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Non-Euclidean plates are plates (‘‘stacks’’ of identical surfaces) whose two-dimensional intrinsic

geometry is not Euclidean, i.e. cannot be realized in a flat configuration. They can be generated via

different mechanisms, such as plastic deformation, natural growth or differential swelling. In recent

years there has been a concurrent theoretical and experimental progress in describing and fabricating

non-Euclidean plates (NEP). In particular, an effective plate theory was derived and experimental

methods for a controlled fabrication of responsive NEP were developed. In this paper we review

theoretical and experimental works that focus on shape selection in NEP and provide an overview of

this new field. We made an effort to focus on the governing principles, rather than on details and to

relate the main observations to known mechanical behavior of ordinary plates. We also point out to

open questions in the field and to its applicative potential.
1. Introduction

The capability of soft elastic materials to undergo large defor-

mations leads to different types of mechanical instabilities that

often break spatial symmetries, generate small or multi-scale

structure and re-distribute stresses within the material. Such

instabilities are usually induced by the application of external

confining forces or geometries. The confinement results in the

buildup of internal stresses, which may drive these instabilities.

On the other hand, natural bodies that are made of soft tissue,

such as flowers, skin, or leaves often undergo specific mechanical

instabilities when they are free of external confinement. Can we

engineer bodies to shape themselves into desired configurations

without the need of external confinement?

Even unconstrained elastic bodies may contain stresses. These

are termed residual stresses. These often appear as artifacts

during the manufacturing of materials, when different parts of

a body swell/shrink differentially. In most cases, one wishes to
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avoid these stresses, as they cause uncontrolled deformation of

the body and may even lead to its failure. For example, glass

blowers anneal their products in order to avoid fracture due to

residual stresses. On the other hand if we could control this

mechanism and design bodies with controllable distribution of

residual stresses, it would be possible to harness these mechanical

instabilities, turning them into a powerful design and shaping

mechanism.

Two main problems prevent a breakthrough in this direction.

First, there are great difficulties in formulating a practical theo-

retical model of these mechanisms. The large deformations and

material displacement that are involved prevent, in general,

a successful linearization of the problem. The definition of

elementary mechanical and geometrical quantities on such

bodies, turn out to be tricky. For example, residually stressed

bodies do not have any stress-free configuration. It is then

impossible to use the common definition of strain, which is based

on a map between the (non-existing) stress-free and a given

configuration. To overcome such a basic difficulty one needs to

either use the notion of ‘‘virtual configurations’’ or to use

a covariant formalism, in which strain is expressed by metric

tensors, rather than by configurations. The reader can find
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Fig. 1 Buckling of a ruler. A ruler of length L and thickness t is

compressed by an amount 2d (top). A pure stretching configuration

(middle) is flat. In the pure bending configuration (bottom) the ruler is

bent into an arc, while its mid plane (dashed line) preserves its length L.

Within most plate theories approximations, lines that were perpendicular

to the mid plane (dotted lines) remain perpendicular and preserve their

length t.
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literature on both these approaches in works, staring in the 60’s1

through to the 90’s and into the 21st century.2–4 A second theo-

retical challenge would be to convert these formalisms into

practical, easy to use effective theories that allow the deduction of

general scaling laws, as well as predictions and efficient analysis

of specific cases. Such effective theories, as well as computational

tools designed to analyze these types of bodies, hardly exist.

Beyond the theoretical difficulties there is also a major

problem of implementation. For example, assuming we know

exactly what distribution of local shrinking and swelling will turn

a disc of an elastic material into an ornamental bowl. How can

we achieve it? How can we ‘‘program’’ the material to undergo

different, known, local deformations at each point within it?

This paper focuses on an interesting kind of shape trans-

forming, residually stressed soft bodies, in which concurrent

theoretical and experimental progress were achieved. These are

thin elastic plates that undergo lateral (in-plane) differential

swelling/shrinkage; termed non-Euclidean plates. The physics of

non-Euclidean plates is gradually being revealed, but there are

still many open questions, as well as surprises, associated with

their shape selection principles and their applicative potential. In

this paper we will give an overview on this relatively new subject

and will try to highlight potential directions for future progress,

as well as open questions.

We start with a brief review on ‘‘ordinary’’ buckling and

wrinkling instabilities trying to highlight the similarities and

differences in their origins and characteristics. This will serve us

later, when we discuss the mechanics of non-Euclidean plates

(NEP). Next we show how to describe a local active lateral

deformation (growth) using tools of differential geometry. Using

these tools we write the energy functional of NEP and discuss its

characteristics. In section 4 we describe the techniques that are

available for building NEP, these include ‘‘homemade’’ NEP and

advanced techniques that allow good control over the imposed

‘‘growth’’ and its external activation. Experimental and numer-

ical results that highlight the underlying principles in shaping

NEP are reviewed in section 5. We conclude in sections 6 and 7,

mentioning potential applicative directions, central open ques-

tions and promising directions of progress in this field.
2. Mechanical instabilities of flat plates

2.1 Buckling

Buckling is a mechanical instability occurring in slender elastic

bodies, which allows a reduction of in-plane compression by out

of plane bending. We start by considering a ruler of length L and

thickness t which is compressed by a given in-plane displacement

2d of its edges (Fig. 1 top). If we assume the solution obeys the

up-down symmetry of the problem, i.e. a flat configuration, we

end up with energy density of a ‘‘compressed spring’’ ESft

�
d

L

�2

(Fig. 1 middle). We can consider a second solution, in which the

system uses the three-dimensionality of the space in which it is

located, breaks the up-down symmetry, and bends to form

a perfect arc (Fig. 1 bottom). We can select an arc that perfectly

obeys the boundary conditions while keeping the center-plane of

the ruler (dashed line in Fig. 1) in its original length L. Estimating

the energy of this configuration we note that ‘‘layers’’ of bottom
5694 | Soft Matter, 2010, 6, 5693–5704
parts of the ruler are compressed, while those on its upper part

are stretched. For radius of curvature much larger than the sheet

thickness it is plausible to assume5 that material lines that were

normal to the mid-plane at rest remain approximately normal in

the bent configuration (dotted lines in Fig. 1). In this case the

amount of stretching/compression of a ‘‘layer’’ is linear with its

distance from the mid-plane. Squaring the strain (to get the

energy density) and integrating over the thickness we find that

the energy of the ‘‘pure bending’’ solution scales like EB f t3k2,

where k is the curvature of the ruler. The first, flat, solution we

have constructed is called a pure stretching deformation. Its

energy is linear with the thickness and square in the in-plane

strain. The second type of solution is called a pure bending

deformation. Its energy is cubic in the thickness and square in the

curvature of the mid-plane.

