The MUSE Experiment

Guy Ron
Hebrew University of Jerusalem
For the MUSE Collaboration

New Vistas in Low Energy Precision Physics
5 Apr., 2016
Missing Piece of the Puzzle?
(The one slide motivation)

<table>
<thead>
<tr>
<th>rp (fm)</th>
<th>ep</th>
<th>μρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>atom</td>
<td>0.877±0.007</td>
<td>0.841±0.0004</td>
</tr>
<tr>
<td>scattering</td>
<td>0.875±0.006</td>
<td>?</td>
</tr>
</tbody>
</table>
The MUSE Experiment

μP Scattering

- World’s most powerful separated mu/e/πi beam.
- Why μp scattering?
- Are μp and ep scattering are consistent or different? and, if different, if the difference is from novel physics or 2γ mechanisms:
 - If the μp and ep radii really differ by 4%, then the form factor slopes differ by 8% and cross section slopes differ by 16% - this should be relatively easy to measure.
 - 2γ affects e⁺ and e⁻, or μ⁺ and μ⁻, with opposite sign - the cross section difference is twice the 2γ correction, the average is the cross section without a 2γ effect.
MUSE Collaboration

J Arrington
Argonne National Lab
F Benmokhtar, E Brash
Christopher Newport University
A Richter
Technical University of Darmstadt
M Meziane
Duke University

A Afanasev, W. Briscoe, E. J. Downie
George Washington University
M Kohl
Hampton University
G Ron
Hebrew University of Jerusalem
D Higinbotham
Jefferson Lab
S Gilad, V Sulkosky
MIT
V Punjabi
Norfolk State University

L Weinstein
Old Dominion University
K Deiters, D Reggiani
Paul Scherrer Institute

L El Fassi, R Gilman, G Kumbartzki,
K Myers, R Ransome, AS Tadepalli
Rutgers University

C Djalali, R Gothe, Y Ilieva, S Strauch
University of South Carolina
S Choi
Seoul National University
A Sarty
St. Mary’s University
J Lichtenstadt, E Piasetzky
Tel Aviv University
E Fuchey, Z-E Meziani, E Schulte
Temple University
N Liyanage
University of Virginia
C Perdrisat
College of William & Mary
MUSE - PSI R12-01.1 Technique

<table>
<thead>
<tr>
<th></th>
<th>r_p (fm)</th>
<th>e+p</th>
<th>μ+p</th>
</tr>
</thead>
<tbody>
<tr>
<td>atom</td>
<td>0.877±0.007</td>
<td></td>
<td>0.841±0.0004</td>
</tr>
<tr>
<td>scattering</td>
<td>0.875±0.006</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

\[
\frac{d\sigma}{d\Omega(Q^2)} = \text{counts} / (\Delta \Omega \ N_{\text{beam}} \ N_{\text{target/area}} \times \text{corrections} \times \text{efficiencies})
\]

\[
\left[\frac{d\sigma}{d\Omega} \right] = \left[\frac{d\sigma}{d\Omega} \right]_{n.s.} \times \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau \ G_M^2(Q^2)} + \left(2\tau - \frac{m^2}{M^2}\right) G_M^2(Q^2) \frac{\eta}{1 - \eta} \right]
\]

\[
\left[\frac{d\sigma}{d\Omega} \right]_{n.s.} = \frac{\alpha^2}{4E^2} \frac{1 - \eta}{\eta^2} \frac{1/d}{\left[1 + \frac{2Ed}{M} \sin^2 \frac{\theta}{2} + \frac{E}{M} (1 - d) \right]}
\]

\[
d = \frac{\left[1 - \frac{m^2}{E^2}\right]^{1/2}}{\left[1 - \frac{m^2}{E'^2}\right]^{1/2}}
\]

\[
\eta = \frac{Q^2}{4EE'}
\]

following Preedom & Tegen, PRC36, 2466 (1987)
The effect of the radius on the cross section

Plot shows ratio of cross section assuming a charge radius of 0.88fm to that assuming a radius of 0.84fm. MUSE kinematics are indicated.
e-μ Universality

In the 1970s / 1980s, there were several experiments that tested whether the ep and μp interactions are equal. They found no convincing differences, once the μp data are renormalized up about 10%. In light of the proton "radius" puzzle, the experiments are not as good as one would like.
e-μ Universality

The 12C radius was determined with ep scattering and μC atoms.

