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Abstract. We present a phenomenological description of the high-frequency vortex
dynamics in YBa2Cu3O7 and discuss the main parameters related to vortex motion,
namely the viscous drag coefficient η, the pinning constant kp (Labusch parameter)
and the depinning frequency ω0. We demonstrate experimental results on the
angular and temperature dependence of η, kp and ω0 in YBa2Cu3O7 and compare
these results with existing models. We show how studies of the vortex viscosity
may yield information on the superclean limit. This limit corresponds to the
formation of the discrete excitation spectrum in the vortex core due to quantum
confinement and small coherence length. From the low-temperature viscosity data
we conclude that the superclean limit in YBa2Cu3O7 is reached for magnetic field
perpendicular to the c-axis.

1. Introduction

Vortex dynamics has attracted renewed attention with
the advent of high-Tc superconductors [1, 2]. Recently,
many new fascinating phenomena related to vortices in
superconductors have been discovered: the irreversibility
line, the vortex phase transition [1, 3] etc. There
is a substantial theoretical effort to account for these
effects. The theories of vortex motion [1, 2] operate
with microscopic parameters of vortices, such as viscosity,
pinning potential, pinning constant and Hall constant.
Therefore, the experimental determination of these
parameters is very important. High-frequency methods are
particularly suitable for this purpose because they probe
vortex response at very low currents when the vortices
undergoreversibleoscillations and they are less sensitive
to the flux creep. The aim of this work is to review
experimental data on the vortex viscosity, pinning constant
and depinning frequency in high-Tc superconductors with
the main emphasis on YBa2Cu3O7.

Vortices in type-II superconductors may be considered
as tubes with a normal core of radiusξ carrying a
quantum of magnetic flux80 [4] (see figure 1). Many
YBa2Cu3O7 samples are in a clean limit, i.e.ξ � l, where
l is the mean free path. This results in the negligible
scattering of quasiparticles in the vortex core (for the
motion perpendicular to the vortex axis). Due to very
small lateral size of the vortex core, there is an analogy
between a vortex in clean superconductors and mesoscopic
systems [5] such as quantum wires. One expects that
several phenomena, known for mesoscopic systems, such
as level quantization and localization (arising from disorder
along a vortex line) may occur in the vortex core. For

example, it was predicted long ago that the quasiparticle
excitation spectrum in the vortex core may be quantized
[6]. This corresponds to the so-called superclean limit [7].
There are good reasons to believe that it may be realized in
YBa2Cu3O7 [8, 9] and Bi2Sr2CaCu2O8 [10]. We will show
how studies of the vortex viscosity may yield information
about this superclean limit.

2. Forces acting on vortices

2.1. Lorentz (Magnus) force

An electric current exerts a Lorentz force on the vortex.
For a vortex at rest, this force can be expressed asFL =
ρs80[vs × n] (or 80[J × n]), wheren is the unit vector
directed along the vortex,ρs is the charge density of the
condensate,vs is the velocity of the condensate andJ is the
current density. This force drives the vortex perpendicular
to the current. However, a vortex, moving with velocityv,
experiences an additional forceρs80[v × n] that drives it
along the current. Consequently, the Lorentz force on the
moving vortex is modified to beF = ρs80[(vs − v) × n]
[1, 10–13]. We emphasize that the Magnus forceρs80[v ×
n] is responsible for the Hall effect. The Hall coefficient
in this simple model isαH = ρs80. (For a more rigorous
derivation of the Hall coefficient see Ao and Thouless [12]
and Feigelmanet al [13].)

2.2. Viscous force

A vortex has a normal-state core. When a vortex moves,
the quasiparticles in the core do not move with it (figure 1).
Instead, the Cooper pairs on the front side of the core
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Figure 1. A vortex moves under the action of the transport current J . The right-hand side shows a cross section of the
moving vortex. On the front of the moving vortex the condensate is converted to quasiparticles, while on the rear of the
vortex the quasiparticles are converted back to condensate.

are converted to quasiparticles through Andreev reflection
[14] and energy is lost. On the rear side of the vortex
core, the quasiparticles are converted back to Cooper pairs
and some energy is restored. However, due to finite
relaxation time, not all the energy is restored so the moving
vortex dissipates. In other words, there is a viscous
force Fv = ηv, whereη is the viscous drag coefficient.
This is Tinkham’s mechanism of vortex dissipation [4].
There is also the Bardeen–Stephen mechanism arising from
the Joule dissipation inside the normal-state core [15–17].
Both mechanisms yield similar expressions for the viscosity
coefficient [4] (the difference appears [17] only in the close
vicinity of Tc). The total viscosity is [4]

η ≈ µ0Hc280

ρn
. (1)

Here Hc2 is the critical field andρn is the normal-state
resistivity. Using the expressionρn = m∗/ne2τ and
equation (1), we find

η = πh̄nωcτ. (2)

Here n and τ are the quasiparticle concentration and
relaxation time in the vortex core, andωc = eµ0Hc2/m∗ is
the cyclotron frequency in the fieldHc2. The Bardeen–
Stephen [15] derivation of viscosity is based on the
hydrodynamic approach. This approach is valid in the
limit ωcτ � 1, when there is a continuum spectrum of the
excitations in the vortex core. Blatteret al [1] calculated
vortex viscosityη and Hall constantαH for arbitrary values
of ωcτ and found

η = πh̄n
ωcτ

1 + (ωcτ)2
(3a)

αH = πh̄n
(ωcτ)2

1 + (ωcτ)2
(3b)

tan2H = αH

η
= ωcτ. (3c)

Here2H is the Hall angle. Equations (3a) and (3b) show
that in the limit ωcτ � 1 the viscosity is given by the
Bardeen–Stephen expression(η ≈ πh̄nωcτ) and the Hall

effect is negligible (αH � η). In the opposite limit,
ωcτ � 1, the Hall effect is dominant(αH ≈ πh̄n � η)

and the viscosity can be expressed asη ≈ πh̄n/ωcτ . This
corresponds to the superclean limit [6–9]. In this limit
there are well-separated bound states in the vortex core
(see figure 2).

The origin of these bound states is the quantum
confinement of quasiparticles inside vortex core with
diameterδx ≈ 2ξ . The energy separation between bound
states may be estimated as follows: the momentum is found
from the uncertainty principle asδp ≈ πh̄/ξ . Using the
BCS expression for the coherence lengthξ = h̄vF/π1,
where1 is the gap energy andvF is the Fermi velocity,
one finds a level separation1E ≈ π412/4EF. HereEF is
the Fermi energy. A rigorous calculation [1, 6, 7] yields a
level separation

1E = 12

EF
= h̄ωc. (4)

The width of these levels is also estimated from the
uncertainty principle asδE ≈ h̄/τ . Therefore, the ratio
of the level spacing1E to the level widthδE is directly
related to the parameterωcτ :

1E

δE
= ωcτ. (5)

The level quantization introduces a new energy scale
12/EF which should be compared tokT . Therefore there
are two regimes in the superclean limit:12/EF � kT and
12/EF � kT . In the low-temperature regime the viscosity
is predicted to be dramatically different from that given by
equation (3a) [18].