If we gently compressed a thick ruler (very small d, large t) it

will stay flat. Now we start decreasing the thickness t. ES will

decrease linearly with t, but the energy of a pure bending

configuration, EB will decrease much faster, like t3. There will be

a thickness bellow which the pure bending deformation is ener-

getically favorable, i.e. EB < ES. At this thickness it is clear that

the pure stretching configuration is not the minimum of energy.

Therefore the ruler will not stay in its flat configuration. Instead,

it will buckle (up or down) into a curved shape. It is important to

note that the actual configuration of the ruler will not be a pure

bending one. It will still contain some stretching energy. For

a thin enough ruler, the selected configuration will look very

similar to a pure bending configuration. Still, it will have a lower

bending energy and will contain some stretching (clearly we need

to apply force on the rulers’ edges to keep it buckled). The

thinner the ruler is, the more expensive in-plane strains are

compared to bending (the ruler becomes more floppy) thus the

amount of in-plane strain decreases while the amount of bending

deformations increases. As t/0, the configuration smoothly

converges to the pure bending configuration, but never gets

there. The full solution for this problem is beyond the scope of

this paper and can be found in ref. 6.
2.2 Wrinkling

Let’s consider the same ruler as before, however this time it is

glued to a thick soft elastic substrate prior to its compression
This journal is ª The Royal Society of Chemistry 2010
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(Fig. 2 top). This time, buckling of the ruler will deform the

substrate, and will cost an additional energy ESub resulting

primarily from the vertical stretching/compression of the

substrate. When the ruler is much stiffer than the substrate and is

sufficiently thin, it can be treated as non-stretchable. In this case

the dominant energy terms are the bending energy of the ruler,

EB, and the substrate energy, ESub. The type of solution is set by

the competition between the two, under the constraint that the

ruler keeps its rest length L. For an oscillatory profile of ampli-

tude A and wavelength l, the ratio A/l is constant for a fixed

d and L. The bending energy density scales like t3l�2 and thus

‘‘prefers’’ the largest possible l; a single arc configuration.

However, as ESub increases with the vertical displacement of the

ruler, it favors a configuration of vanishing amplitude. Due to

the constraint on A/l, such a configuration must have vanishing l

as well. One immediately notices that such vanishing wavelength

configurations have diverging curvature, thus would cost infinite

bending energy. Therefore, in this case, in contrast to buckling of

the free ruler, one cannot construct a solution based on a ‘‘zero

stretching configuration’’ to which the solution will smoothly

converge. Instead, for every given thickness the full elastic

problem must be solved by balancing the bending and stretching

terms that favor large and small l, respectively. The different

dependence of each term on t (t3 versus t0 in this case) implies that

l has an explicit dependence on t and will approach zero in the

limit t/ 0 (Fig. 2). This type of oscillatory configuration which

refines as the thickness, t, decreases also appears in other

scenarios.7 The exact scaling with t depends on the thickness

dependence of the competing energies. However, the approach to

zero stretching via refinement of wavy solutions is quite general

and is usually termed wrinkling (a detailed study can be found in

ref. 7 and 8). A qualitatively similar behavior occurs without

external compression, when the substrate shrinks much more

than the skin.9,10
Fig. 2 Wrinkling. A stiff ruler of length L and thickness t is attached to

a soft thick substrate. The system is compressed by an amount 2d while

the ruler keeps its original length L. For large thickness the bending

stiffness of the ruler is large, leading to the selection of wavy surfaces with

large wavelength and amplitude (middle). The thinner the ruler is, the

floppier it becomes and the system selects wavy solutions of small

wavelength and amplitude (bottom).

This journal is ª The Royal Society of Chemistry 2010
The above examples present two main types of deformations

of thin plates (a third type—crumpling—will not be discussed in

this paper). In both examples the mechanical instability is

induced by the application of external compression on the,

otherwise flat, body. In the next sections we will describe systems

in which such instabilities occur in bodies that are free of external

confinement. We will link the different configurations that

appear, with either ‘‘ordinary buckling’’ or ‘‘wrinkling-like’’

instabilities.
3. Buckling and wrinkling of non-Euclidean plates

The classical example of buckling above shows how in-plane

compression can lead to the formation of three-dimensional (3D)

configurations. It is still difficult to see the connection to shaping

of unconfined sheets, not subjected to any external compression

or constraint. In the following section we show that when a plate

swells (grows) laterally but non-uniformly it develops internal

(residual) stresses that can lead to buckling or wrinkling-like

instabilities even when the plates are free of constraints. We will

present a formulation of the plate equation, which is efficient and

‘‘natural’’ for describing the problem.

Note that one dimensional differential growth does not result

in residual stress (it simply leads to non uniform elongation of the

body). Differential growth of a three dimensional body does lead

to the buildup of residual stresses, yet these cannot be signifi-

cantly reduced without compromising the integrity of the body.

However, when one of the dimensions of the body is small, the

body is effectively two dimensional. In such cases a large portion

of the residual stress may be relaxed through the relative ‘‘ener-

getically inexpensive’’ bending. This in turn will cause very small

residual stress to manifest strongly and give rise to the convo-

luted shapes discussed here.