The results agree:
Cardman et al. eC: 2.472 ± 0.015 fm
Offermann et al. eC: 2.478 ± 0.009 fm
Schaller et al. μC X rays: 2.4715 ± 0.016 fm
Ruckstuhl et al. μC X rays: 2.483 ± 0.002 fm
Sanford et al. μC elastic: 2.32 ± 0.13 fm

Perhaps carbon is right, e’s and μ’s are the same.
Perhaps hydrogen is right, e’s and μ’s are different.
Perhaps both are right – opposite effects for proton and neutron cancel with carbon.
But perhaps the carbon radius is insensitive to the nucleon radius, and μd or μHe would be a better choice.
MUSE is not your garden variety scattering experiment

Low beam flux
- Large angle, non-magnetic detectors.

Secondary beam (large emittance)
- Tracking of beam particles to target.

Mixed beam
- Identification of beam particle in trigger.
Experiment Overview

PSI πM1 channel

≈115, 153, 210 MeV/c mixed beams of e±, μ± and π±

θ ≈ 20° – 100°

Q² ≈ 0.002 – 0.07 GeV²

About 5 MHz total beam flux, ≈2-15% μ's, 10-98% e's, 0-80% π's

Beam monitored with SciFi, beam Cerenkov, GEMs

Scattered particles detected with straw chambers and scintillators

Not run like a normal cross section experiment – 7-8 orders of magnitude lower luminosity.

But there are some benefits: count every beam particle, no beam heating of target, low rates in detectors, ...
Experiment Overview
(Trigger scintillators not shown)

Beam and scattered particles each have timing detectors and tracking detectors. Complex alignment procedure with rotating and moving table.
Experiment Overview

\[\theta \approx 20^\circ - 100^\circ \]
\[Q^2 \approx 0.0015 - 0.08 \text{ GeV}^2 \]
\[\epsilon \approx 0.256 - 0.94 \]

Essentially same coverage for all beam particles.

Allows Rosenbluth separation for some values of \(Q^2 \).
Important for controlling \(G_M \).
PSI πM1 Channel Characteristics

≈100 - 500 MeV/c mixed beam of μ’s + e’s + π’s

Dispersion at IFP: 7cm/%

Momentum acceptance: 3% resolution: 0.1%

Beam spot (nominal): 1.5 cm X x 1 cm Y, 35 mr X’ x 75 mr Y’

Spots from 0.7x0.9 cm² up to 16x10 cm², Δp/p from 0.1-3.0%, used previously.
MUSE Design Choices

• Minimal R&D.
• Use existing designs as much as possible.
• Reuse equipment whenever possible.
• Maximal cost reduction.
• Modular construction (can run dress rehearsal with fewer components).

Performance Requirements

• Angle reconstruction to few mr (limited by multiple scattering).
• Reduce multiple scattering as much as possible.
• Mostly timing used for PID – O(50ps) time resolution.
• 99% or better online π rejection.
MUSE Test Runs

9 MUSE Test Runs
- Oct 2012
- May-June 2013
- Oct 2013 (Cosmics)
- Dec 2013
- June 2014
- Dec 2014
- Feb 2015 (Cosmics)
- June-July 2015
- Dec 2015

Representation from 13 institutions.

9th run scheduled for May-June 2016
Beam Cerenkov (RU)

Used with RF signal for beam PID and triggering, and with scintillators (+tracks) for muon decay rejection.

Copying Albrow et al Fermilab design with quartz radiator mounted on Photek PMT240 MCP, Ortec 9327 readout.
Studying various radiators.
System (BC-scintillator) resolutions of 80 - 120 ps (σ) obtained.

Dec 14 + June 15
test configuration
- mount will be different for experiment
SiPM (TAU/Rutgers)

Used with RF signal for beam PID and triggering and with scintillators for muon decay rejection.

Used with GEMs for multiple track events, to determine triggering particle.

Tested at PSI (Dec 2015)
GEMs (HU)

Used to track beam particles into the target

Using pre-existing OLYMPUS GEMs.
Upgrading DAQ rate capability.
(About 1 ms readout at OLYMPUS.)
VETO (SC)

Used to avoid triggering on particles not headed into the target.

No veto elements produced yet. Different geometry of scintillator paddle from standard SC paddles.

Note that use of thick scintillators allows high threshold, so triggering well above PMT noise.
Target (GW)

Low power cryotarget. Currently in advanced conceptual design.

