charge and magnetization densities.

P
IGh

[
E

* Low Q? expansion gives:

(L)
" — e = =508 o) Need more
data “""ND.F=1333'14
* And fit to data gives: S cb—-s,,f.;i,,:o_@g;o:o_ooem
0.0 05 10
(b?),, — (b*) . = 0.0909 + 0.0039 fm”

G. Miller, Phys. KRev. Let?. 99, 12001 (200
G. Miller, £ Piasetzky & G. Kon, Phys. Kev. Let?. 101, 052002 (200%)



The Proton. Radius
A multitude of extractions
+ Low @2 Expansion of
Ge .
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. Lattice RCD L the
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© Hydrogen Lamb shift.
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Lamb shift.



The Proton. Radius
A multitude of extractions

+ Low @ Expansion of

Ge e
6@ ~1-1-T30

. Lattice RCD L the
Chiral LLmiLt.

+ Hydrogen Lamb shift.

© Muownie Hydrogen
Lamb shift.

- Sensttive to functional form

chosen for Ge. Also, data at
@2 ~ 0 scarce (nown existent).

. Sewnstltive to Lattiee stze and

small perturbatiows LA
para meters.

- Sensttive to different

theoretieal corrections.



The Proton. Radius Puzzle

Extraction <re>2 [fm]

Sick 0.595t0.01S

CODATHA 0.5265F0.0069

Marnz 0.5729t0.00%

777/5
Work
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2-4

o0.s70*o0.010

0.5746410.004%
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0.542%X0.00!

%ydrogen

Sick | o

Bernauer et al. :

This work i} g
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Pohl et al.
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Proton charge radius [fm]




The Proton Radius Puzzle

b

—
Extraction = :
Sl‘C’,,é
| §
CODATH :
Md/nz -
e
th/.\s / -
Work @6&
Combined “I don’t have time to write per- 1 N1
2-4 formance reviews, so I’ll just criticize 088 090

you in public from time to time.”  us[fml =
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The Proton. Radius Puzzle

7y Caveats

Sachs form factors not measured at Q2 = 0.

Can we even extrapolate Sachs form factors to Q? and claim that we get the

radius? Extrapolation from relativistic to non-relativistic region.

Mainz data extracted with no 2-photon corrections (and get a strange magnetic

radius).

Electron scattering results agree well with CODATA (Lamb shift) - seems to

indicate electron/muon discrepancy.
, p
Ty wishlist

E08007-1I to measure very low Q? form factors.

Possible other experiments at low Q? (Proton scattering off
atomic hydrogen? up scattering experiment?).

Another theoretical look at the derivation from muonic
Lamb shift.

Comparison of (as yet unreleased) Zemach radius data from
PSI.

Sick H Po——h———

Bernauer et al. i P e

This work .—‘—
CODATA i i
Pohletal. #

i PR

PR R R - T | s P B
082 084 086 088 0.90
Proton charge radius [fm]




The Zemach Radius

 Hyperfine splitting of the hydrogen ground

Enss(e p) = (1+Agep + AR + A, + AL

As = Az + DNpot, Az = —2amerz (1 + 6579

state:

o5 Aieak i AS) E

P
F

» Zemach radius (effect of proton internal structure on energy level shift):

s

00 2
=r ] g e
0

* Sensitivity to details in the FFs is
completely contained in the Q% < 1 GeV?
region.

* Leading theoretical uncertainty in one of
the most precisely measured
experimental quantities (test of QED).

0-885
O-849
O-848
0-80%
O-55l

O-56%
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1.O69
.049
.25
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The Zemach Radius

 Hyperfine splitting of the hydrogen ground state:

el Agpp A Ay, + AL F AL AS)ER

prp
As=0z+4 Note that using different parametrizations

e Zomachradii  results in deviations larger than quoted
uncertainty!

. 4 . U/ 2 M\
TZ_ T 0 QQ GE(Q)

el shift):

A

1 AZ

14+ kp FF Fo CA» 1| rz CFnr]

Crprrl
AMT R

.00 —41.43

* Sensitivity to details in the FFs is
completely contained in the Q% < 1 GeV?
region. SOVl 0575 1069 | —40-99

S O0.-$79 1.O9! —41.§5

0-50% 1.O049 —40-22

* Leading theoretical uncertainty in one of
the most precisely measured
experimental quantities (test of QED).

Dipole 0.55l 1.025 -39.29

Neeo 0-563 .O75 —41.22




PV E)qzerime nts

Rz

e Parity violation experiments

: 0.3% 042 .67 Go FAD
aim to measure the strange -

quark content of the nucleon by O 6% | GO FalD
detecting interference between 0-30 0% GO FWD
elastic EM scattering and 0.50 .22 | YappexIT
neutral weak ep scattering. 0.2 0.2% | GorBan
014 0.3% Go BCK

e Determination of strange quark

form factors relies on
knowledge of EMFF.

* Shifts of ~ 0.50 “easy”. k
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Isovector / lsoscalar Separation
Reminder: IV=p-n, [S=p+n

Important for Lattice QCD (Isovector)

Plot shows the fractional change in the isovector form factors when
using J. Arrington’s new vs. old parametrizations (for the proton).

Isovector Shifts Isovector Shifts
K—\ 0.005;
0.000¢ : Z
5 ~0-005) — Gg < 0.000)
< -0.010} G <
uj | M W i
O —0.015¢} 4 —0.005¢
< | _
—0.020¢ _
~0.025f N~ -0.010p N 7
00 0.2 04 06 08 1.0 00 0.2 04 06 08 1.0

Q% [GeV? Q° [GeV?]



