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rPE before 2010

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)

= 0.84184(67) fm (POHL 10), which is eight times more precise and
seven standard deviations (using the CODATA 10 error) from the electronic
results.

Since POHL 10, there has been a lot of discussion about the disagree-
ment, especially concerning the modeling of muonic hydrogen. Here is
an incomplete list of papers: DERUJULA 10, CLOET 11, DISTLER 11,
DERUJULA 11, ARRINGTON 11, BERNAUER 11, and HILL 11.

Until the difference between the e p and µp values is understood, it does
not make much sense to average all the values together. For the present,
we stick with the less precise (and provisionally suspect) CODATA 2010
value (MOHR 12). It is up to workers in this field to solve this puzzle.

VALUE (fm) DOCUMENT ID TECN COMMENT

0.8775 ±0.00510.8775 ±0.00510.8775 ±0.00510.8775 ±0.0051 MOHR 12 RVUE 2010 CODATA value

• • • We do not use the following data for averages, fits, limits, etc. • • •
0.879 ±0.005 ±0.006 BERNAUER 10 SPEC e p → e p form factor

0.912 ±0.009 ±0.007 BORISYUK 10 reanalyzes old e p data

0.871 ±0.009 ±0.003 HILL 10 z-expansion reanalysis

0.84184±0.00036±0.00056 POHL 10 µp-atom Lamb shift

0.8768 ±0.0069 MOHR 08 RVUE 2006 CODATA value

0.844 +0.008
−0.004 BELUSHKIN 07 Dispersion analysis

0.897 ±0.018 BLUNDEN 05 SICK 03 + 2γ correction

0.8750 ±0.0068 MOHR 05 RVUE 2002 CODATA value

0.895 ±0.010 ±0.013 SICK 03 e p → e p reanalysis

0.830 ±0.040 ±0.040 24 ESCHRICH 01 e p → e p

0.883 ±0.014 MELNIKOV 00 1S Lamb Shift in H

0.880 ±0.015 ROSENFELDR...00 e p + Coul. corrections

0.847 ±0.008 MERGELL 96 e p + disp. relations

0.877 ±0.024 WONG 94 reanalysis of Mainz e p
data

0.865 ±0.020 MCCORD 91 e p → e p

0.862 ±0.012 SIMON 80 e p → e p

0.880 ±0.030 BORKOWSKI 74 e p → e p

0.810 ±0.020 AKIMOV 72 e p → e p

0.800 ±0.025 FREREJACQ... 66 e p → e p (CH2 tgt.)

0.805 ±0.011 HAND 63 e p → e p

24ESCHRICH 01 actually gives
〈
r2

〉
= (0.69 ± 0.06 ± 0.06) fm2.

p MAGNETIC RADIUSp MAGNETIC RADIUSp MAGNETIC RADIUSp MAGNETIC RADIUS

This is the rms magnetic radius,
√〈

r2
M

〉
.

VALUE (fm) DOCUMENT ID TECN COMMENT

0.777±0.013±0.0100.777±0.013±0.0100.777±0.013±0.0100.777±0.013±0.010 BERNAUER 10 SPEC e p → e p form factor

• • • We do not use the following data for averages, fits, limits, etc. • • •
0.876±0.010±0.016 BORISYUK 10 reanalyzes old e p → e p data

0.854±0.005 BELUSHKIN 07 Dispersion analysis
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Two developments in 2010:

I High-statistics, precision ep-scattering experiment at MAMI by the A1 collaboration.

I New spectroscopic measurements in µH at PSI.
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rPE since 2010
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From M. Meziane

We perform a reanalysis of the ep-scattering data and simultaneously fit
the charge and magnetic radii of the proton.

Gabriel Lee (Technion) Extraction of rp
E from ep-Scattering Data May 26, 2016 4 / 34



Dataset Nomenclature

We consider data with maximum momentum transfer Q2 < 1.0 GeV2. We split the available
elastic ep-scattering data into two datasets:

I “Mainz”: high-statistics dataset, 1422 data points in the full dataset with Q2
max < 1.0 GeV2.

Bernauer et al. (2014)

I “world”: compilation of datasets from other experiments, 363 data points plus 43
polarization measurements for Q2

max < 1.0 GeV2. see e.g. Arrington et al. (2003, 2007), Zhan et al. (2011)

Polarization experiments directly measure the form factor ratio (µpGE)/GM .
Aside: χ2 fitting uses the optimize.leastsq in SCIPY.
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rE and ep Scattering

I Mott cross-section for scattering of a relativistic electron off a recoiling point-like proton is( dσ
dΩ

)
M

=
α2

4E2 sin4 θ
2

cos2
θ

2

E′

E
.