2.3. Pinning force

Vortices interact with various defects in the crystal lattice
and are effectively pinned. The vortex motion in the
presence of pinning sites may be described as a motion
in some pinning potential. Under the action of a small
alternating current, a vortex undergoes small oscillations
in the potential well (figure 3(a)). There is a restoring
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Figure 2. In the superclean limit there are well-separated bound states inside the vortex core. In the hydrodynamic limit
these bound states are broadened and their overlap results in a continuum excitation spectrum.

Figure 3. Vortex motion under the action of an alternating
current Jac. (a) At high frequencies the vortex is confined
within a potential well U (x). The vortex undergoes small
oscillations and its motion is determined by the balance
between pinning and viscous forces. (b) At lower
frequencies hopping to an adjacent potential well (flux
creep) may occur.

Figure 4. The pinning constant in several limiting cases.
(a) Rigid vortex and weak pinning sites. The pinning
constant is the spring coefficient of the restoring force
exerted by the pinning sites. (b) Elastic vortex and very
strong pinning sites. The pinning constant is determined by
the line tension of the vortex and not by the properties of
the pinning sites. (c) General case. The pinning constant is
determined by the vortex elasticity and by the strength of
the pinning sites as well. Lc is the average distance
between pinning sites (correlation length along the vortex).

(pinning) force which is proportional to displacement:
Fpin = kpx. This force originates from the interaction
with the pinning sites (figure 4(a)) and from the short-
range vortex elasticity (figure 4(b)). The restoring
force coefficientkp is the pinning constant or Labusch
parameter [19]. (Sometimes the pinning constant is defined
differently, as the spring coefficient of the bulk pinning
force [4], i.e.kpB/80. We will not use this definition.)

There are two main regimes of vortex pinning:

individual pinning and collective pinning (figure 5).
Individual pinning is realized at low fields, when there
are few vortices and many pinning sites. In this regime
the pinning constant does not depend on the vortex
concentration (i.e. on magnetic field). Collective pinning
is realized at higher fields when the vortex concentration
is high and there are many vortices per pinning site.
In this regime the pinning constant is smaller and field
dependent (in conventional superconductorskp ∼ B−1/2

[20, 21]). (We point out that the notion ‘collective pinning’
has two different connotations. One of them (which we
use throughout the present work) describes the situation
when there are many vortices per pinning site. Another
one (which we do not use) describes the pinning of a
flexible vortex by a whole ensemble of pinning points.
A flexible vortex deviates from the straight line in order
to accommodate the pinning potential created by randomly
distributed pinning points. In such a way the flexible vortex
is pinned by the whole ensemble of pinning sites, which a
rigid vortex can not accommodate and each pinning site
acts it independently.) The pinning constant has a clear
physical meaning for individual pinning (interaction of a
single vortex with one or several pinning sites), while for
collective pinning it is a result of statistical summation over
many vortices and pinning sites. We will focus our attention
on the individual pinning.

There are two major sources of the pinning:
electromagnetic and core pinning [4]. Electromagnetic
pinning [22] arises, for example, when the supercurrent
pattern around the vortex is disturbed due to the presence of
a non-conducting defect. Core pinning arises, for example,
when a vortex core sticks to a normal-state inclusion. Since
condensation energy is lost in the vortex core, some part
of this energy is restored upon such sticking. A useful
insight into the physical meaning of the pinning constant
may be obtained from the following non-rigorous estimate
[23, 24]. The core energy is spread over a distance 2ξ .
Optimal core pinning is achieved by a defect of the same
size. Assuming an infinite linear (or planar) defect and
equating the linear core energyµ0H

2
c ξ2/8 (hereHc is the

thermodynamic critical field) to the elastic energykpξ
2/2,

the core pinning constant is estimated as

(kmax
p )core ≈ 0.25µ0H

2
c (t). (6)
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Figure 5. Individual versus collective pinning. Rods
represent vortices, springs represent coupling between
vortices, hatched circles represent pinning centres. In the
individual pinning regime, there are many pinning sites per
vortex and the pinning constant is field independent. In the
collective pinning regime, there are many vortices per
pinning site, the pinning constant is smaller and field
dependent.

This simple estimate is modified when the vortex
elasticity [1] is taken into account. Indeed, in the limiting
case of rigid vortices (figure 4(a)), the pinning constant is
the curvature of the pinning potential in the bottom of the
potential well, i.e.(kp)rigid ≈ L−1

c (d2Uc/dx2)x=0. Here,Lc

is the average distance between pinning sites (correlation
length along the vortex). In the limiting case of flexible
vortices and very strong pinning sites (figure 4(b)) the
pinning constant may be estimated by analogy with elastic
string as (kp)elastic ∼ el/L

2
c. Here el is the vortex line

tension [1, 4]

el = µ0Hc180

4πλ2
. (7)

In the general case (figure 4(c)), the pinning constant is
determined by vortex interaction with the pinning sites and
by vortex elasticity as well. Blatteret al [1] estimate the
pinning potentialUc and the correlation lengthLc for the
general case as follows:

Uc = µ0H
2
c εξ3

(
δ

ε

)1/3

(8a)

Lc = εξ

(
δ

ε

)−1/3

. (8b)

Here ε is an anisotropy parameter andδ/ε is a
dimensionless parameter which depends on the strength
of the pinning potential. Assuming a very short-range
potential (i.e. pinning radiusrp ≈ ξ ), we estimate the upper
limit on the pinning constant as(kp)

max ≈ Uc/ξ
2Lc =

µ0H
2
c (δ/ε)2/3. For several strong pinning mechanisms in

YBa2Cu3O7 Blatteret al [1] obtainδ/ε ≈ (10−2–10−3)(1−
t)−1/2 where t = T/Tc (in contrast to equation (6) this
estimate includes both core and electromagnetic pinning).
SinceHc(t) = Hc(0)(1 − t2)2, equations (8a, b) yield

kp = (0.01− 0.05)µ0H
2
c (0)(1 − t)4/3(1 + t)2. (9)

This realistic estimate is several times smaller than a simple
one given by equation (6).

3. Phenomenology of the vortex dynamics

The balance of forces determines the vortex equation of
motion. The effect of thermal fluctuations is accounted
for by a stochastic thermal force. The vortex motion is
described by the Langevin-type equation [1, 25–27]

ηv + αH[n × v] + ∂U/∂x

= 80[n × J ] + stochastic thermal force. (10)

Here Jeiωt is the transport current density,x and v are
the vortex displacement and velocity,n is the unit vector
along the vortex,η is the viscosity coefficient,αH is the
vortex Hall constantU is the pinning potential, andkp is
the pinning constant (Labusch parameter) defined askpx =
∂U/∂x|x → 0. The vortex resistivity isρv = B80v/J .
Equation (10) describes the motion of an individual vortex
and is a mean-field approximation; therefore it is not
valid close to the vortex phase transition, where interaction
between vortices plays a dominant role. The region of the
phase transition is better described by the scaling model
(see Wuet al [28] and references therein).

We omit the inertial term in equation (10). The inertial
effects might be relevant for quantum creep [1, 10] and
for vortex dynamics in the far infrared [29–32]. Since
the present work is focused on a lower frequency range
(microwave and millimetre waves), the effects related to
the vortex mass are ignored.