We start by considering a simple toy model (Fig. 3): take a thin

disc of radius R and thickness t. Let all the material enclosed

within a radius r < R undergo a uniform isotropic growth by

a factor h. What will the disc configuration be? Like in the (ruler)

example in section 2.1 we can consider a flat configuration with

no bending (Fig. 3 left). In this case the inner part of the disc will

be compressed, both radially and azimuthally, while its outer

part will be radially compressed and azymuthally stretched. Flat

configurations are, thus, not stretch-free. The energy of all such

configurations increases linearly with the thickness. The obvious

question is whether we can find an analogue for the second type

of configurations in section 2.1—a configuration that eliminates

stretching by buckling out of plane into a pure bending config-

uration. In such a configuration (Fig. 3 right) the energy is

expected to scale as t3. Thus, also in this model, at small enough

thickness it will be energetically preferable to spontaneously

buckle out of plane. The example above suggests that planar non-

uniform growth of plates can lead to their buckling.
3.1 The target metric, gauss theorem and non-Euclidean plates

In this section we define some geometrical concepts and their

inter connections. These will serve us as the basic tools for

characterizing and analyzing our plates. Every configuration of

a sheet is associated with a metric g of its mid-surface. The metric

includes all the information about distances between neighboring
Soft Matter, 2010, 6, 5693–5704 | 5695
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Fig. 3 Illustration of the construction and shaping of a residually

stressed plate. Starting with an initially flat disc we let the material

enclosed within radius r to undergo an isotropic growth in ratio h (top).

The inner part of the disc is now too big to fit within the outer ring. Flat

configurations of the disc will, thus, include in-plane stresses (bottom

left). The colors illustrate the azimuthal stress: blue indicates compres-

sion, red indicates tension. If we can find a 3D configuration, which is free

of in-plane strain, it would be a pure bending configuration (illustration

on bottom right).
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points on the mid-surface through dl2¼ gijdxidxj. Every change of

distances between points on the mid-surface will manifest as

a change in the metric.

We begin, as before, with a stress-free flat elastic disc of radius

R, thickness t and a polar coordinate system (r,q). Using this

coordinate system we can express the distance between two

neighboring points,

dl2¼dr2 + r2dq2,

which corresponds to the 2D metric tensor:

g ¼
�

1 0

0 r 2

�
:

Assume that somehow we induce a known position dependent

planar growth of the material. Such a growth would determine

new equilibrium distances between points on the mid-surface,

distances for which each ‘‘spring’’ that connects neighboring

points is at its rest length. We can define a new metric tensor—the

‘‘target metric’’, (as coined by Marder11), �g, which describes all

these rest distances. When this body settles in a given configu-

ration, it has a metric g, which can be different from �g. Whenever

g s �g there must be some ‘‘springs’’ that are not at their rest

lengths. The material is, thus, strained. The local strain is simply

the discrepancy between the metric of a given configuration, and

the target metric at each point:

3 ¼ 1

2
ðg � �gÞ (1)

This definition of strain is very natural to the problem: unlike

the case of ordinary plates (such as the ruler), here we do not

have a known stress-free configuration to start with. Only equi-

librium distances between points are determined by the planar
5696 | Soft Matter, 2010, 6, 5693–5704
growth. This information is fully encoded in �g and can be

compared with the new distances as they appear in g. Note that

we have no idea which sheet configuration, if any, obeys the

target metric, but we know that if we find one, it will be free of in-

plane strain.

Let’s take a simple case: The induced growth of a disc is an

axially symmetric azimuthal growth, which depends on the

radius. Each element at radius r on the disc swells by a factor h(r)

only in the azimuthal direction. The equilibrium distance

between points is now:

dl2¼dr2 + h(r)2r2dq2

And the target metric is:

�g ¼
�

1 0

0 h2ðrÞr 2

�
(2)

It expresses the fact that in order to obey the new equilibrium

distances, the perimeter of a circle of radius r on the disc is no

longer 2pr, but 2ph(r)r. For non-constant h this cannot hold

when the sheet is flat. It must take a non-flat configuration.
3.2 The connection between metric and shape

A configuration of a sheet is represented by its mid surface

(dashed line in Fig. 1). The shape of this 2D surface is charac-

terized by the size and orientation of the local principle curva-

tures k1 and k2 at each point. The local mean and Gaussian

curvatures are defined by H ¼ 1

2
ðk1 þ k2Þ and K ¼ k1k2 respec-

tively (see ref. 12). What can be said about configurations that

obey a given metric g? This question is not new and was already

addressed by Gauss who formulated his ‘‘Thorema Egregium’’,

which is a key to understanding the mechanics of our plates. The

theorem shows how the local metric coefficients (and their

derivatives) fully determine the local Gaussian curvature on

a surface (see ref. 12). In the context of the present problem

Gauss theorem connects between growth and characteristics of

the shape; growth specifies only distances that are expressed by

a metric. However, according to Gauss it completely determines

a Gaussian curvature at each point. A metric is flat (or

Euclidean) if the Gaussian curvature associated with it is zero at

every point. A metric is elliptic if K > 0 throughout the sheet and

hyperbolic for K < 0. Specifically, the Gaussian curvature asso-

ciated with a metric of the form

g ¼
�

1 0

0 4ðxÞ2
�

is simply

K ¼ � 1

4

v24

vx2
(3)

Considering the physical sheet in the example above, we can

calculate the ‘‘target Gaussian curvature’’ �K , which is determined

by �g. �K is an intrinsic property of the plate and should not be

confused with the actual Gaussian curvature of the mid surface
This journal is ª The Royal Society of Chemistry 2010
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K, which can be different from �K .) The target Gaussian curvature

of the target metric in eqn (2) (where we have 4 ¼ hr) is:

�K ¼ � 1

hr

v2ðhrÞ
vr2

Some remarks on the Gaussian curvature:

In 2D the Gaussian curvature, K, is the only invariant of the

metric and contains all the information about the local ‘‘shape’’

which is imposed by the in-plane growth.

If we use a different coordinate system, the metric might look

very different, but K will be the same at every point. For

example, the Gaussian curvature determined by the metrics:

gxy ¼
�

1 0

0 1

�

And

grq ¼
�

1 0

0 r 2

�

is zero. Indeed, the two metrics are those of a plane, the first in

Cartesian and the second in polar coordinates.