I The Rosenbluth formula generalizes the above,( dσ
dΩ

)
R

=
( dσ
dΩ

)
M

1

1 + τ

[
G2
E +

τ

ε
G2
M

]
, τ =

−q2
4M2

, ε =
1

1 + 2(1 + τ) tan2 θ
2

.

I The Sachs form factors GE(q2), GM (q2) account for the finite size of the proton. In terms
of the standard Dirac (F1) and Pauli (F2) form factors,

Diagrams for 1-Photon and 2-Photon Scattering

Gabriel Lee

December 12, 2012

p

q

p′ = p

q

p′

Figure 1: Diagrammatic representation of tree-level matching for the one-photon
amplitude in the full theory and in NRQED. The black dot in the dia-
gram on the right-hand side represents insertions of NRQED one-photon
operators.

1

= Γµ(q2) =
GE + τGM

1 + τ︸ ︷︷ ︸
F1(q2)

γµ + i
2M

σµνqν
GM −GE

1 + τ︸ ︷︷ ︸
F2(q2)

.

I The radii are defined by

〈r2〉 ≡ 6

G(0)

∂G

∂q2

∣∣∣
q2=0

, GpE(0) = 1, GpM (0) = µp.
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Earlier Ansäntze for GE , GM

( dσ
dΩ

)
R

=
( dσ
dΩ

)
M

1

1 + τ

[
G2
E +

τ

ε
G2
M

]

Earlier analyses used simple functional forms for GE , GM :

Gpoly(q
2) =

kmax∑
k=0

ak(q2)k , polynomials/Taylor expansions,

Ginvpoly(q
2) =

1∑kmax
k=0 ak(q2)k

, inverse polynomials,

Gcf(q
2) =

1

a0 + a1
q2

1+a2
q2

1+...

, continued fractions.

The expansions are truncated at some kmax, with a finite number of coefficients.
The above functional forms exhibit pathological behaviour with increasing kmax. Hill & Paz (2010)
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The Bounded z Expansion

I QCD constrains the form factors to be analytic in t = q2 outside of a time-like cut beginning
at tcut = 4m2

π , the two-pion production threshold. Clearly this presents an issue with
convergence for expansions in the variable q2. Hill & Paz (2010)

1 Introduction

The electromagnetic form factors of the nucleon provide basic inputs to precision tests of
the Standard Model. In particular, the root mean square (RMS) proton charge radius as
determined by the form factor slope1 ,

Gp
E(q2) = 1 +

q2

6
〈r2〉p

E + . . . , (1)

is an essential input to hydrogenic bound state calculations [1, 2]. Recent experimental results
suggest a discrepancy between the charge radius inferred from the Lamb shift in muonic
hydrogen [3], rp

E ≡
√

〈r2〉p
E = 0.84184(67) fm, and the CODATA value, rp

E = 0.8768(69) fm,
extracted mainly from (electronic) hydrogen spectroscopy [4]. The charge radius can also be
extracted from elastic electron-proton scattering data. The 2010 edition of the Review of
Particle Physics lists 12 such determinations that span the range of 0.8-0.9 fm [5], most with
quoted uncertainties of 0.01-0.02 fm. These determinations correspond to analyses of different
datasets and different functional forms of Gp

E(q2) that were fit to the data over a period of 50
years.

Extraction of the proton charge radius from scattering data is complicated by the unknown
functional behavior of the form factor. We are faced with the tradeoff between introducing
too many parameters (which limits predictive power) and too few parameters (which biases
the fits). Here we describe a procedure that provides model-independent constraints on the
functional behavior of the form factor. The constraints make use of the known analytic
properties of the form factor, viewed as a function of the complex variable t = q2 = −Q2.

−Q2
max 4m2

π

t z

Figure 1: Conformal mapping of the cut plane to the unit circle.

As illustrated in figure 1, the form factor is analytic outside of a cut at timelike values
of t, [6] beginning at the two-pion production threshold, t ≥ 4m2

π.2 In a restricted region
of physical kinematics accessed experimentally, −Q2

max ≤ t ≤ 0, the distance to singularities
implies the existence of a small expansion parameter. We begin by performing a conformal

1Gp
E is defined in Section 3.1.

2 Here and throughout, mπ = 140 MeV denotes the charged pion mass, and mN = 940 MeV is the nucleon
mass.

1

z(t; tcut, t0) =
√
tcut−t−

√
tcut−t0√

tcut−t+
√
tcut−t0

I By a conformal map, we obtain a true small-expansion variable z for the physical region.

GE =

kmax∑
k=0

ak[z(q2)]k , GM =

kmax∑
k=0

bk[z(q2)]k .