3.1. Vortex resistivity neglecting Hall effect and flux
creep

In this limit equation (10) is reduced to that proposed first
by Gittleman and Rosenblum [21], i.e.ηv + kpx = FL.
The vortex resistivity isρv = B80v/J :

ρv = B80

η

1

1 + iω0/ω
(11a)

ω0 = kp

η
. (11b)

Equation (11) indicates that pinning forces dominate at
low frequencies, while frictional forces dominate at high
frequencies. The depinning (crossover) frequencyω0

delineates the low- and high-frequency regimes. According
to equation (11a), at high frequencies(ω � ω0) the vortex
resistivity is real,ρv = B80/η, and the vortex motion is
highly dissipative. At low frequencies(ω � ω0) the vortex
resistivity is imaginary,ρv = −iωB80/kp, and the vortex
motion is almost non-dissipative. The different regimes of
the vortex resistivities are shown schematically in figure 6.
At low fields, each vortex is pinned individually, thereby
the pinning constant and the depinning frequency are field
independent. At high fields, pinning is collective and
weak (figure 5), and the depinning frequency is lower
due to decrease of the pinning constant. At higher fields
equations (10) and (11) are no longer valid due to the
proximity of the vortex phase transition. In the region of
the phase transition the frequency dependence of the vortex
resistivity becomes more complicated and the depinning
frequency loses its meaning [28].
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Figure 6. A schematic field–frequency diagram. In the
pinning regime the vortex resistivity is primarily inductive
and is determined by pinning. In the flux-flow regime the
vortex resistivity is primarily resistive and is determined by
viscosity, irrespective of whether vortices are pinned or
unpinned. In the flux-creep (TAFF) regime the vortex
resistivity is primarily resistive, although it is much smaller
than in the flux-flow regime. The lines separating different
regimes of the vortex dissipation are determined by the
condition Im(ρv) = Re(ρv) and do not necessarily coincide
with phase transitions.

3.2. Vortex resistivity in the Hall regime

Since work is still in progress on the understanding of
the high-frequency Hall effect in superconductors in the
presence of pinning [1, 10, 12, 13, 30, 31] we will restrict the
discussion to the case when only the viscous and the Hall
term are relevant. The solution of equation (10) forJ =
const yieldsvx = J80η/(η2+α2

H), vy = J80αH/(η2+α2
H).

The dissipation is∼ ηv2/2 = (J80)
2/2(η + α2

H/η). This
yields the vortex resistivity

(ρv)xx = B80

η + α2
H/η

= B80

η∗ . (12)

Hence, an accounting for the Hall effect forJ = const is
equivalent to the substitution ofη by an effective viscosity
η∗ = η + α2

H/η. Then equations (3a), (3b) and (4) yield

η∗ = πh̄nωcτ = πh̄n
1E

δE
. (13)

Equation (13) is valid for all values ofωcτ . It closely
resembles the Bardeen–Stephen result (equation (2)) which
was derived forωcτ � 1. It means that, due to the Hall
effect, both the viscosity and the direction of the vortex
motion are changed. However, when the dissipation for
J = const is calculated, these two effects cancel out and
the effective vortex viscosity is the same as if the Hall
effect were absent. This cancellation takes place only for
J = const, when an external source drives a constant
current through the superconductor with vortices. If the
external source maintains constant voltage and not constant
current, this cancellation does not take place.

3.3. Vortex resistivity in the flux-creep regime

Equation (10) may be solved analytically assuming a
sinusoidal pinning potential with a peak-to-peak valueU

(see figure 3). The solution [24–26, 33] yields the vortex
resistivity

Re(ρv) = B80

η

χ + (ω/ω0)
2

1 + (ω/ω0)2
(14a)

Im(ρv) = B80

η

(1 − χ)ω/ω0

1 + (ω/ω0)2
(14b)

where

ω0 = kp

η

1

1 − χ

I1(ν)

I0(ν)
. (14c)

Here, the flux-creep factor isχ = 1/I 2
0 (ν) < 1, ν =

U(T )/2kT , I0(ν) andI1(ν) are modified Bessel functions.
Analysis of equations (14) show that the flux creep
increases Re(ρv), especially at low frequencies, and slightly
decreases Im(ρv).

3.4. Nonlinearities

Equation (10) describes linear vortex dynamics. Nonlinear
vortex dynamics may originate from several sources:

(i) Flux creep. Since the pinning potential strongly
depends on current [1], the flux-creep factor is also current
dependent, i.e.χ = χ(J ). Then, equation (14) yields
a nonlinear vortex resistivityρv(J ). This nonlinearity
is very pronounced in the d.c. measurements, since the
flux creep is the dominant source of d.c. resistivity in the
superconducting state. However, this type of nonlinearity
is not very important for high-frequency measurements,
since the a.c. resistivity is determined mostly by viscous
losses (factor(ω/ω0)

2 in equation (14a)) and not only by
the flux creep (χ factor in equation (14a)). As will be
shown later, atω/2π � 108–109 Hz and atT < 77 K
the flux-creep factor may be totally neglected in equation
(14). Therefore, the nonlinearities related to flux creep are
relatively unimportant in the microwave range.

(ii) Nonlinear response of pinned vortex. The parabolic
approximation of the pinning potential is valid only
for very small vortex displacements. At large vortex
displacements the pinning force is no longer proportional to
the displacement, and this may result in nonlinearity [34].

(iii) Sufficiently high current generates vortices.
Therefore, vortex concentration depends on the current and
vortex dynamics becomes nonlinear. This mechanism is
especially important when the sample has a strip geometry,
because high current concentration on the edges alleviates
vortex generation [35–37].

(iv) Vortex motion under the action of an alternating
current results in the spatial variation of magnetic induction.
This variation, according to London equations, produces
supercurrent (which depends on the vortex concentration)
that enters the right-hand side of equation (10). This is
an additional source of nonlinearity which was treated by
Coffey [38].

(v) Vortex motion with high velocity leads to the non-
equilibrium distribution of the quasiparticles in the vortex

5



M Golosovsky et al

core which results in the decrease of viscosity at high
velocities. Larkin and Ovchinnikov [39] found

η(v) = η(0)

1 + (v/v∗)2
(15)

where v∗(T ) is a characteristic velocity. Sincev ∼ J ,
equation (15) predicts a nonlinear resistance at low currents
and an instability (atv = v∗) [40] at high currents.

4. Experimental determination of the dynamic
vortex parameters

The vortex complex resistivity (equation (14)) is usually
evaluated from the study of the surface impedance,Z.
Typical measurements ofZ include resonant methods
[35–37, 41–63] microwave [64] or far-infrared [65, 66]
transmission through thin films. Some information may
be obtained from the nonlinear surface impedance in a
high microwave field (rf-critical state) [35–37]. Viscosity
may be measured in the free-flux-flow regime (which
occurs at very high current densities) through the analysis
of the d.c. I–V curves [40, 67, 68]. The Hall constant
is measured either by using d.c. transport measurements
[69] or through the Faraday effect upon transmission of
submillimetre waves through thin superconducting films
[65]. The pinning constant may be determined through the
analysis ofI–V curves [70], vibrating reed studies [71–
73] a.c. susceptibility [20] and kinetic inductance of thin
films [23, 24]. We will concentrate here on the surface
impedance measurements (table 1). The advantage of this
method is that the pinning constant and viscosity may
be measured simultaneously on the same sample. This
minimizes ambiguity in their determination.