We also notice that many different growth profiles can specify

the same �K. They are thus geometrically equivalent. On the other

hand eqn (3) is far from determining the shape of a surface. There

is still a lot of freedom in selecting the principle curvatures and

their directions. Thus, in general there will be many different

surfaces having the same Gaussian curvature.

Having a plate with a given �K (set by planar growth) we know

that any of its stretch-free configurations must have Gaussian

curvature K that is equal to the target one at every point. These

are isometric embeddings of �g; realizations of the 2D metric as

a surface in 3D. If the growth is such that �K s 0, these config-

urations cannot be flat. Instead, they will be curved 3D config-

urations.

The discussion above was focused on the 2D geometry of the

bodies we consider. Despite their non-Euclidean planar geom-

etry, our discs are plates—they are of finite thickness t and are

‘‘constructed’’ of identical surfaces stacked together from �t/2 to

t/2. Thus, bending-wise they are identical to ordinary (flat) plates,

having bending energy which increases with the local curvatures

and vanishes only when they are flat. We have therefore

suggested the name ‘‘non-Euclidean plates’’ for such bodies.13
3.3 Elastic energy functional

We are interested in the shape (equilibrium configurations) of

NEP. These shapes will be minima of the elastic energy of the

plate. We now present an approximate elastic energy functional

for non-Euclidean plates: it is similar in spirit to the energy

functional of ordinary (Euclidean) plates, being composed of

a sum of a stretching term and a bending term.

E ¼ Es + Eb (4)

Where the two energy terms are given by

Eb ¼
Y

24ð1� n2Þ t
3B; Es ¼

Y

2ð1� n2Þ tS:
This journal is ª The Royal Society of Chemistry 2010
The stretching content, S, is a quadratic form of the metric

discrepancy (g � �g), as given in eqn (1):

S ¼
Ð

((1�n)3i
j3

j
i + n3i

i3
j
j)ds

The bending content, B, is a quadratic form in the principle

curvatures: B ¼
Ð

(4H2�2(1 � n)K)ds.

The later is identical to the bending content in Koiter’s plate

theory.14 The stretching content, however, measures the

discrepancy with respect to a not necessarily flat metric �g. In the

case of ordinary (Euclidean) plates, the formalism recovers

the Koiter plate theory.14 With the addition of the small slope

approximation it recovers the Foppl–Von Karman theory (see

ref. 6).

A similar energy functional was assumed in early works on

NEP15,16 but only later was derived rigorously, starting from the

full 3D elasticity theory.13 Accurate definitions and expressions,

including the derivation of equations of force and torque balance

and an important discussion on non-Euclidean plates as 3D

bodies can be found in ref. 13. An alternative energy functional

for NEP in the Foppl–Von Karman limit was developed in ref.

17.

The bending and stretching terms in eqn (4) have to be eval-

uated with respect to two different ‘‘entities’’: the bending is

measured with respect to a flat configuration, while the stretching

with respect to a non-flat metric. This is required since the plate is

residually stressed and does not have any stress-free configura-

tion. Zero bending energy is obtained only at flat configurations.

These do not obey the target metric, thus must contain stretching

energy. Zero stretching is obtained at embeddings of �g, however,

these must have K(x,y) ¼ �K(x,y) s 0, thus have non-zero

bending energy.

Similarly to other plate theories, the thickness sets the ratio

between the bending and stretching rigidity. As the thickness

decreases, stretching becomes energetically more expensive

compared to bending. We thus expect that in the limit t/ 0 the

sheets will adopt configurations with nearly zero stretching.
3.4 The t/0 limit

When searching for the equilibrium configurations of the phys-

ical sheets, we may start by considering the thin sheet limit and

look for stretch-free configurations—configurations that fully

obey the target metric. These are embeddings of �g in space.

In general there are many isometric embeddings for a given

metric and topology12 and we need to select one. It was recently

proven30 that if there exists an isometric embedding of �g with

finite bending content then as t/0 the configurations of the

physical plate converge to the embedding of least bending content.

Such an observation is useful since minimizing bending content

among embeddings of �g could be a simpler task than minimizing

energy among all possible configurations. It is not clear,

however, what happens if there are no isometric embeddings for �g

with finite bending content.

To summarize this section we note that the energy functional

of non-Euclidean plates has two terms: the stretching term which

favors isometric embeddings of �g, and the bending term, which

favors flat configurations. There is a competition between the
Soft Matter, 2010, 6, 5693–5704 | 5697
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two terms which leads to shape selection. The energetic cost of

bending, compared to stretching, decreases rapidly with the

thickness. Therefore, the amount of in-plane strain decreases

with thickness and the behavior in the vanishing thickness limit

strongly depends on the nature of available embeddings of �g. In

this sense there is an analogy between shape selection in free NEP

and in confined flat sheets described in section 2. In the case of

NEP the Euclidean space itself is the confining entity. In some

cases this confinement is easily resolved; there exists low bending

embeddings of �g and at small enough thickness the plates settle in

their vicinity, as in ordinary buckling. We might suspect that for

some target metrics and topologies the confinement by space is

such that all embeddings of �g have high bending content. In this

case the embeddings of �g are not good candidates for minimi-

zation of the total energy at finite thickness and we expect to find

a ‘‘wrinkling-like’’ behavior in some range of thickness. If all

embeddings of �g have infinite bending content the wrinkling-like

behavior may persist all the way to the t/0 limit.
Fig. 4 Plastic flow generates a non-Euclidean target metric. Visualiza-

tion of the deformation around the tearing tip, using photoelasticity. The

density of isochromatic lines indicates the increase of deformation

towards the tip. In the loaded state (top) the deformation field extends to
4. Building non-Euclidean plates

After presenting non-Euclidean plates and discussing their

energy functional we turn to see if and how one can build such

bodies. The idea is clear: take a thin elastic plate and change its

target metric in a controlled way. Alternatively, directly build

a non-Euclidean plate. Several techniques will be reviewed, while

experimental and numerical results will be discussed in section 5.
large distances. When the sheet is unloaded (bottom) the deformation

away from the tip, which is purely elastic, vanishes. However close to the

crack tip there is a region which underwent an irreversible deformation.