I Q2
max is the maximum momentum transfer in a given set of data.

I t0 is the point that is mapped to z(t0) = 0. We have used the simple choice t0 = 0, but
have checked that the results do not vary significantly for the choice t0.

I By including other data, such as from ππ → NN̄ or eN scattering, it is possible to move
the tcut to larger values, improving the convergence of the expansion.
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Bounded z Expansion Fit to Mainz Data

0.86

0.88

0.90

0.92

0.94

r E
[f

m
]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Q2

max [GeV2]

0.7

0.8

0.9

1.0

1.1

1.2

r M
[f

m
]

0.96

0.97

0.98

0.99

1.00

0.96

0.97

0.98

0.99

0.96

0.98

1.00

1.02

0.94
0.96
0.98
1.00
1.02
1.04
1.06

0.95

1.00

1.05

1.10

0 20 40 60 80 100 120 140
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Scattering angle [deg]

σ
/σ

d
ip

t0 = 0, kmax = 12, |ak|max = 5, |bk|max = 5µp ∼ 2.8× 5. Gaussian bound on ak, bk in χ2.

R: spectrometer B, A, C

For Q2
max = 1.0 GeV2 (statistics-only errors),

rE = 0.920(9) fm,rM = 0.743(25) fm.
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kmax Dependence
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I We can also test the
dependence of the fit results
on the choice of kmax.

I The fit has converged for
kmax = 10.

I We use a default of kmax = 12
in fits.
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Unbounded z Expansion Fits
Fits using unbounded z expansion performed by Lorenz et al. Eur. Phys. J. A48, 151; Phys. Lett. B737, 57
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I Sum rules such as (t0 = 0)

GE(q2 = 0) =

kmax∑
k=0

ak = 1

tell us ak → 0 as the k becomes
large.

I The Sachs form factors are also
known to fall off as Q4 up to logs
for large Q2 (dipole-like
behaviour at large Q2).

I To test enlarging the bound, we
took |ak|max = |bk|max/µp = 10,
and found rE = 0.916(11) fm,
rM = 0.752(34) fm.

I However, as |ak|max →∞, |ak|
for large k takes on unreasonably
large values, in conflict with QCD.
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One-Loop O(α) Radiative Corrections

I The proton form factors are defined from the matrix element of one-photon exchange. A
consistent definition of the form factors is required to compare extracted radii.

14

p

k

p0

k0

(a) (b) (c)

(d)

Figure 1: Virtual radiative corrections through first order in ↵. for point particle (top particle line)
scattering on a composite particle (bottom particle line). Wavefunction renormalization contributions
are not shown explicitly.

A2
i ! A2

i +B2
i , for which the simple convexity theorem following from (14) no longer applies. It may

be interesting to pursue more general “physical convexity” theorems involving multiple probability
sums and correlated errors.redone selected fits with a global search strategy to verify that a true
minimum has been found by the inductive search that assumes convexity.

3.4 Deficiencies in other parameterizations

We remark that several parameterizations of the proton form factors in common use rely on flawed
theoretical assumptions. A simple Taylor expansion in q2 [11] is valid only for momentum transfers
below pion production threshold q2  4m2

⇡ ⇡ 0.08 GeV2. Convergence of a sequence of Padé approx-
imants, implemented either directly as a ratio of polynomials [16], or as a continued fraction [17],
requires positivity of the spectral function in the dispersive representations of the form factors, a
property which is not satisfied. 6

4 Radiative corrections

We will present fits employing variations of a default radiative correction model. Possible deficiencies
in this model are treated at the same level as experimental systematic errors. Let us review the
description of the cross section including first order radiative corrections. The relevant amplitudes
are depicted in Figs. 1 and 2.

6That it cannot be satisfied is readily seen from the asymptotic behavior Q�2 for the form factor represented by
such a spectral function.
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Figure 2: First order real radiative corrections for electron scattering on proton. In (a) crosses denote
possible attachments of the radiated photon.

4.1 Single photon exchange

Let us rigorously define the charge radius of a composite fermion such as the proton as an observable
(in particular, IR finite) quantity in the presence of radiative corrections. To begin, consider the
amplitude for one exchanged photon,

M1 = �4⇡↵

q2

1

1 � ⇧̂(q2)
ū(e)(k0)�(e)µ(k0, k)u(e)(k)ū(p)(p0)�(p)

µ (p0, p)u(p)(p) , (15)

where ↵ = 7.297 ⇥ 10�3 is the fine structure constant. Applying onshell renormalization conditions
we write