5. Vortex dynamics from the complex impedance
studies

5.1. Complex impedance of a superconductor in the
mixed state. The Coffey–Clem model

The surface impedanceZ is closely related to the complex
penetration lengthλ

Zs = Rs − iXs = iωµ0λ. (16)

Here Rs is the surface resistance andXs is the surface
reactance. The penetration depth is strongly dependent
on magnetic field. This dependence comes mostly from
vortices. Coffey and Clem [26] developed a model which
describes the field dependence of the penetration length
originating from the vortex mechanism. This model
predicts

λ(B, T ) =
(

λ2
s + λ2

v

1 + 2iλ2
s/δ

2
nf

)1/2

. (17)

Here λs is the condensate penetration length,δnf is the
normal-fluid skin depth andλv is the vortex penetration
depth. Theλv is directly related to the vortex resistivity
ρv:

λv =
(

iρv

ωµ0

)1/2

. (18)

In most experiments the corrections for the quasiparticle
skin depth and for the flux creep are important only close to
Tc, so the high-frequency penetration depth in a magnetic
field and atT < Tc may be written asλ2(B, T ) ≈ λ2

s(T )+
λ2

v(B, T ). This means that the vortex and the condensate
contributions are almost additive. From equations (14) and
(18) we find the real and imaginary parts ofλv:

Re(λ2
v) = 80B

ω0ηµ0

1 − χ

1 + (ω/ω0)2
(19a)

Im(λ2
v) = 80B

ω0ηµ0

ω/ω0

1 + (ω/ω0)2

[
1 + χ

(ω0

ω

)2
]

(19b)

Im(λ2
v)

Re(λ2
v)

= ω

ω0

1 + χ(ω0/ω)2

1 − χ
. (19c)

The complex penetration length is found from the
experimentally measured surface resistance and surface
reactance, using equation (16). The vortex dynamic
parameters are obtained from the equations (17)–(19).
Actually, there are three independent parameters, i.e.
viscosity η, pinning constantkp, and the flux-creep factor
χ (ω0 is related to them through equation (14c)). The
unambiguous determination of these parameters requires
measurement of the surface resistance and reactance at
different frequencies. However, if the flux-creep factor
is very small (as it is suggested in a large number
of experiments), the measurements at one frequency are
enough to find bothη andkp.

5.2. Complex impedance of a superconductor in the
mixed state. Beyond the Coffey–Clem model

Most experimental data on the surface impedance of oxide
superconductors in the mixed state are fairly well described
by the Coffey–Clem model, using equations (17)–(19).
However, this model has certain limitations as it does not
account for the following effects:

(i) Vortex lattice effects. Since the Coffey–Clem model
[26] is a continuous one (the length scales are given by
λ), it does not account well for the situations in which the
effects of the vortex lattice play the primary role and an
additional length scale (intervortex spacing) appears. These
cases include the a.c.-vortex Josephson effect (Fiory [74])
and the surface layer in a flat superconductor in a parallel
magnetic field (Soninet al [75]).

(ii) Fluctuations close toTc. Since Coffey–Clem model
uses a mean-field approximation, it is not expected to
provide correct results in the fluctuation-dominated regions
close to Tc or Hc2. Nevertheless, since equation (17)
correctly accounts for the limiting cases ofT = Tc and
H = Hc2, it may probably be applied in the fluctuation-
dominated regions at least as an interpolation scheme. To
find out the accuracy of such an interpolation, one should
compare the prediction of the Coffey–Clem model for the
field derivative of the surface resistance and reactance at
T = Tc and H = Hc2 with the results of microscopic
theory. Such a theory was developed by Caroli and Maki
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Table 1. Relevant experiments.

Reference H (T) Method Material

Parks et al [65] 6 100–500 GHz YBCO film
pulse transmission 70 nm thick

Pambianchi et al [52] 0–0.35 11 GHz parallel-plate YBCO film
resonator 1 µm thick

Wu et al [28] 0–9 45 MHz–50 GHz YBCO thin film
Corbino disk

Owliaei et al [51] 0–8 10 GHz YBCO thin film
cavity resonator

Golosovsky et al [53] 0–0.8 5.5 GHz parallel-plate YBCO thin film
resonator

Ghosh et al [54] 0–7 11 GHz parallel-plate YBCO thin film
resonator

Revenaz et al [55] 0–6 1–20 GHz YBCO thin film
stripline resonator

Xavier et al [56] 0–7 5 MHz–5 GHz Ho–Ba–Cu–O
stripline thin film

Morgan et al [45] 4 27 GHz YBCO
cavity resonator single crystal

Matsuda et al [59] 0–6 30 GHz YBCO single crystal
bolometry

Wu and Sridhar [24] 0–0.02 6 MHz rf oscillator YBCO single crystal
Hebard et al [23] 1–14 1.25 kHz YBCO thin film

kinetic inductance
Kunchur et al [68] 0–8 Pulsed d.c. current YBCO thin film
Doettinger et al [40] 0–4 High d.c. current YBCO thin film
Bulaevskii et al [114] Reversible BSCCO

magnetization single crystal
Hanaguri et al [62] 2–5 44 MHz rf resonator BSCCO single crystal

[76] and Thompson [77] (in the context of conventional
superconductors) who found(

∂Rs

∂H

Hc2

Rn

)
Hc2

= S(ω, T )

2
≈ 1–3 (20)

whereRn is the surface resistance in the normal state. It is
not clear how close to this rigorous result are the predictions
of the Coffey–Clem model.

(iii) Vortex phase transition. In the close vicinity to the
vortex phase transition, the vortex dynamics is no longer
described by the mean-field models such as equations (10)
and (11). Indeed, Olssonet al [41], Wu et al [42], Ando
et al [43], Yeh et al [44], Koetzler et al [78] and Wu
et al [28] experimentally found a dramatic change in the
high-frequency vortex dynamics across the vortex phase
transition. It was found that the scaling model of Fisheret
al [79] fairly well accounts for the transition region. If one
tries to describe this region in terms of vortex viscosity and
pinning constant [43] these parameters acquire frequency
dependence. Wuet al [28] have recently demonstrated
that the scaling models work better at low frequencies,
ω/2π < 10–20 GHz, while at higher frequencies the mean-
field models of equations (10) and (11) are still applicable.

Giura et al [80] and Sarti et al [81] have recently
developed a procedure which accounts for the temperature-
dependent d.c. resistivity of superconductors in a magnetic
field through phase transition (both superconducting and
vortex liquid–vortex solid). It is highly desirable to
develop a similar procedure for the a.c. resistivity,
since it has importance for applied superconductivity.

Indeed, magnetic-field-modulated microwave absorption
(MAMMA) has evolved as a valuable tool for the search
of new superconducting compounds [82–84]. This method
consists of measuring the field derivative of the surface
resistance of superconductor at varying temperature. A
sharp peak in dRs/dH appears atTc which permitsTc to be
established with high accuracy. This method is contactless,
very sensitive, and is widely used with the commercial
10 GHz ESR equipment. As far as we know, there is no
satisfactory model that describes the peak. If such a model
were present, the MAMMA measurements would yield not
only a Tc value, but additional information characterizing
the quality and properties of the superconducting samples.