This deformation generated a new, non-Euclidean target metric.
4.1 Homemade NEP

Early experimental studies of NEP used plastic deformation as

a mechanism for generating a non-Euclidean target metric. These

experiments18,19 were performed by a controlled tearing of

a plastic sheet. The high stresses around the crack tip caused an

irreversible plastic deformation of the initially flat sheet (Fig. 4).

The plastic deformations, which determine the target metric �g,

were measured. They consisted of elongation (increase in length)

parallel to the tear edge (x direction) and were invariant along the

crack propagation direction (x). The elongation was large close

to the newly formed edge and decayed as some function 4 of the

distance from the edge, y. For this scenario the target metric can

be written as:

�g ¼
�

4ð yÞ2 0

0 1

�
(5)

The function 4(y) was found to steepen towards the edge,

having a positive second derivative. Thus, according to eqn (3),

the tearing process resulted in �K < 0 which is invariant in the x

direction. In these experiments we were able to modify the form

of 4(y) (although not substantially) by varying the material as

well as the tearing velocity. However, there was no way to ach-

ieve good control over the metric, i.e. prescribe a specific 4(y).

A demonstration of building a non-Euclidean plate from a flat

plastic sheet is given in Fig. 5. In this figure, a polyethylene strip

is uniaxially stretched (in the y direction). Due to necking

instability, the plastic deformation, which is in-plane, is

concentrated within a limited region in the strip. It consists of

shrinkage in the x direction, dependent only on the y coordinate

(Fig. 5 b). This, again, results in a new target metric which, after
5698 | Soft Matter, 2010, 6, 5693–5704
normalization (re-parameterization) of the y coordinate, is of the

form of eqn (5). Note that the functional form of 4 is qualita-

tively different from that of the tearing experiment. The target

metric defines regions of positive, negative and zero Gaussian

curvature. The free strip (Fig. 5 d) selects a 3D configuration,

close to a body of revolution, consistent with its target metric.

‘‘Homemade’’ NEP can be produced by crocheting. Control-

ling the number of stitches in a row is a direct way of determining

a target metric. The earliest example the authors are aware of was

given by Taimina20 who ‘‘crocheted the hyperbolic plane’’. Cro-

cheting curved sheets has recently became a popular hobby and

the reader can find beautiful crocheted ‘‘coral reefs’’ and

‘‘flowers’’ in ref. 21 and http://crochetcoralreef.org.
4.2 Responsive NEP

A new technique of building NEP uses environmentally

responsive gels.22,23 These gels undergo reversible swelling/

shrinking transitions that are induced by external fields. Gels that

respond to various inducing fields, such as temperature24 or

concentration chemical agents,25 are available and the response

of the gel to the field can be sharp, ‘‘on-off-like’’, or gradual

‘‘analog-like’’. In previous work, we used NIPA gels which

undergo a sharp shrinking transition above C033. We have found

that the amount of shrinkage in the warm state is a strong

function of the monomer concentration in the gel: gels with low

monomer concentration lose up to 60% of their length at high
This journal is ª The Royal Society of Chemistry 2010
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Fig. 5 (a) A Polyethylene strip is pulled horizontally in the y direction.

(b) A necking instability leads to localization of the plastic deformation

within a limited region. The equally spaced blue lines assist in visualizing

the deformation field, which is invariant in the x direction. (c) A sche-

matic of the function 4(y) imposed by the plastic deformation. Arrows

mark convex/concave regions of 4(y), that are associated with negative/

positive Gaussian curvature according to eqn (3). (d) The sheet, free of

constraints, attains a 3D shape consistent with its target metric: The

shape is approximately a body of revolution, with regions which are

cylindrical, saddle-like (hyperbolic), and dome-like (elliptical). These

correspond to the signs of �K of (c).

Fig. 6 The shrinking in length of a NIPA gel as a function of the

monomer concentration. Gel discs of uniform concentration were

equilibrated in a warm bath for 24 h. h is the ratio between the diameter

of a warm disc and the diameter of the same disc when it is cold. Note that

as the shrinkage is isotropic, the volumetric shrinkage is h3.
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temperature, while concentrated gels shrink by less than 10% of

their length (Fig. 6).

Gel discs were made by injecting the NIPA solution, through

a center hole, into a gap between closely spaced glass plates. The

solution polymerizes within minutes forming an elastic thin

plate. Non-Euclidean plates are made by a controlled variation of

the monomer concentration, C, during injection. As the flow field

is symmetric, we end up with a disc in which C¼ C(r). Such discs

are flat when they are cold, but they are ‘‘programmed’’ to shrink

by a different ratio at each radius. This differential ‘‘growth’’ by

the shrinking ratio h ¼ h(r) ¼ h(C(r)), prescribes a new target

metric (in polar coordinates) of the form:

�g ¼
�

h2 0

0 r 2h2

�
: (6)

Introducing the arc-length radial coordinate on the shrunk

disc r,

rðrÞ ¼
ðr

0

h
�
r
0�

dr
0
;

transforms the target metric in eqn (6) to the form of eqn (2)

(with respect to the new coordinate).

Thus we can use the concentration profile as a knob, with

which we can prescribe �K(r) on the disc. Examples of different
This journal is ª The Royal Society of Chemistry 2010
non-Euclidean discs and tubes are presented in Fig. 7. These

different plates show that one can indeed engineer plates with

a prescribed metric, which can be elliptic ( �K > 0), hyperbolic ( �K <

0), or include different curvature profiles. The same principles are

applicable in other topologies, such as tubes. This system allows

for a quantitative study of the mechanics of NEP, as it provides

an accurate and independent control over the relevant parame-

ters of the system, such as thickness, radius and metric. For

example, by a control of C(r) we construct discs of constant

Gaussian curvature whose target metrics (with respect to the

rescaled radial coordinate) are given by:

g ¼
1 0

0
1
�K

sin2
ffiffiffiffi
�K

p
r

0
@

1
A

For �K>0, and:

g ¼
1 0

0
1

� �K
sin h2

ffiffiffiffiffiffiffiffi
� �K

p
r

0
@

1
A

For �K<0.