�(e)(k0, k) = �µF
(e)
1 (q2,�) +

i

2me
�µ⌫(k0 � k)⌫F

(e)
2 (q2,�) ,

�(p)(p0, p) = �µF
(p)
1 (q2,�) +

i

2mp
�µ⌫(p0 � p)⌫F

(p)
2 (q2,�) , (16)

where the form factors are normalized as (at q2 = 0 we may take the IR finite � = 0 limit) F
(e)
1 (0) =

F
(p)
1 (0) ⌘ 1, F

(e)
2 (0) ⌘ ae ⇡ ↵/(2⇡) and F

(p)
2 (0) ⌘ ap = 1.793, where ap = µp � 1 denotes the

anomalous magnetic moment. The onshell form factors are necessarily infrared divergent at nonzero
momentum transfer, as deduced by the cancellation with bremstrahlung emission. In terms of a
photon mass, let us introduce conventional “reduced” form factors which are finite including first
order radiative corrections in the � ! 0 limit:

F
(e)
i (q2,�) ⌘ F̃

(e)
i (q2)�(e)(q2,�) ,

F
(p)
i (q2,�)

1 � ⇧̂had(q2)
⌘ F̃

(p)
i (q2)�(p)(q2,�) , (17)

where

�(e)(q2,�) = 1 � ↵

2⇡

⇥
K(p, p0) � K(p, p)

⇤
+ O(↵2) ,

�(p)(q2,�) = 1 � ↵

2⇡

⇥
K(k, k0) � K(k, k)

⇤
+ O(↵2) . (18)

The functions K(p1, p2) are given by

K(p1, p2) ⌘ p1 · p2

Z 1

0
dx[xp1 + (1 � x)p2]

�2 log
[xp1 + (1 � x)p2]

2

�2
, (19)
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(in particular, IR finite) quantity in the presence of radiative corrections. To begin, consider the
amplitude for one exchanged photon,

M1 = �4⇡↵

q2

1

1 � ⇧̂(q2)
ū(e)(k0)�(e)µ(k0, k)u(e)(k)ū(p)(p0)�(p)

µ (p0, p)u(p)(p) , (15)

where ↵ = 7.297 ⇥ 10�3 is the fine structure constant. Applying onshell renormalization conditions
we write

�(e)(k0, k) = �µF
(e)
1 (q2,�) +

i

2me
�µ⌫(k0 � k)⌫F

(e)
2 (q2,�) ,

�(p)(p0, p) = �µF
(p)
1 (q2,�) +

i

2mp
�µ⌫(p0 � p)⌫F

(p)
2 (q2,�) , (16)

where the form factors are normalized as (at q2 = 0 we may take the IR finite � = 0 limit) F
(e)
1 (0) =

F
(p)
1 (0) ⌘ 1, F

(e)
2 (0) ⌘ ae ⇡ ↵/(2⇡) and F

(p)
2 (0) ⌘ ap = 1.793, where ap = µp � 1 denotes the

anomalous magnetic moment. The onshell form factors are necessarily infrared divergent at nonzero
momentum transfer, as deduced by the cancellation with bremstrahlung emission. In terms of a
photon mass, let us introduce conventional “reduced” form factors which are finite including first
order radiative corrections in the � ! 0 limit:

F
(e)
i (q2,�) ⌘ F̃

(e)
i (q2)�(e)(q2,�) ,

F
(p)
i (q2,�)

1 � ⇧̂had(q2)
⌘ F̃

(p)
i (q2)�(p)(q2,�) , (17)

where

�(e)(q2,�) = 1 � ↵

2⇡

⇥
K(p, p0) � K(p, p)

⇤
+ O(↵2) ,

�(p)(q2,�) = 1 � ↵

2⇡

⇥
K(k, k0) � K(k, k)

⇤
+ O(↵2) . (18)

The functions K(p1, p2) are given by

K(p1, p2) ⌘ p1 · p2

Z 1

0
dx[xp1 + (1 � x)p2]

�2 log
[xp1 + (1 � x)p2]

2

�2
, (19)

6

In order to isolate the proton vertex defining form factors and radius

must subtract off radiative corrections that are part of the experimental 
measurement:

Through one-loop order, only essential difficulty is with Two-Photon 
Exchange: beyond present technology to compute from first principles.

I We know how to compute results for the electron vertex correction and the leptonic
contributions to the vacuum polarization in perturbation theory.