6. Experimental studies of the complex
impedance

Typical complex impedance studies include measurement
of the magnetic-field-dependentQ-factor and the resonant
frequency of a microwave resonator with superconductor.
A superconductor may (i) be mounted inside a copper
resonant cavity [45–49], (ii) serve as an end-plate of a
copper cavity [50, 51], (iii) form a resonator by itself
(parallel-plate resonator [52–54], microstripline [55–57],
dielectric resonator [44]), (iv) terminate a coaxial cable
[58]. Viscosity (but not the pinning constant!) may be
estimated from the study of the surface resistance in a
magnetic field by the bolometric technique [59, 60]. In
the radio-frequency range the sample is mounted in the
rf coil and its complex impedance is yielded from the a.c.
magnetic susceptibility [24, 61, 62].
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Figure 7. Magnetic-field dependence of the surface resistance Rs and reactance Xs of a pair of laser-ablated YBa2Cu3O7
films with weak links [86]. 2 is the angle between the field and the c-axis. Note the linear dependence at low field and
saturation at higher fields (inset). T = 57 K, f = 5.4 GHz, H ⊥ j.

6.1. Vortices versus weak links

An important point in the study of vortex dynamics is to
make sure that the magnetic field effect on the surface
impedance and penetration length originates from the
vortices and not from other sources, such as weak links
or pair breaking. The pair-breaking mechanism in oxide
superconductors has been extensively studied by Wu and
Sridhar [24] and Maedaet al [61]. It is dominant at
H < Hc1 and negligible at higher fields. As to the weak
links, their contribution at certain conditions may dominate
over that of the vortices. This frequently occurs at low field
valuesµ0H < 0.1 T. The weak-link contribution may be
recognized through its nonlinear behaviour [35, 36, 63, 85],
field, angular and temperature dependence [86], which are
very different from those for the vortex mechanism. Indeed,
Rs and Xs of the films containing weak links increase
linearly with increasing field (figure 7) and saturate at
low field µ0H ≈ 0.1 T (figure 7, inset), while for the
vortex mechanism the saturation (if any!) occurs at higher
fields [51, 58]. The angular dependence of the surface
impedance, arising from the weak-link mechanism, may
be negligible (figure 7), while for the vortex mechanism it
is very pronounced. For example, figure 8 demonstrates the
field dependence of the surface resistance and reactance of
a pair of YBa2Cu3O7 films [53] free of weak links. Both
Rs andXs increase with increasing field. The effect of the
magnetic field is the strongest whenH‖c (2 = 0◦) and
the weakest whenH ⊥ c (2 = 90◦).

6.2. Flux creep

The activation energy for the flux creep may be found
from the d.c. magnetization studies. Abulafiaet al [87]

(local probe) and Schalket al [88] have demonstrated
that the pinning potential in YBa2Cu3O7 has a pronounced
temperature dependence. This dependence is different at
high and low temperatures. At low temperatures (T <

70 K) [87, 88] find U ∝ kT and U/2kT = ν ≈ 6.5–
9. These results suggest a very small and temperature-
independent flux-creep factor (see section 3.3), namely
χ ≈ 10−6–10−4. It means that the effect of the flux
creep on the depinning frequencyω0 (equation (14c))
and on the imaginary part of the vortex resistivity
(equation (14b)) should be negligible at all frequencies,
while the effect of the flux creep on the real part of the
vortex resistivity (equation (14a)) should be negligible only
at high frequencies,ω � ω0χ

1/2. We will show later that
the depinning frequency in YBa2Cu3O7 is ω0/2π ≈ 1010–
1011 Hz. Hence, the d.c. magnetization data suggest that
in the frequency rangeω/2π � 108–109 Hz, the flux-
creep factor may be totally neglected in equations (14).
The estimates of the flux-creep factor from the surface
impedance studies well agree with the conclusions drawn
from the d.c. magnetization studies. Indeed, Revenazet
al [55], using swept frequency studies, estimated the flux-
creep pinning energy at 4.2 K asU/2kT = ν ≈ 4.8–6.5
(this corresponds to the flux-creep factor ofχ ≈ 10−3–
10−4). Parkset al [65] demonstrated that the flux-creep
factor is unimportant at very high frequenciesω/2π >

100 GHz.
In the high-temperature range (T > 70 K), the d.c.

magnetization data [88] suggest that the pinning potential
acquires a different temperature dependence and becomes
small. This suggests a non-negligible flux-creep factor
close toTc. Indeed, the swept-frequency studies of Wu
et al [28] yielded a non-negligible flux-creep factor 0.05 <

χ < 0.5 at 80 K< T < 86 K.
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Figure 8. Magnetic field dependence of the surface resistance Rs and surface reactance Xs of laser-ablated YBa2Cu3O7
films at different angles [53]. 2 is the angle between the field and the c-axis. T = 57 K, f = 5.4 GHz, H ⊥ j. Only the
field-dependent parts of Rs and Xs are shown.

Figure 9. Angular dependence of the pinning constant kp,
viscosity η and depinning frequency ω0/2π at T = 57 K and
0.1 T < B < 0.8 T. 2 is the angle between the field and the
c-axis. The full curves show approximations
kp(2) = kp(0◦)/ε2, η(2) = η(0◦)/ε2,
ε2 = (cos2 2 + γ −2 sin2

2)1/2 and γ = 7.5.

6.3. Field dependence of the pinning constant, viscosity
and depinning frequency

The majority of high-frequency studies in YBa2Cu3O7

yield field-independentη and kp. Namely, a field-

independent pinning constant was found for: (table 1)
(i) Bi 2Sr2CaCu2O8 single crystal [62] atT > 25 K and
µ0H < 2 T; (ii) for YBa2Cu3O7 thin films forµ0H < 0.8 T
[53], for µ0H < 14 T [23], and forµ0H < 6 T [55].
These results suggest individual vortex pinning over a wide
range of fields and temperatures. This is very different
from conventional superconductors, in which the pinning
is usually collective andkp ∼ B−1/2 [21]. Of course, the
vortices in YBa2Cu3O7 should enter the collective pinning
regime upon increasing field (and the pinning constant
should acquire field dependence). Indeed, at high fields
and high temperatures a dramatic change in the vortex
electrodynamics occurs. This was observed by Owliaei
et al [51], Wu et al [42], Booth et al [58] and Thrane
et al [89]. This transition occurs approximately at the
irreversibility line [51, 89]. Therefore, it was interpreted
as a glass transition [51, 58, 89] rather than transition to the
collective pinning regime.