GEANT4 target simulation
Straw Tube Tracker (HUJI + Temple)

- Resolution on the order of ~1 mr for scattered particles.
- Sustain rates of ~a few kHz/cm.
- Very low material budget.
- Design based on PANDA Straw Tube Tracker.
- Low materials straws over pressured (2 bar absolute) for rigidity.
- 5X/5Y planes per chamber.
- Readout using standard TRB3/PADIWA.
- Close packed straws, w/ minimal gaps.
- ~30 um thick straws -> low material budget.
- 90/10 Ar/CO₂

<table>
<thead>
<tr>
<th>Element</th>
<th>Material</th>
<th>X [mm]</th>
<th>X₀ [cm]</th>
<th>X/X₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film Tube</td>
<td>Mylar, 27 μm</td>
<td>0.085</td>
<td>28.7</td>
<td>3.0×10⁻⁴</td>
</tr>
<tr>
<td>Coating</td>
<td>Al, 2×0.03 μm</td>
<td>2×10⁻⁴</td>
<td>8.9</td>
<td>2.2×10⁻⁶</td>
</tr>
<tr>
<td>Gas</td>
<td>Ar/CO₂(10 %)</td>
<td>7.85</td>
<td>6131</td>
<td>1.3×10⁻⁴</td>
</tr>
<tr>
<td>Wire</td>
<td>W/Re, 20 μm</td>
<td>3×10⁻⁵</td>
<td>0.35</td>
<td>8.6×10⁻⁶</td>
</tr>
</tbody>
</table>

\[\sum_{\text{straw}} \times 4.4 \times 10^{-4} \]
Scintillators (SC)

Used to detect scattered particles, time then, trigger with them.

Particles lose several MeV on average in thick scintillator paddles. Low energy tail from particles that hit, but quickly scatter out of a paddle – which generally give large energy in neighboring paddle.

![Graphs showing scintillator data and comparison with Geant4 simulation.](image)
Scintillators (SC)

Individual paddles highly efficient
Two issues – two plane triggering, and e⁺ annihilation

Efficiencies have been generated for all particles and beam momenta.
The beam monitor provides a continuous high resolution monitor of the stability of the RF time of randomly coincident beam particles.

It also provides the opportunity to veto events from Møller scattering or with higher momentum forward δ rays. Cutting these events reduces the statistical+systematic uncertainty from subtractions, while adding a systematic uncertainty from the beam monitor, and whether it introduces angle dependences.

PLAN: study this possibility with Geant4 verified by data. Will test with 0° calorimetry at low beam rate.
TRB3 for TDCs:
• around 10 ps resolution
• custom GSI board
• 192 channels/board
• AD with PADIWA level disc

VME QDCs for charge
• Improve level disc timing to CFD level
• MESYTEC – individual channel gates

TRBs include 32-bit scalers

Trigger implemented on TRB FPGAs
\[\pi\text{M1 Channel - RF time in target region}\]

+158 MeV/c, 50 \(\mu\)A proton current

-158 MeV/c, 2.2 mA proton current

Obtained RF time spectra for several momenta from \(\approx 110\) to 225 MeV/c, and used these to determine relative particle fluxes.

RF peaks broader with 2.2 mA protons, \(\approx 350\) ps (\(\sigma\)) for e's and 400 - 500 ps (\(\sigma\)) for \(\mu\)'s and \(\pi\)'s.

Old spectra, for comparison.
Trigger

- e or μ beam particle + scattered particle + no veto hits
- Each implemented on TRB3 peripheral FPGAs
- Central FPGA needs to correlate information, include multiple trigger types with pre-scaling, latch, and output trigger and trigger-no-latch

RF Spectrum, Background Study +160 MeV/c

IFP to Target TOF, Background Study Fine Scan, Jaws at 70

test data
Trigger

Backgrounds underlying peaks can be better understood and removed in analysis using RF + TOF.

π decays near / between detectors

π decays before beam line, not at production target

test data
MUSE Test Runs

Negative Polarity Particle Fractions

Positive Polarity Particle Fractions
Experiment Status

PSI:
Approved, but must pass technical review to be awarded significant beam time.

NSF:
Has (with DOE) provided 750k + 150k soon to come for prototyping.
Issues: satisfy PSI, good project management

BSF:
Has awarded 100k for second stage prototyping

Note: Ultimately need around 6M for experiment - equipment + people + travel
The Case for MUSE

Why are the scattering results inconsistent?
Measures limiting uncertainty in radius extraction from muonic hydrogen.
Tests new low mass force carriers.