I From previous dispersive analyses of e+e− → hadrons data, we expect the correction from
hadronic vacuum polarization to be smaller than current achieved precision in scattering
experiments. Jegerlehner (1996), Friar et al. (1999)

I For soft bremsstrahlung and two-photon exchange (TPE), there are two conventions for
subtraction of infrared divergences. Tsai (1961), Maximon & Tjon (2000)

I At present, we cannot calculate the remainder of the TPE contribution from first principles.
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Finite TPE Corrections
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Figure 2: Diagrammatic representation of the matching of the amplitude for Comp-
ton scattering obtained in the full theory and NRQED, to leading order
in e. The black vertices in the diagrams on the right-hand side represent
insertions of NRQED 1-photon operators.

p

k k − L + p

L − p

k′

L p′

L − p′

p

k k + L − p′ k′

L p′

Figure 3: Feynman diagrams for two-photon exchange with momentum labels.

2

I The standard procedure for modelling the finite part of the TPE is by “Sticking in Form
Factors” (SIFF). Treat the proton as a propagating Dirac particle and insert Γµ at each of
the vertices, using simple form factor ansätze for F1, F2. Blunden et al. (2003, 2005)

I We investigated the model dependence of this calculation:

F1 = F2/(µp − 1) = (1− q2/Λ2)−1 , monopole, Λ2 = 0.71 GeV2 ,

F1 = F2/(µp − 1) = (1− q2/Λ2)−2 , dipole, Λ2 = 0.71 GeV2 ,

Fi =

3∑
j=1

aij

bij − q2
,

3∑
j=1

aij

bij
= Fi(0) , Blunden et al. sum of monopoles (2005).

I The A1 collaboration instead applies the Feshbach correction McKinley & Feshbach (1948)

δF = απ
sin(θ/2)(1− sin(θ/2))

cos2(θ/2)
> 0 , ,

which is the Q2 = 0 limit of the Coulomb distortion computed by Rosenfelder. It can also
be understood as Coulomb exchange between e and p in the Mp →∞ limit. Rosenfelder (1999)
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Effect of TPE on Fit to Mainz Dataset
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I No finite TPE correction.

I Feshbach: used by default in A1 collaboration’s analysis of Mainz dataset.

I SIFF dipole

I SIFF Blunden: used in previous analyses of world dataset.

We use the Blunden convention for the remainder of the fits.
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The A1 Approach

18

- perform initial fit to entire dataset
- for each beam/spectrometer data 
subset, rescale statistical errors to 
account for systematics

Potential concerns: 
- inferred systematic can be extremely small  
(as low as 0.05%)

- repeated measurements at identical kinematics drive 
systematic uncertainties to zero

(data-fit)/stat.error

rescaling factor

In the A1 dataset, kinematically uncorrelated systematic errors 
are deduced by examining subset fluctuations around initial fit

Address these concerns:
- combine (“rebin”) data taken at identical kinematics

- include constant systematic error independent of statistics 
(0.3-0.4% based on confidence level analysis)
 details: backup slide

I The A1 analysis groups the Mainz dataset into 18
subsets: 3 spectrometers × 6 beam energies.

I For each subset, the differences between the fit and
measured cross sections, scaled by the uncertainties,
are fit to a Gaussian.

I The width of the Gaussian is used as the scaling factor
κ for the statistical uncertainties in the subset.

Concerns:

I In the A1 analysis, the χ2
red for the fit to the entire dataset with scaled errors is ≈ 1.15.

I In our bounded z expansion fit, we find χ2
red per subset similar to the A1 Gaussian widths.

I Expressing the total A1 uncertainties as quadrature sums of statistical and uncorrelated
uncertainties,

dσi,A1 = κidσi,stat =
√
dσ2
i,stat + dσ2

i,syst ,

dσsyst is as low as 0.05% for some points. This seems unreasonably small.

I Multiple data points at the same kinematic settings drive the “effective systematic
uncertainties” even lower.
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Rebinning

Certain systematic uncertainties are experimentally difficult to constrain below 0.1%, such as:

I time-dependent efficiencies,

I rate-dependent variations,

I beam-energy uncertainties,

I spectrometer angle offsets.

We would expect these uncertainties to be identical for the repeated measurements. Simply
adding a fixed systematic to all points in the dataset would underestimate the systematic error for
these repeated data points. We therefore combine these before adding a fixed systematic to the
statistical uncertainty in quadrature.
We perform the following:

I Remove one set of points at Ebeam = 315 MeV, θ = 30.01◦ with inconsistent scatter.

I Identify 407 kinematic settings with multiple data points.

I “Rebin” these to obtain a dataset of 657 points.
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Constant Systematics
After rebinning, we investigate the effect of adding a 0.25% and a 0.3% fixed systematic, e.g. for
a data point with cross section σi,

dσi =
√
dσ2
i,stat + (0.003σi)2 .