6.4. Angular dependence of the surface impedance

6.4.1. Lorentz force. The angular dependence of
the surface impedance may originate from: (i) the
angular dependence of the Lorentz force, (ii) geometrical
factors [90, 91] and (iii) anisotropy of the vortex dynamic
parameters (which results from the crystal anisotropy).
The Lorentz force-induced anisotropy appears in those
experiments, in which the direction of the field is
changed relative to that of the current. Studies
of the angular dependence of the surface impedance
in conventional (isotropic) superconductors revealed the
angular dependence appropriate to the Lorentz force [92].
Similar experiments in granular YBa2Cu3O7 films [64]
and ceramics [48] demonstrated the angular dependence
of the vortex resistivity, which was consistent with the
Lorentz force (although in both experiments there was
an appreciable isotropic background). Recent microwave
experiments of Ghoshet al [54] on epitaxial films proved
the angular dependence characteristic for the Lorentz force,
i.e. the field effect on the surface resistance and reactance
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was much stronger in the geometry when the field was
perpendicular to the current than in the parallel geometry.

6.4.2. Angular dependence of the pinning constant,
viscosity and depinning frequency. The angular depen-
dence ofRs andXs, arising from the anisotropy of the vis-
cosity and pinning constant, is probed in those experiments
in which direction of the field is changed relative to the
crystal axis so thatH ⊥ j. Figure 9 shows the angular de-
pendences ofkp, η andω0 found in such an experiment. We
note that the angular dependences ofkp andη are very simi-
lar, while ω0 is almost independent of angle. The viscosity
and the pinning constant exhibit maximum values when
H ⊥ c and minimum values whenH‖c. The anisotropy
of the pinning constant isγ = kp⊥/kp‖ ≈ 7.5. Anand and
Tinkham [57] have found a similar anisotropy of the sur-
face resistance of thin films (γ = 7–8) for µ0H = 0.05 T
and an enhanced anisotropy (γ = 15) for lower field values
such asµ0H = 0.01 T. The study of the field-modulated
microwave absorption acrossTc in single crystals (which is
determined by bothη and kp) [49] yields γ = 6.7. These
values ofγ are approximately consistent with the effective
mass anisotropy of YBa2Cu3O7, (mc/mab)

1/2 = 5–8. In
contrast to these results, an analysis of theI–V curves [93]
yields a much lower anisotropy,kp⊥/kp‖ = 1.7. Moreover,
Wu and Sridhar [24] find inverse anisotropy of the pin-
ning constant for the YBa2Cu3O7 single crystals, namely
kp‖/kp⊥ = 0.1. This last result is definitely different from
other results. It may originate from the fact that the ex-
periments in [24] were performed at low field values, such
asµ0H ≤ 0.1 T, H ≈ Hc1, while other data [53, 57] were
collected at a higher fieldµ0H ≤ 1 T, H � Hc1. Also, the
pinning mechanism at low fields may be different from that
at higher fields (for example, the low-field pinning constant
may be determined by surface barriers [94]). Actually,γ

may be temperature dependent due to competition between
3D and 2D behaviour [95].

6.4.3. Scaling approach. The angular dependence of
the pinning constant and viscosity (figure 9) is in good
agreement with scaling models [96–99]. Such models map
the angular-dependent properties of a uniaxial anisotropic
superconductor in the mixed state(Hc1 � H � Hc2) to
the isotropic case by replacing the magnetic field at an
arbitrary angle2 by a reduced fieldb = Bε2 (where
ε2 = (cos2 2 + γ −2 sin2 2)1/2). We recast equation (19)
(assumingχ → 0) and find

λ2
v(B, 2) = λ2

v(b) = b80

µ0kp(b)[1 − i(ω/ω′
0(b))]

. (21)

Here kp(b) = kp(B, 0◦) and ω′
0(b) = ω0(B, 0◦). The

experiment [53] yieldsλ2
v(B, 0◦) ∼ B. Then equation (19)

yields λ2
v(b) ∼ b/kp where kp is field independent.

Therefore, λ2
v(B, 2) ∼ Bε2/kp(0◦), and kp(2) =

kp(0◦)/ε2. In the same way we findη(2) = η(0◦)/ε2.
Of course, equation (21) does not work if the pinning itself
is anisotropic, for example if it is achieved by preferentially
oriented twin-boundaries, columnar defects or by internal
pinning [100]. Indeed, Loflandet al [101] have observed

Figure 10. Temperature dependence of the pinning
constant kp in the regime of individual pinning
(field-independent pinning constant). The full curve
demonstrates an approximation
kp(T ) = kp(0)(1 − t)4/3(1 + t)2 with Tc = 88 K and
kp(0) = 3 × 105 N m−2. The broken lines show exponential
dependences kp(t) = kp(0)(1 − t)4/3(1 + t)2 exp(−T/T0) with
the same Tc and kp(0). Fluctuation-dependent
temperatures are T0 = 28 K for YBa2Cu3O7 and T0 = 9 K
for Bi2Sr2CaCu2O8.

that introduction of columnar defects dramatically changes
the angular dependence of the field-modulated microwave
absorption.

6.5. Temperature dependence

6.5.1. Pinning constant. Figure 10 demonstrates the
temperature dependence of the pinning constant for thin
films and single crystals as measured by electrodynamic
methods. Clearly, the low-temperature values ofkp are
very high, of the order ofµ0H

2
c (0). The following question

arises: ifkp in YBa2Cu3O7 is so high, why is the critical
current Jc not very high, and why is the pinning energy
U so low? This point was analysed several years ago by
Hylton and Beasley [102] with the emphasis on critical
current. The answer is related to the very short-range
pinning potential (which originates from the very short
coherence length [103]). Indeed, letrp be the radius of
the action of the pinning potential, thenJc ≈ kprp and
U ≈ kpr

2
p. While kp is large,rp is small. Hence, in spite

of high kp values, bothJc andU are small.
We compare the zero-temperature value of the pinning

constant with that given by equation (9). Sinceµ0Hc(0) =
1.2 T [104], equation (10) yields(kp(0))max = (1–6) ×
104 N m−2. The experimental values of the pinning
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constant for most of the samples (except ceramics!) are
several times bigger, namely(kp(0))experiment= (20–40) ×
104 N m−2. This is surprising, since we would expect the
experimental value of the pinning constant to besmaller
than the maximum pinning constant! What is the possible
source of the discrepancy? A probable explanation is that
the line tensionel (equation (7)) is bigger. Some indication
of it is given in the work of Lianget al [105] who estimated
the line energy from the data on the penetration lengthλ and
Hc1 of a YBa2Cu3O7 single crystal and found that the line
energy is three times bigger than that given by equation (7).