Measurements of the buckled discs (see details in the next

section) show that indeed on average the metric of the configu-

rations is very close to that a surface of constant curvature

(Fig. 8).

The usage of responsive gels has another advantage: the flat-

to-curved transition is an induced reversible one. This allows the

construction of responsive discs that can undergo an induced

reversible shape transformation. They can, thus, turn into ‘‘soft

machines’’ that utilize the new rich range of shape trans-

formations found in non-Euclidean plates.

One can take a step forward and improve the control and the

flexibility of target metric determination. This can be done by

selective UV cross linking of the NIPA polymer. In this tech-

nique one needs to use a UV activated initiator for the cross

linking reaction. Then, as in lithography, shine UV light on the

polymer solution through a printed mask. This technique allows
Soft Matter, 2010, 6, 5693–5704 | 5699
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Fig. 7 Non-Euclidean plates and tubes made of NIPA gel. Examples of plates with �K > 0 (a), �K < 0 (b, c) and a disc that contains a central region of �K >

0 and an outer part of �K < 0 (d). (e)-(h) Non-Euclidean tubes. A tube with a metric similar to the one in Fig. 5 in its cold (e) and warm (f) states. Tubes

with negative curvature bellow (g) and above (h) the ‘‘buckling-wrinkling’’ transition (see section 5.3).
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‘‘printing’’ a wide range of target metrics in a high spatial reso-

lution. An example is presented in Fig. 9.

There are many other materials that can be used for the

construction of NEP and responsive NEP. Materials such as

electro active polymers26 or nematic elastomers27 seem to be
Fig. 8 Engineering discs with constant Gaussian curvature. The

perimeter of a circle on a disc as a function of its radius (measured along

the surface) for discs of positive (bottom) and negative (top) constant

| �K | ¼ 0.0011 mm�2. The blue lines are the calculated curves (the relevant

functions are indicated). The red lines are the data measured on the

buckled discs. The dashed line indicates a flat disc: f(r) ¼ 2pr.

Fig. 9 ‘‘Lithography of curvature’’. (a) NIPA solution is inserted into simp

initiator (in this case Riboflavin), leading to the generation of a non-uniform

a non-Euclidean target metric. In this case the gradients in the metric are sha

5700 | Soft Matter, 2010, 6, 5693–5704
excellent candidates for using the shaping principles, with

responses in different time scales and environments.

Finally, we mention alteration of growth in plants as a way of

constructing ‘‘biological NEP’’. Growth of tissue can be viewed

as a process in which the target metric is constantly updated. It

was shown that genetic manipulation,28 as well as hormone

treatment29 can alter the growth distribution and cause a natu-

rally flat leaf to become non-Euclidean. Similar effects often

occur as a result of fungus attacks, when the leaf tissue grows

without proper control (Fig. 10).
5. Some results and interpretations

After reviewing the theoretical framework and experimental

techniques, we review the main results in this new field.
5.1 Rectangle geometry
Experiments in torn plastic sheets

As described before, in a controlled experiment the target metric,

imposed by the plastic flow around the tear tip, is very simple and

highly symmetric: it determines negative target Gaussian curva-

ture, which is a function only of the distance from the edge, y.

Surprisingly, the configurations of the sheets consist of a
le mold with a ‘‘mask’’. Polymerization is controlled by a UV activated

gel disc (b). (c) The non-uniform shrinking properties of the gel turn into

rp, leading to wrinkling of the disc.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 10 An almond leaf which was attacked by Taphrina Deformans.

The cells attacked by the fungus undergo rapid uncontrolled prolifera-

tion. As a result the leaf becomes non-Euclidean and undergoes buckling

and wrinkling instabilities.

Fig. 11 Fractal scaling along the edge of torn plastic sheets: images of

the edge of a 12 mm polyethylene sheet that was torn. The top figure

shows the largest wavelength. Each subsequent image is obtained by

zooming in a factor of 3.2 on the left ‘‘shoulder’’ of the former curve. The

width of each wave is indicated. Data from ref. 18.
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fractal-like hierarchical cascade of waves, where shorter waves

are superimposed on longer ones18 (Fig. 11). These experiments

demonstrate how simple, symmetric metric can lead to multi-

scale, ordered, 3D configurations. The origin of the observed

fractal structures and their scaling was the subject of several

works, that are described below, but is not yet fully understood.
Fig. 12 Discs of 0.6 mm initial thickness with constant positive (left) and

negative (right) target Gaussian curvature | �K | ¼ 0.0011 mm�2, corre-

sponding to the data presented in Fig. 8. For �K > 0 the disc attains

a hemispheric configuration (with distinguishable boundary layer). For �K

< 0 the configuration is wavy, breaking the axial symmetry. Measure-

ments show that the number of waves depends on the thickness of the

disc.
Numerical simulations

Simulations of a rectangle plate with hyperbolic metric using

both 3D discretized strip,15 or modified 2D plate theory16

obtained wavy and fractal-like stable configurations. In the 3D

simulations the target metrics were introduced by specifying the

local ‘‘rest length’’ of the springs that constructed the plate. The

2D modeling in ref. 16 involved linearization of the problem and

the target metric was introduced by including a non-zero �K in the
This journal is ª The Royal Society of Chemistry 2010
stretching term. In this work the scaling of the shortest waves in

the cascade was measured. The existence and scaling of the fractal

pattern was explained in terms of minimum bending among

stretch-free configurations. This proposed scenario is qualita-

tively similar to ‘‘ordinary buckling’’, presented in section 2.1.