Fitting the rebinned dataset after these two modifications, we find
rE = 0.908(13) fm, rM = 0.766(33) fm.

spec. beam Nσ χ2
red CL (%) χ2

red CL (%)
A 180 29 0.59 96.1 0.46 99.4

315 23 0.54 96.4 0.44 99.1
450 25 1.52 4.8 1.00 46.7
585 28 1.54 3.4 1.03 42.8
720 29 1.05 39.9 0.87 66.4
855 21 0.92 56.8 0.77 76.0

B 180 61 0.85 79.8 0.65 98.3
315 46 1.05 38.5 0.76 88.5
450 68 0.90 71.7 0.67 98.2
585 60 0.61 99.2 0.50 99.96
720 57 1.29 6.9 0.97 53.7
855 66 1.88 0.002 1.15 19.6

C 180 24 0.88 63.3 0.68 88.0
315 24 1.16 27.2 0.78 76.8
450 25 1.53 4.3 1.08 35.9
585 18 0.83 66.3 0.65 86.4
720 32 1.11 30.2 0.90 62.3
855 21 0.79 73.7 0.62 90.5

Cols. 4 and 5 (6 and 7)
give the results after the
inclusion of a uniform
0.25% (final 0.3–0.4%)
uncorrelated systematic.
The 0.4% applies to
Ebeam = 855 MeV, spec B.
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The A1 Approach (Again)

In the Mainz dataset, each data point includes three additional quantities:

I two cross sections corresponding to variations of the energy cut on bremsstrahlung of the
electron,

I kinematic-dependent factor, linear in the scattering angle θ, which accounts for efficiency
changes, normalization drifts, variations in spectrometer acceptance, and background
misestimations.

The entire dataset is refit either:

I using the minimum or maximum cross sections from variations on the energy cut,

I dividing or multiplying central values of the cross sections by the linear factor.
In each case, the largest difference of the resulting fit from the central values is taken as the
difference, and

∆rsyst =
√

(∆rEcut)2 + (∆rcorr)2 .

We find the bremsstrahlung energy cut has little impact on the radius central values: translates to
an uncertainty in rE of 0.003 fm and in rM of 0.009 fm.
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Our Approach

The linear factor is written as

1 + δcorr = 1 + a
x− xmin

xmax − xmin
.

In the A1 analysis:

I x = θ,

I 18 values of θmax, θmin for each spectrometer-Ebeam subset,

I a ≈ 0.2%, same sign for all subsets.

We choose:

I x = θ, 1/θ,Q2, 1/Q2, E′, 1/E′, 1/ sin4(θ/2),

I Three groupings: by spec (3), spec-Ebeam (18), and normalization (34),

I a = 0.5%, and same sign.

Different variables modify the functional form of the correction within each subset;
however, the endpoints are always fixed to have a correction of 0 and 0.5%.
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Our Findings

x Q2
max [GeV2] ∆rE [fm] ∆rM [fm]

Q2 0.05 ∓0.017 ±0.021
0.5 ∓0.016 ∓0.022
1 ∓0.015 ∓0.026

1/Q2 0.05 ±0.041 ∓0.046
0.5 ±0.025 ±0.016
1 ±0.023 ±0.021

θ 0.05 ∓0.022 ±0.027
0.5 ∓0.018 ∓0.021
1 ∓0.017 ∓0.025

1/θ 0.05 ±0.036 ∓0.039
0.5 ±0.024 ±0.018
1 ±0.021 ±0.022

Multiplication (top sign) or division (bottom sign), spectrometer-Ebeam (18)

I A factor of 2.5 bigger than the A1 analysis, mainly due to increase in a.

I Different variable choices yield similar results, largest effect from 1/Q2.
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Our Findings (cont.)

I Norm. grouping (34) yielded uncertainties that were typically 20–30% larger for rE
compared to the spec-Ebeam (18), with smaller increases for the uncertainty on rM .

I Spec-only grouping yielded somewhat smaller uncertainties for rE compared to the
spec-Ebeam, with larger increases for the uncertainty on rM .

I Systematic effects could differ for the different spectrometers, and the combined effect
might be enhanced or suppressed by the assumption of identical corrections (always
multiplying or dividing, same sign).

I For rM , we found some cases with cancellations between spectrometers when the linear
correction was applied to all spectrometers vs. each spectrometer individually.

For final results, take uncertainties using x = θ in each spectrometer-beam energy subset as a
representative correlated systematic, and use a ≈ 0.4%, dividing the above corrections by 4/5.
For the full dataset, we obtain

rE = 0.908(13)(3)(14) fm, rM = 0.766(33)(9)(20) fm.