Apart from giving too low a value of the zero-
temperature pinning constantkp(0), equation (9) does not
provide a satisfactory fit for the temperature dependence
of the pinning constant, as is demonstrated in figure 10
(full line). A much more satisfactory fit is provided by
an extension of the same model that takes into account
smearing of the pinning potential by thermal fluctuations
[1, 106]. According to this model, the modified pinning
potential is

U(T ) = U0(T ) exp(−T/T0). (22)

HereU0(T ) is the temperature-dependent pinning potential
without thermal fluctuations (the dependence onT
originates from the temperature dependence of the
superconducting parameters, such as condensation energy)
and T0 is a characteristic temperature, that depends on
fluctuations. In the limit T0 � Tc the temperature
dependence of the pinning potential is dominated by
thermal fluctuations (exponential term in equation (22)),
while in the opposite limitT0 ≤ Tc, thermal fluctuations are
unimportant. Sincekp = d2U/dx2 andJc ∼ dU/dx, their
temperature dependence is also expected to be exponential.
Indeed, such exponential dependence withT0 ≈ 17–
25 K was observed for the critical current [107, 108]
and in vibrating-reed studies [73] in YBa2Cu3O7 single
crystals. We apply this model [1, 106] to the pinning
constant and assume that the value given by equation (9)
should be multiplied by the factor exp(−T/T0). Indeed,
the experimental data for YBa2Cu3O7 are satisfactorily
described by such a dependence withT0 ≈ 28–35 K
(figure 10 broken line). The model [1, 106] predicts that
the fluctuation-induced smearing of the pinning potential
should be much more pronounced in Bi2Sr2CaCu2O8 due
to the enhanced anisotropy. Indeed, while the low-
temperature pinning constant of a Bi2Sr2CaCu2O8 single
crystal (extrapolation from the data of Hanaguriet al [62]
to zero temperature) is almost the same as in YBa2Cu3O7, it
exponentially decreases at higher temperatures (figure 10).

The pinning constant of thin films and single crystals
(figure 10) is several orders of magnitude higher than that
of ceramics [24]. We find also (in contrast to Zieseet
al [71]) that the pinning constant in thin films and single
crystals, as measured electrodynamically (figure 10), is
considerably higher than that measured by the vibrating-
reed method [71]. (Hence, a comparison of the pinning
constants measured by both methods on the same sample is
strongly desirable.) Another remarkable feature of figure 10
is that the values of the pinning constant obtained by various
electrodynamic methods and with different YBa2Cu3O7

materials are very close despite the enormous differences in
the measuring frequency (1 kHz–500 GHz) and magnetic
field (0.1–14 T). We can now discuss several possible
explanations for this fact:

(i) The same defect determines the pinning constant in
the majority of the samples. It may be, for example, oxygen
vacancies or dislocations. Pinning by these defects was
calculated by Kes [109]. However, to account for a very
large value of the low-temperature pinning constant, this
explanation requires a very high concentration of vacancies.

(ii) The pinning constant is determined not only by the
interaction with the pinning sites, but by the short-range
vortex elasticity as well (see figure 4). While the interaction
with pinning sites may vary from sample to sample, the
vortex elasticity is an intrinsic property of the material and
the only parameter that introduces a difference between
different samples is the density of the pinning sites. In this
case the temperature dependence of the pinning constant in
different samples should be the same, while its magnitude
may differ. According to this scenario, the pinning sites in
the samples shown in figure 10 are so strong that the pinning
constant in all these samples is determined by the vortex
elasticity. However, in ceramic samples [24] the pinning
sites are weak and the pinning constant is determined by
the interaction with the pinning sites.

(iii) Parks et al [65] argue that a strongly anisotropic
gap may have a profound effect on the field dependence of
the penetration depth. Actually, Parkset al assume that the
magnetic-field-induced inductive response in YBa2Cu3O7

arises from the pair breaking and not from the pinning.
One difficulty with this explanation is that it suggests the
field-dependent pinning constant, i.e.kp ∼ B1/2, while most
experiments (table 1) yield a field-independentkp. Another
difficulty is the assumption that the pinning response is
completely masked by the pair-breaking response. Indeed,
Parkset al assume thatkelectrodynamic= 1/(1/kpair breaking+
1/kpinning) and kelectrodynamic ≈ kpair breaking � kpinning.
Therefore, the electrodynamic experiments probe pair
breaking, while the actual pinning constant should appear
in vibrating-reed studies. However, the pinning constant
values, as found in vibrating-reed studies [71], are
systematically lower than those found in the electrodynamic
studies, not higher! This is in contradiction to the
conjecture of Parkset al [65].

6.5.2. Viscosity. Figure 11 shows experimental viscosity
values atT > 70 K. We observe that the values obtained
by the high-frequency methods are in reasonable agreement
with those obtained from the d.c. studies. We compare
viscosity values with the predictions of the microscopic
theory of Gorkov and Kopnin [17] for the flux-flow
resistance at low fields,H � Hc2. This theory predicts
ρff = ρnB/βµ0Hc2(t), whereβ is a dimensionless slowly
varying function of temperature. Since in the vicinity of
Tc the critical field linearly depends on temperature, i.e.
Hc2(t) ∼ 1 − t , then

η(T ) = β(t)(1 − t)µ080

ρn

(
dHc2

dt

)
Tc

. (23)
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Figure 11. Temperature dependence of the viscosity in
YBa2Cu3O7 in the vicinity of Tc. Full lines show linear
approximations η(t) ∼ 1 − t . Note that the data of
[45, 51, 53, 65, 68] are obtained by high-frequency methods
while the data of [28, 40] are found in d.c. measurements.

Figure 11 demonstrates that viscosity is, indeed, linearly
dependent on 1− t . Taking ρn = 70 µ� cm, and
µ0 dHc2/dT = 1.9 T/K [110], we find that the data for
different groups yieldβ values ranging from 0.5 to 4. This
should be compared with theβ = 2–3 which is found in
similar experiments on conventional superconductors [17].

Figure 12 shows the temperature dependence of the
viscosity of Abrikosov vortices in YBa2Cu3O7 in the whole
temperature range. For the majority of the experiments,
the low-temperature (T < 77 K) viscosity is in the limits
η = 10−7–10−6 N s m−2. This value is several orders of
magnitude higher than the viscosity of Josephson vortices
(as measured by de Nivelleet al [111] at 4.2 K, namely
ηJ ≈ 10−10 N s m−2). We note that almost all viscosity
data, as measured by different techniques and for different
samples, are spread within one order of magnitude (at each
particular temperature). This spread may be related to the
spread of the quasiparticle scattering timeτ (equation (2)).
However, the single-crystal data of Matsudaet al [59] are
very different from other results. We note that the viscosity
values reported by Matsudaet al, were obtained from the
measurements ofRs at a single frequencyω/2π = 30 GHz
assuming that the depinning frequency is much lower than
the measuring frequency. Now it is clear that the depinning
frequency may be much higher [65], hence the initial
assumption of negligible pinning made in [59] may be
reconsidered. Since pinning constants for different samples
do not differ much (figure 10), we reconsider the data of
[59] assuming a pinning constantkp(0) = 4 × 105 N m−2.
We find that the surface resistance data of [59] may yield
eitherη = 5×10−5 N s m−2 (which is almost two orders of
magnitude higher than the values reported by other groups),

Figure 12. Temperature dependence of the viscosity in
YBa2Cu3O7. Open and full symbols show the data for H ‖c.
Crosses show the data for H ⊥ c. Full triangles show the
data of Matsuda et al [59]. Full inverted triangles show
reconsidered data of Matsuda et al [59] (see text). The
chain curve shows the data of Matsuda et al [59] for the
60 K YBa2Cu3O7. The full curve shows an approximation
η(T ) = η(0)(1 − t2)/(1 + t2) with Tc = 88 K and
η(0) = 1.2 × 10−6 N s m−2. The broken line shows the
superclean limit.

or η = 1 × 10−7 N s m−2 (which is a rather small value,
but it is closer to the results of other groups).