An alternative view was suggested in ref. 19 where measure-

ments of torn plastic sheets indicated that the wavelengths l in

the cascade has an explicit dependence on the thickness: lft

1

3L

2

3,

where L is a length scale determined by �g. Such a scaling implies

that there should be a refinement of the entire pattern as t

decreases, i.e. a wrinkling-like mechanism. As explained in

section 3.4, such a scaling would persist to increasingly smaller

scales only if all zero stretching configurations have diverging

bending content (as in the ruler-on-mattress example). Since we

consider unconstrained sheets, this condition implies that for the

relevant domain and metric there are no exact embeddings with

‘‘small enough’’ bending content. If there was such an embed-

ding, there would be a thickness t* bellow which the system

would settle in its ‘‘vicinity’’ and smoothly converge to it, as

required by the theorem in ref. 30. In this case l should not have

an explicit dependence on t, below t*. Until now, experiments, as

well as numerical works have not systematically studied the t/

0 limit. It is not clear if the explicit dependence of l on t is

general, or if there is a cutoff thickness t* below which the

wrinkling-like behavior is replaced by ‘‘ordinary buckling’’.
5.2 Radial geometry

In the NIPA gel experiments, growth/shrinkage was tuned to be

invariant parallel to the plate’s margins, this time for circular

discs. In these experiments discs with positive and negative

Gaussian curvature were studied. A clear qualitative difference in

their shaping was detected: the hyperbolic discs attained wavy

configurations while discs with �K > 0 settled on a dome-like

configurations (Fig. 12)22. It was shown that in both cases the

perimeter of circles of radius r(r) on the buckled discs were very

close to imposed perimeter, 2prh(r). This measurement shows

that the target metric is well approximated on average by the

actual metric. In other words, in both cases, the metric of the

selected configuration g is close to �g. However, measurements of

the distribution of the Gaussian curvature on the discs showed

qualitative differences between the hyperbolic and elliptic cases:

for �K > 0 the measured local deviation of the Gaussian curvature

K from �K indicated concentration of small stretching deforma-

tions within boundary layers, as expected in ‘‘ordinary buckling’’
Soft Matter, 2010, 6, 5693–5704 | 5701
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scenario and calculated in ref. 31. In contrast, for �K < 0 the

measured Gaussian curvature strongly fluctuates around �K ,

indicating for possible periodic stress localization within the bulk

of those configurations. Based on these observations it was

argued that the two cases represent two different types of

configurations: ‘‘ordinary buckling’’ in the case of �K > 0 and

‘‘wrinkling-like’’ in the case of �K < 0.

Recent theoretical study31 of discs with �K ¼�1 treated the two

limiting thickness regimes. Thick discs contained a residual in-

plane stress in a flat un-buckled state. Stability analysis of these

plane stress solutions revealed a second order buckling transition

at a critical thickness (Fig. 13 a). The analysis of the most

unstable mode showed that the buckling of the �K ¼�1 disc must

break the axial symmetry of the problem. The buckling of the
�K ¼ 1 disc preserves the axial symmetry. Within the thin disc

limit, configurations are close to the bending minimizing

isometric embedding of a disc with �K ¼ 1—a spherical dome. The

deviation from the isometric embedding was in the form of

a boundary layer whose width scales like t1/2 (Fig. 13 b). The effect

of this boundary layer on the scaling of the bending and

stretching energies was discussed.

A special case of circular flat discs in which radial sections of

angle q were inserted or removed was studied in ref. 32. The

results were plates that were flat everywhere but contained

a ‘‘defect’’ at their center. The defect contained Gaussian

curvature in an amount that was set by the angle q and could be

positive (removing a section) or negative (inserting a section).

Same intrinsic geometry could result from simple lateral aniso-

tropic homogeneous growth of discs. The 3D equilibrium

configurations of the discs were studied and were related to the

shape evolution in growing biological systems. Such discs with

high values of negative curvature defects were investigated.33 A
Fig. 13 (a) Buckling transition of a punctured disc (0.1 < r < 1.1) with
�K ¼ 1. The out of plane coordinate of the inner rim is plotted versus the

thickness; both are normalized by
ffiffiffiffi
�K

p
. The transition from the flat to the

buckled configurations is second order and occurs at a normalized

thickness of 0.3321. The branches of positive and negative amplitude are

symmetric. They are selected by initial conditions. Inset: Configurations

(mid surface) of discs of thickness 0.34 (right) and 0.32 (left) colored by

their local stretching energy density per unit thickness. (b) Equilibrium

configuration of a disc with the same intrinsic geometry as in (a) for

a small but finite thickness (normalized thickness ¼ 0.01). The disc is

colored by the local stretching energy per unit thickness (note the three

orders of magnitude difference from (a)). Most of the stretching energy is

localized within a boundary layer. Results were obtained by numerically

minimizing the elastic energy (eqn (4)) under the assumption of axial

symmetry. The energy density is given in arbitrary units as in ref. 31, and

the Poisson ratio y ¼ 1

3
.
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variety of 3D wavy configurations were found and the transition

between them was studied.

In a recent work, wavy configurations observed in hyperbolic

discs were studied.34 Different approximations to the problem

were used, in order to obtain solutions. In particular configura-

tions of closed circular ribbons were studied. It was shown that

the restriction of wavelengths due to periodicity requirements

might lead to selected ‘‘resonances’’ in which the ribbon is

embedded with distinctively low bending energy. Such conditions

could affect wave selection in the full discs.
5.3 Non-Euclidean tubes

Non-Euclidean metric can be prescribed on other topologies,

such as a tube. This is a good example showing how global

limitations on the embedding ‘‘force’’ the physical system to

undergo a mechanical instability and to switch from buckling-

like to wrinkling-like configurations. Take a ring of cells and

grow a ‘‘sleeve’’ from it by adding rings on top of it (Fig. 13 a).