We have expanded the A1 analysis of the correlated systematics, but have not made any drastic
changes to the framework. A larger systematic shift to reconcile the values would require:

I a range of corrections larger than 0.4%,

I an extreme functional form,

I a “tuned” cancellation between subsets to reduce the overall systematic.
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rE , rM vs. Q2
max for Final Fits
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L: final fit to Mainz rebin dataset with 0.3/0.4% fixed systematic
R: final fit to world+pol dataset

t0 = 0, kmax = 12, |ak|max = |bk|max/µp = 5
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Sensitivity of Statistical Uncertainties to High-Q2 Data

Scattering data at low-Q2 determine radius, from its definition as the slope of the FF at q2 = 0.

Q2
max [GeV2]

�r
[f
m

] I Filled: Mainz

I Hollow: world+pol

I Squares: rE
I Circles: rM

Want to maximize sensitivity, but minimize effect of possible high-Q2 systematics.
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Final Results for rE

27

0.85 0.9 0.95
rE [fm]

z expansion

+ hadronic TPE
rebin, + 0.3% uncorr. syst.
+ 0.4% corr. syst.
Mainz final (Q2max=0.5 GeV2)

world data (Q2max=0.6 GeV2)

Mainz + world average

rEMainz = 0.895(14)(14)

rEworld = 0.918(24)
rEavg. = 0.904(15)simple average:

Proton charge radius

4.2σ

A1 analysis (spline fit)
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from R. Hill

rMainz
E = 0.895(14)(14) fm, rworld

E = 0.916(24) fm
ravg
E = 0.904(15) fm
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Final Results for rM

28

0.7 0.8 0.9 1

A1 analysis (spline fit)
z expansion

+ hadronic TPE
rebin, + 0.3% uncorr. syst.
+ 0.4% corr. syst.
Mainz final (Q2max=0.5 GeV2)

world data (Q2max=0.6 GeV2)

Mainz + world average

rMMainz = 0.777(34)(17)

rEworld = 0.913(37)
rEavg. = 0.847(27)simple average:

Proton magnetic radius

2.5σ

rM [fm]

2.7σ

from R. Hill

rMainz
M = 0.776(34)(17) fm, rworld

E = 0.914(35) fm
ravg
M = 0.851(26) fm
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A Possible Resolution: Large Logs
We have included scattering data with momentum transfers as large as Q2 ∼ 1 GeV2.

I In this regime, QED perturbation theory breaks down due to large logarithms from electron
radiative corrections

α

π
log2 Q

2

m2
e

∣∣∣∣
Q2∼1GeV2

≈ 0.5 .

I Recall the sum of the first-order vacuum polarization and electron vertex and real
bremsstrahlung corrections:

δ =
α

π

{[
log

Q2

m2
e

− 1

]
log

(η∆E)2

EE′
+

13

6
log

Q2

m2
e

+ . . .

}
.

where ∆E is the detector energy resolution.
I When Q ∼ E ∼ E′ and me ∼ ∆E, the leading series of logarithms αn log2n(Q2/m2

e)
are resummed by making the replacement, Yennie, Frautschi, Yuura (1961)

1 + δ → exp(δ) .

I In practice, ∆E � me, which can introduce another scale into the problem. As a check,
we can instead multiply the cross sections by

exp(δ)→
[
1±

(
δ +

α

π
log2 Q

2

m2
e

)]±1

× exp

(
−α
π

log2 Q
2

m2
e

)
,

I This has the same 1-loop corrections, and also resums the leading-logs when there is only
one large ratio of scales, Q2/m2

e.
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Large Logs (cont.)
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Black: fit to rebinned Mainz data with 0.3/0.4%
fixed systematics, statistical uncertainties shown only.

Blue: ∆E = 10 MeV, upper/lower blue curves
to the (1± δ + . . .)±1 factor.
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FIG. 7: Comparison of complete next to leading order resummed correction (soled black band) to

naive exponentiations using di↵erent factorization scales for the two photon exchange correction:

µ2 = M2 (dotted red line) and µ2 = Q2 (dashed blue line). See text for details.

to resum logarithmically enhanced radiative corrections at second- and higher-order in per-

turbation theory [7, 41]. This procedure fails to capture subleading logarithms, beginning

at order ↵2L3 = O(↵
1
2 ), in our counting ↵L2 = O(1), cf. Eq. (32). These large logarithms

are automatically generated in the renormalization analysis that the e↵ective theory makes

possible. The convergence of resummed perturbation theory is illustrated, for the complete

problem including proton structure and recoil, in Fig. 6. A comparison of the resummed

prediction to the naive exponentiation ansatz is displayed in Fig. 7.

Also shown in Fig. 7 is the variation due to di↵erent scale choices implicit in di↵erent two-

photon exchange corrections.8 These ansaztes di↵er at the percent level in the considered

kinematic range, and fall well outside the error band represented by the complete next-to-

leading order resummed prediction.