The Bardeen–Stephen expression for viscosity (equa-
tion (1)) may be inverted in order to calculateρn at low tem-
peratures. This procedure was proposed first by Morganet
al [45] and it yields the quasiparticle relaxation rate in the
vortex core,τ−1(T ) = τ−1(Tc)80µ0Hc2(T )/ρn(Tc)η(T ).
The vortex relaxation rateτ−1(T ) was found to decrease in
the superconducting state [45, 51, 52, 65]. In general, this
decrease is consistent with the linear extrapolation of the
normal-state resistivity belowTc [45]. This is very differ-
ent from the exponential temperature decrease of the bulk
relaxation rateτ−1

b (T ) [112], which was found from the
analysis of the surface impedance in the absence of mag-
netic field.

6.5.3. Superclean limit. The superclean limit is achieved
provided that the ratio of the level spacing1E = 12/EF

to the level width δE = h̄/τ in the vortex core is
higher than unity. Equation (13) demonstrate that this
ratio may be directly determined from the viscosity value.
Following Harris et al [69], we perform this estimate.
It is important to note that most viscosity measurements
by the surface impedance technique (figure 12) are done
using undercoupled resonators (i.e. in the constant-current
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mode). Equation (12) states that such measurements yield
the vortex resistivity and not conductivity. If the Hall
effect is taken into account, then the viscosity found in such
measurements is not the actual viscosityη (equation (3a))
but the effective oneη∗ (equation (13)). In other words,
figure 12 plotsη∗ and not η. The superclean limit is
achieved providedωcτ = η∗/πh̄n > 1. They axis on the
right-hand side of figure 12 showsη∗/πh̄n. We assume that
n = 0.5 carrier per unit cell [113] and thatn is independent
of the vortex orientation. We observe that the low-
temperature data forH‖c suggestη∗/πh̄n = ωcτ ≈ 0.1–2.
This should be compared with the valueωcτ = 2.2 found in
the infrared transmission experiments of Karraiet al [66].
We conclude that forH‖c the vortices in 90 K YBa2Cu3O7

(and in 60 K YBa2Cu3O7 as well [69]) are close to or in
the superclean limit. Since viscosity is considerably higher
for H ⊥ c, we are forced to conclude that the vortices in
the a–b planes are deep in the superclean limit! However,
in order to make a firm conclusion, several precautions are
needed. Indeed, the estimate of the parameterωcτ from the
magnitude of viscosity is based on equations (2) and (13)
which assume a hydrodynamic limit, i.e.ωcτ � 1. If such
an estimate yieldsωcτ � 1, the procedure is self-consistent
and the magnitude ofωcτ is reliable. However, if such an
estimate yieldsωcτ � 1, this should be interpreted only as
an indication of the superclean limit. No reliable estimate
of the magnitude ofωcτ may be made yet because the
whole procedure is not self-consistent. A detailed model
of the vortex viscosity in the superclean limit is required.
This model should address the following issues:

(i) Anisotropy. High viscosity values that are found
for the vortex motion perpendicular to the CuO sheets may
be considerably affected by the anisotropy of YBa2Cu3O7.
However, equations (2) and (5) do not explicitly account
for anisotropy.

(ii) Pinning. The estimate of the superclean parameter
ωcτ is based on equations (2), (5) and (13). These equations
are obtained assuming negligible pinning, while most of
the data plotted in figure 12 were obtained in the pinning
regime.

(iii) Low temperatures. In the superclean limit and
at very low temperatures12/EF � kT , the dissipation
inside the vortex may be additionally hampered due to
selection rules for momentum transfer between bound states
[18]. This regime may be relevant for YBa2Cu3O7, since
12/EF ∼ 100 K [66].

(iv) Localization. A vortex in the superclean limit
is similar to a quantum wire in which one-dimensional
localization of the quasiparticles may occur. This may have
a profound effect on the dissipation of the moving vortex.

6.5.4. Hall constant. Viscosity data imply that the
vortices in YBa2Cu3O7 are close to the superclean limit.
This means that the Hall effect may be observable, since
equation (3c) yields an appreciable Hall angle, tan2H =
ωcτ ∼ 1. A big Hall effect was, indeed, observed in
60 K YBa2Cu3O7 [69]. The Hall angle may be also
estimated from the viscosity measurements, as it was done
by Harris et al [69] in the context of 60 K YBa2Cu3O7.

Following their procedure we analyse the data of Parkset
al [65] for the 90 K YBa2Cu3O7 which reportsη(4.2 K) =
(1.2–1.5) × 10−7 N s m−2. According to equations (3a)
and (13) this impliesωcτ = 0.14–0.17. Then equation (3b)
yields the Hall constantαH = (0.02–0.03)πnh̄ (assuming
n = 0.5 carriers per unit cell). This value is only two
to three times smaller than the experimental one [65],
namelyαH = 0.07πnh̄. We conclude that while the d.c.
measurements of the Hall effect in YBa2Cu3O7 at low
temperatures are hindered due to strong pinning, the high-
frequency measurements may provide direct access to the
Hall effect.

6.5.5. Depinning frequency. Figure 13 shows experi-
mental values of the depinning frequency. We observe that
the temperature dependence of the depinning frequency is
not very strong, at least atT/Tc < 0.8. (Close toTc the flux
creep becomes dominant and depinning frequency loses its
meaning). A useful insight into the physical meaning of
the depinning frequencyω0 = kp/η may be obtained using
the Bardeen–Stephen expression for the viscosity (equa-
tion (1)), and equation (6) for the maximum core pinning

ω0 ∼ kp

kmax
p

ns

n
τ−1. (24)

Here τ−1 is the quasiparticle relaxation rate in the vortex
core, ns(t) is the concentration of Cooper pairs andn is
the carrier concentration in the normal state. Equation (24)
shows that the temperature dependence ofω0 arises from
the interplay between the temperature dependences of
kp/kmax

p , τ−1 and ns. Since these dependences partly
compensate one another, the temperature dependence ofω0

is weak. At low temperatures,ns = n. Hence,ω0(T =
0) ≈ (kp/kmax

p )τ−1. The relaxation rate does not differ
much for high-Tc and for conventional superconductors,
while the pinning does differ (for high-Tc superconductors
kp/kmax

p ∼ 1 while for conventional superconductors
kp/kmax

p � 1). Hence, the high values of depinning
frequency in oxide superconductors are due to strong
pinning.

7. Conclusions

(i) The values of the pinning constant reported by different
researchers and for different YBa2Cu3O7 samples show
surprisingly small dispersion. The pinning constant
at lowest temperatures is very high and decreases
exponentially with increasing temperature. This suggests
a pronounced effect of thermal fluctuations on pinning.

(ii) The measured viscosity values indicate that, at least
at low temperatures, the vortices in YBa2Cu3O7 may be in
the superclean limit, i.e. there are bound states inside the
vortex core. The values of the level spacing and level
width, as given by viscosity measurements, are consistent
with those found from the studies of Hall effect and infrared
transmission.

(iii) The depinning frequency in YBa2Cu3O7 thin films
is almost independent of temperature and orientation and is
of the order of 10–200 GHz. These values are considerably
higher than those for conventional superconductors due to
stronger pinning.
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Figure 13. Temperature dependence of the depinning
frequency.
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