<table>
<thead>
<tr>
<th>State (sensitive to new low mass particle)</th>
<th>Spectroscopy</th>
<th>eP Scattering</th>
<th>MUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>bound</td>
<td></td>
<td>unbound</td>
<td>unbound</td>
</tr>
<tr>
<td>Q² range</td>
<td>limited</td>
<td>large</td>
<td>large</td>
</tr>
<tr>
<td>charge state</td>
<td>-</td>
<td>-/+ (+ not in relevant range)</td>
<td>-/+</td>
</tr>
<tr>
<td>lepton</td>
<td>e/μ</td>
<td>e</td>
<td>e/μ</td>
</tr>
<tr>
<td>Sensitivity to 2γ</td>
<td>Theory Only</td>
<td>Theory Only</td>
<td>Measurement</td>
</tr>
<tr>
<td>Control of systematics in e/μ comparison</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Next Few Years for MUSE

<table>
<thead>
<tr>
<th>Date</th>
<th>Event描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 2012</td>
<td>First PAC presentation</td>
</tr>
<tr>
<td>July 2012</td>
<td>PAC/PSI Technical Review</td>
</tr>
<tr>
<td>fall 2012</td>
<td>1st test run in πM1 beamline</td>
</tr>
<tr>
<td>Jan 2013</td>
<td>PAC approval</td>
</tr>
<tr>
<td>summer 2013</td>
<td>2nd test run in πM1 beamline</td>
</tr>
<tr>
<td>fall 2013</td>
<td>funding requests</td>
</tr>
<tr>
<td>Mar 2014</td>
<td>Funding review @ NSF (allocated design money)</td>
</tr>
<tr>
<td>June 2014</td>
<td>Test Run</td>
</tr>
<tr>
<td>Sep-Oct 2014</td>
<td>R&D Money</td>
</tr>
<tr>
<td>summer 2015</td>
<td>Proof of Concept Test Run (+R&D funds)</td>
</tr>
<tr>
<td>late 2015</td>
<td>New NSF Proposal</td>
</tr>
<tr>
<td>Dec 2015</td>
<td>Test Run</td>
</tr>
<tr>
<td>Feb 2016</td>
<td>NSF Review / PSI BVR</td>
</tr>
<tr>
<td>May 2016</td>
<td>NSF Management Review</td>
</tr>
<tr>
<td>Late 2017</td>
<td>set up and have dress rehearsal</td>
</tr>
<tr>
<td>2018 - 2019</td>
<td>production runs</td>
</tr>
</tbody>
</table>
The Bottom Line for MUSE

Will extract several observables:
- Cross sections
- Charge averaged XS
- XS ratio

Gets rid of most of the systematic uncertainties.

Translates to:
- e/mu difference
- 2-gamma effects
- Radii extraction

Test the e/mu radii difference to the 8 sigma level
The Bottom Line

- Sick (2003)
- CODATA (2012)
- Bernauer (2010)
- Zhan (2011)
- MUSE (Future)
- Antognini (2013)

![Graph showing the bottom line comparison for different studies, with x-axis representing $r_p - r_{\mu H}$ in fm and y-axis representing r_p in fm.](graph.png)
New data needed to test that the e and μ are really different, and the implications of novel BSM and hadronic physics

- **BSM**: scattering modified for Q^2 up to m^2_{BSM}, enhanced parity violation

- **Hadronic**: enhanced 2γ exchange effects

Experiments include:

- Redoing atomic hydrogen
- Light muonic atoms for radius comparison in heavier systems
- Redoing electron scattering at lower Q^2
- Muon scattering on nuclei.

Muon scattering!
How do we Resolve the Radius Puzzle

- New data needed to test that the e and μ are really different, and the implications of novel BSM and hadronic physics
- **BSM**: scattering modified for Q^2 up to m^2_{BSM}, enhanced parity violation
- **Hadronic**: enhanced 2γ exchange effects

Experiments include:
- Redoing atomic hydrogen
- Light muonic atoms for radius comparison in heavier systems
- Redoing electron scattering at lower Q^2
- **Muon scattering on nuclei.**
- **Muon scattering!**

Other planned Experiments

Possible next Gen.
The next few years
(in lieu of a summary)

<table>
<thead>
<tr>
<th>r_p (fm)</th>
<th>ep</th>
<th>μp</th>
</tr>
</thead>
<tbody>
<tr>
<td>atom</td>
<td>Several new efforts</td>
<td>Heavier light nuclei</td>
</tr>
<tr>
<td>scattering</td>
<td>Mainz ISR JLab PRAD LEDEX@JLab</td>
<td>MUSE</td>
</tr>
</tbody>
</table>
PSAS2016
in Jerusalem
22-27/5/2016

Registration is now open