Special attention has been paid to the e↵ects of real emission beyond tree level. Soft-

8 For example, the so-called McKinley-Feshbach correction [42] represents the large-M limit of the hard-

coe�cient contribution to two-photon exchange, and is independent of factorization scale µ. Using this

correction [7] results in an irreducible factorization-scale uncertainty, uncanceled between matrix element

and coe�cient.

23

Black: systematic two-loop analysis in 1605.02613.
Naive exponentiation of TPE correction with

µ2 = M2, µ2 = Q2.
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EFT Analysis of Large Logs
A systematic analysis of the radiative corrections using effective field theory is performed by
R. Hill in 1605.02613, identifying the sources of all large logarithms in the limit Q2 � m2;
e.g., there are implicit conventions of µ2 = M2 for vertex corrections vs. µ2 = Q2 for
Maximon-Tjon TPE corrections.

I Heavy particle: ∆E � E ∼ Q ∼M . Neglected: α2 log2(M2/(∆E)2) small.
I Relativistic particle: m,∆E � E,Q�M . Neglected: α2 log3(Q2/m2) ∼ O(α1/2).
I 0.5–1% discrepancies between the NLO resummed EFT prediction and the

phenomenological analysis, which is greater than the assumed < 0.5% systematic error of
the A1 analysis.

)2 (GeV2Q
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δ
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0.25−
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FIG. 6: Same as Fig. 5, but including recoil and nuclear charge corrections (i.e., two photon

exchange and proton vertex corrections).

IV. DISCUSSION

The precision of electron-proton scattering experiments has reached a level demanding

systematic analysis of subleading radiative corrections at two loop order and beyond. We

have presented the general framework that separates physical scales in the scattering process,

allowing a systematic merger of fixed order perturbation theory with large log resummation.

The quantum field theory analysis reveals implicit conventions and assumptions that

often di↵er between applications, such as between scattering and bound state problems.

The definition of the proton charge and magnetic radii in the presence of electromagnetic

radiative corrections is naturally defined in Eq. (12). A comparison to other definitions in

the literature is presented in Appendix B. The separation of soft and hard scales in two

photon exchange is similarly ambiguous in standard treatments. The common Maximon-

Tjon convention [37] implicitly takes momentum-dependent factorization scale µ2 = Q2 for

two-photon exchange, in conflict with the Q2-independent choice µ2 = M2 that is closest to

the implicit convention for vertex corrections.

The exponentiation and cancellation of infrared singularities [10] in physical processes

has often been used to motivate a simple exponentiation of first order corrections in order

22

I Leading log resummation.

I Next-to-leading log resummation.

I Black: complete next-to-leading order resummation.

I Bands from varying low and high renormalization
scales µ2

L, µ2
H between 1/2 ∗min and

∆E2,m2 and 2 ∗max ofQ2, E2.
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Ongoing Work

Combined fit of Mainz+world+pol datasets for determination of form factors GE , GM with:

I correlated systematic parameters for the Mainz data floating in the fit,

I implementation of sum rules enforcing dipole-like behaviour of GE , GM at high-Q2,

I inclusion of neutron data.
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Conclusion
I We presented the most comprehensive analysis of existing ep-scattering data:

I using form factors constrained by QCD,
I performing careful studies of existing radiative correction models,
I examining the uncorrelated systematics and rebinning the Mainz high-statistics dataset,
I reconsidering systematic uncertainties.

I The Mainz and world values for rE are consistent, but the simple combination of the Mainz
and world values remains 4σ away from the µH spectroscopic value.

I We find a 2.7σ difference in the Mainz and world values for rM .

I Experiments have reached a level of precision that demands a more systematic treatment
of the radiative corrections: in particular, the standard treatment of the resummation of
one-loop large logs is inadequate.

I Stay tuned for future experiments.
I Low-Q2 (10−4 − 10−2 GeV2) ep scattering. PRad at JLAB, A1
I µp scattering at PSI. MUSE
I Further measurements of H spectroscopy. Vutha et al. (2012), Beyer et al. (2013), Peters et al. (2013)
I Further measurements of µH spectroscopy. Pohl group at MPI Quantenoptik
I Next-generation lattice QCD. Alexandrou et al. (2013), Bhattacharya et al. (2013), Green et al. (2014)

I New physics?
I New general flavour-conserving nonuniversal interactions. Barger et al. (2011), Carlson & Rislow (2012)
I Parity-violating muonic forces. Batell et al. (2011)
I MeV-scale force carriers between protons and muons. Tucker-Smith & Yavin (2011), Izaguirre et al. (2015)
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