Let the number of cells in a ring grow exponentially with the

index of the ring (the same body could be generated not by

adding cells, but by taking a cylindrical sleeve and causing it to

swell exponentially as in Fig. 7 g). What shape will this tube

attain? We can find an embedding which keeps the axial

symmetry and has low bending content. It will be in the form of

a ‘‘trumpet’’. Indeed, the physical tube buckles into such axis-

symmetric configuration (Fig. 7 g). As long as the funnel is

‘‘short’’ there is no problem (Fig. 14 a, b). However, if we let the

funnel keep growing until its rim is horizontal we ‘‘hit

a geometrical boundary’’. It is simply the end of the axis-

symmetric surface. The growth law requires that the perimeter of

the rim of radius r will be larger than 2pr (Fig. 14 c) and this is

impossible in our Euclidean space. This global embedding issue is

not of any ‘‘interest’’ for the cells that keep on growing exactly

according to the same law. We see that if we want to avoid huge

compression along the edge, something must happen. Indeed,

experiments using NIPA gels (see Fig. 7 h), as well as numerical

simulations29 have shown that close to ‘‘geometrical boundary’’

the axis-symmetric funnel shape is replaced by a wavy tube shape

that resembles the center part of a Daffodil (Fig. 14 d). This

transition from a symmetric ‘‘featureless’’ buckling-like config-

uration to a wavy, wrinkling-like, one is driven solely by the

limitations on possible embeddings of the relevant metric and

topology in Euclidean space. A detailed study of this ‘‘trumpet’’

system can be found in ref. 11.
5.4 The embedding of hyperbolic metrics

As seen in the previous sections, the type of shaping mechanism

(‘‘ordinary’’ buckling or ‘‘wrinkling-like’’) of hyperbolic sheets

(of negative Gaussian curvature) depends on the type of existing

embeddings of hyperbolic metrics in Euclidean space. This

mathematical problem of existence and smoothness of embed-

dings of 2D manifolds in 3D flat space was studied extensively,

and was shown to be non trivial. The main challenge for

a configuration is to handle the accelerating divergence of

geodesics, or simply to ‘‘take care’’ of the rapid increase in the

perimeter of a surface. Hilbert proved that there is no smooth

embedding of the entire hyperbolic plane surface of (K ¼ �1) in
This journal is ª The Royal Society of Chemistry 2010
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Fig. 14 Instability due to limitations on embedding. An illustration of a tube, which grows upwards by adding rows of cells. The number of cells in

a ring increases exponentially upwards. As long as the tube is short (a, b) there exists an axi-symmetric embedding in the form of a ‘‘funnel’’. If the funnel

keeps on growing, this shape is terminated when the rim of the funnel is horizontal. Beyond this point, an axi-symmetric configuration would require that

a ring of radius r will have a perimeter larger than 2pr (c), which is impossible in our flat space. The sheet selects a different type of solution—a wavy

one (d).
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R3 (ref. 35) and Efimov refined the theorem for non-constant

Gaussian curvature (see ref. 36). Though these theorems show

that hyperbolic metrics are ‘‘problematic’’, they do not have

a dramatic effect on what we can say about elastic sheets of finite

size. Poznyak and Shikin have constructed explicit embeddings

with finite bending content for discs and strips of finite size.37

These embeddings involve rolling of the plates and the bending

content rapidly increases with the size of the disc. The relevance

of these embeddings to the mechanical problem was not fully

studied. However, until now such configurations were not

observed in experiments or simulations, as energy minima. It is

likely that a progress in the study of the embedding of finite size

sheets will affect our understanding of shaping mechanisms of

NEP.
6. Characteristics and applicative potential

We are now ready to look at some characteristics of NEP as

a shaping mechanism, having in mind their applicative potential.

� As demonstrated above, the mechanics of non-Euclidean

plates converts 2D information—the target metric—into 3D

configurations. This is an efficient way of shaping 3D objects. In

some cases the 3D configurations consist of multi-scale, or small

scale structure. This happens when the dominant behavior is of

wrinkling-type. As presented, such a behavior can appear even

when the target metric is highly symmetric and ‘‘featureless’’. In

such cases one gets ‘‘for free’’ complex 3D configurations whose

manufacturing by other techniques could be difficult and

expensive.

� Some of the multi-scale configurations that are formed are

convolved and closed on themselves. It is difficult to produce

such structures using other shaping techniques, such as

machining, casting or pressing.

� Another important property is the unusually wide range of

possible shapes that can be attained by a single body. The only

prescribed quantity in NEP is the target metric, not any config-

uration. In general there are many embeddings for a metric, so

a plate can ‘‘investigate’’ a wide range of configurations that can

be very different from each other. Thus, small changes in �g can

cause dramatic shape changes in the body. An example is the

growing trumpet (section 5.3), where a ‘‘symmetric-to-wavy

transition’’ was demonstrated. This property is in contrast with

the fixed accessible configurations in other shaping methods such
This journal is ª The Royal Society of Chemistry 2010
as shape memory materials. It could be of importance for

different applications.

� When constructed from responsive materials NEP undergo

reversible shape changes, turning into flexible ‘‘soft machines’’.

This property can be useful for different bio-mechanical appli-

cations.

These are probably just part of the unique, useful properties of

non-Euclidean plates. It is likely that some other characteristics

will be reviled in the future.
7. Open questions

In this last section we try to point out some of the main chal-

lenges and open questions in this new field.

�As could be understood from the previous sections the origin

and scaling of the fractal structures that appear in hyperbolic

plates is not understood yet. It seems like such plates shape

themselves via wrinkling-like instability. However the geomet-

rical origin of this behavior is not well understood. There are

several results regarding the embedding of finite discs, that seems

to exclude the wrinkling-like scenario. There is still no coherent

picture that connects these results with experimental observa-

tions.

� A technical challenge would be to build NEP from respon-

sive materials other than NIPA. As any elastic theory, the theory

of NEP is not limited to specific materials or specific scales. It is

likely that NEP can be built from materials such as nematic

ellastomers, electroactive polymers or different alloys. This

would increase the applicative potential of NEP.

� Another interesting direction is the extension to ‘‘frustrated

shells’’—bodies with non-vanishing first and second fundamental

forms that are not necessarily compatible with each other.

Though the theoretical framework was developed,38 only simple

cases were studied, and it would be interesting to see what will be

the properties of such bodies. It is likely that some structures of

this type undergo dynamic shape transition, like the snapping of

the venus flytrap.39

� An important subject, which was not addressed in this

review, is the relevance of NEP mechanics to the development of

living tissue. There are examples that show how 3D configura-

tions develop in growing bodies, such as leaves40 and indications

for possible role of mechanics in development.41 There is still

a need for quantitative study in this field.
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These are just few of the potential directions. The readers are

likely to develop their own view and taste and identify interesting

problems in this fresh field of research.

Note added after first publication

This article replaces the version published on 8th October 2010,

which contained errors in the equations on page 7.
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