EOROOF - Part (I

High precision (< 1%) survey of the FF ratio at
Q°=0.01 - 0.16 GeV~=.

Beam-target asymmetry measurement by
electron scattering from polarized NHs target.

Electrons detected in two matched
spectrometers.

Ratio of asymmetries cancels systematic
errors — only one target setting to get FF
ratio.

Designed to overlap E08007-1 and Bates
BLAST- but magnet issues kill that.

Scheduled for Dec 2011 /Jan 2012 (but delayed
till Feb 2012!)
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High precision (< 1%) survey of the FF ratio at
Q°=0.01 - 0.16 GeV~=.

Beam-target
electron scat

Electrons de
spectrometer

Ratio of asyri&s
errors — onlge

ratio.
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EOROOF - Part (I

High precision (< 1%) survey of the FF ratio at
Q°=0.01 - 0.16 GeV~=.

Beam-target asymmetry measurement by
electron scattering from polarized NHs target.

Electrons detected in two matched
spectrometers.

Ratio of asymmetries cancels systematic
errors — only one target setting to get FF
ratio.

Designed to overlap E08007-1 and Bates
BLAST- but magnet issues kill that.

Scheduled for Dec 2011 /Jan 2012 (but delayed
till Feb 2012!)



EOROOF - Part (I

High precision (< 1%) survey of the FF ratio at
Q2=0.01 - 0.16 GeV>. =

.
Norowave NVR "
par -~
ou =~ -~ gral Ot —
o | R~ Tamrcy
(- oY e ot
1o Pumgs
-
e
: S e— - .
> :
)1
o S
- 3 §
cd i

ele

y G_% — a(rh) cos 07
Ele P Gy, b cos ¢ sin 0%
Sp¢

Ra  Note no dependence on polarizations/dilution

err\

ratio.

Designed to overlap E08007-1 and Bates
BLAST- but magnet issues kill that.

Scheduled for Dec 2011 /Jan 2012 (but delayed
till Feb 2012!)



00mpar£sow to other Experimewts
Coverage
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Complements MAINZ
Overlaps LEDEX, £08007-1 - Different technique (systematics)
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Complements MAINZ
Does NOT Overlap LEDEX, £08007-1
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Comparisow to other E)q:erimew’cs

Coverage
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Zemach Radius

e 1/Q2 term suppresses high Q2

E. =(1+A A+ AP+ AP AQ)EE
prs = (14 Agep + Ay + + Byear + As )EF o [1-Ge(Q?)Gm(Q?) / up) suppresses lowest

uvp

A=A +AL+A . A, =-2qZ e, o
$ T2z T SR T Bpon Az = mEG m,+m, * e As Gg, Gw become small, [1-
do Ge(Q?)Gm(Q?) / mp)=>1, and the form
=__f 21Ge(0°)G, (2%)/(1+x,) -] factor uncertainty has almost no
impact on Zemach moment
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» Form factors are physical, model-independent, observable of the nucleon.

* Many discoveries over the years have changed our understanding of one
of the basic constituents of matter and still new issues keep popping up.

» While high energy (and Q?) are, of course, important, there is great
significance to performing low Q? measurements (only real way to
discriminate between EFTs).

* Very high precision measurements are now possible and required for high
precision experiments.

* It seems that there is no evidence (at least in the FF ratio) for narrow
structures.

* One more high precision, low Q? experiment before the 12 GeV upgrade.
Limited number of candidate facilities for more low Q? experiments.
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How to measure the polarization

e Scatter recoil nucleons off
a nucleus (carbon/
hydrogen/ ...).

[-S>0

e Spin-Orbit coupling causes
angular dependence on
spin.

12C

Z § <()

3

Left / right asymmetry Rear Chambers
Carbon Analyzer LY

Front Chambers

SO (L

Proton Proton




How fto measure the polarization

NO(97 Qb) " NO(H)g(H) {1 o {hAy(e)Ptfpp i ainstr} sznqb 5 [hAy(H)P,'{pp i binstr] COS¢}




How to measure the polarization

NO(97 Qb) " NO(H)g(H) {1 o {hAy(g)Ptfpp i ainstr} SZRQb 5 [hAy(H)P,'{pp i binstr] COS¢}

N_|_ e — NO(Q)E:(H)
{hAy(H)Ptfppsin¢ — hAy(H)ngpcas¢}
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How to measure the polarization

NO(Qa Qb) " NO(H)g(Q) {1 o {hAy(e)Ptfpp i ainstr} SZRQb 5 [hAy(H)Pf'{pp i binstr] COS¢}

N_|_ SNE — NQ(Q)e(H)
{hAy(H)Ptfppsin¢ — hAy(H)ngpcos¢}
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How fto measure the polarization

NO(Qa Qb) " NO(H)g(H) {1 o {hAy(e)Ptfpp i ainstr} sznqb 5 [hAy(H)P,'{pp i binstr] COS¢}

N_|_ e — NO(Q)e(H)
{hAy(H)Ptfppsm¢ — hAy(H)ngpcas¢}

P
"c
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No(8)e(9)hA,(6)PIrr  PIrp i Gg
No(0)e(0)hA,(0)P/PP  PIPP — Gy
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Systematic uncertainties cancel out
(to ~0.5%)!
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