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ABSTRACT
Trying to teach myself very elementary epidemiology, I analyzed a simple model where
the evolution all depends on the “basic reproduction number” R0, the average number
of people infected by an infectious. For COVID-19 it seems that it starts with R0 ∼
2−3 in the exponential growth phase, a doubling time of ∼ 3−4 days, consistent with
the current data. If nothing is done to reduce R0, about 80% of the world population
is expected to be eventually infected (∼ 1% dead). The peak, to be reached in ∼
3 − 4 months, is expected to involve ∼ 15% of the population, namely ∼ 1 − 2% in
critical conditions that will require respiratory machines. This cannot be managed
by any medical system. R0 has to be reduced to unity (a doubling time of ∞) in
order to shallow the peak to the medical-system capacity and reduce the final infected
fraction to significantly below unity. Another possibility is to reduce R0 to 1.1, which
will postpone the peak by a few years, allowing a vaccine to be developed, but the
Coronavirus will be with us for long term. R0 can be reduced by obvious measures
of (a) reducing the risk given a contact, e.g., by washing hands, masks, etc., and (b)
reducing the number of contacts with infectious by isolation, avoiding flights, etc. The
ultimate solution would be a full quarantine for a month, starting now.
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1 INTRODUCTION

Very early in the current Coronavirus epidemic, I
wanted to obtain a simple understanding of how an epi-
demic evolves, why and when it is supposed to end, what
will be the fraction of sick people at the peak and when
it will happen, and what fraction of the population is
expected to be infected (and die) overall. This may help
interpret the data poured on us without relying on “ex-
perts” in the media, and evaluate the prospects of the
epidemic.

The following seems to be the simplest, straightfor-
ward model, which makes sense to me as a physicist. In
one version or another it is supposed to be common wis-
dom among epidemiologists. Not being an expert my-
self, I enjoyed learning the very basics from David Earn,
a professor of mathematical epidemiology in McMaster
University (and my former astrophysics postdoc at HU).

In this simplest form, I expect the model to be valid
as an approximation for a self-interacting closed com-
munity (a town, a country, but maybe even the whole
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humanity), assuming that the basic reproduction num-
ber is constant at least for a given period. It should be
generalized for the case of a reproduction number that
is varied by force. To understand the early stages where
most of the infections in a given community still occur
by import (as it seemed to be in Israel during February),
the model has to include interaction between clusters.
However, my epidemiologist friends tell me that sim-
ple models like the one described below turned out to
be crudely valid in quite general circumstances of other
epidemics.

2 THE SIR MODEL

2.1 Parameters and equations

Assume that the population is divided to three groups,
Susceptibles, Infectious and Removed (cured or dead),
with fractions S, I and R respectively, such that

S + I +R = 1 . (1)

Assume that there is one way evolution from S to I to
R, with no return from R to I.

Let γ be the removal rate from I to R, namely γ−1
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Figure 1. The simple SIR model. Three sub-populations with

fractions S, I and R of the total populations. One way evolution,
from S to I at a rate β S I and from I to R at a rate γ I. γ−1 is the

duration of being infectious, and can serve as the time unit. The

parameter R0 = β/γ, which determines the fate of the epidemic,
is the average number of people from S that are infected by each

person from I.

is the average contagious period, assumed to be the time
between infection and removal (γ−1 ∼ 1− 2 weeks). Set
this here to be the time unit, namely γ = 1.

Let β be the transmission rate, the average num-
ber of contacts between S and I that lead to a new I,
per unit time, per I, per S.

The model is specified by the three differential
equations (a dot refers to derivative with respect to
time), describing the evolution of each group,

Ṡ = −β S I , (2)

İ = β S I − γ I , (3)

Ṙ = γ I . (4)

The most important parameter is the basic repro-
duction number, defined as the ratio of rates,

R0 = β/γ . (5)

This is the average number of secondary cases
caused by a primary case. It is the ratio between the
duration of being infectious γ−1 to the average time be-
tween infectious contacts (per I per S) β−1. We assume
below that R0 is constant in time, but the hope is that
it can be reduced intentionally by preventive actions.

2.2 Numerical solution

Figure 2 shows a numerical solution of the equations
with R0 = 2 (as currently assumed for COVID-19), as-
suming an initial Ii = 10−5 (e.g., in March 6, 2020,
about 100,000 infectious out of a population of 10 bil-
lion). The infectious fraction (I) grows exponentially,
reaches a peak, and then drops exponentially, similar
to a Gaussian bell shape. The total infected Z = R+ I
fraction also grows exponentially, and eventually satu-
rates at the final size Z∞. The model predicts that, with
R0 = 2 remaining constant, the final size is Z∞ ' 0.8,
namely about 80% of the population will eventually be
infected. The peak will involve ∼ 15% of the popula-
tion sick at that time, and half the population infected
by that time (eq. (16)). This peak is to be reached
in 80 − 160 days (since the time when Ii = 10−5, for
γ−1 = 1− 2 weeks respectively).

The final size and the peak level and time will de-
pend on how far would R0 be reduced. In order to avoid

having most of the world population infected, and in
order to avoid a catastrophe of the medical services at
the peak (as is now happening in Italy), R0 has to be
reduced by a factor of order two, namely to unity or
less. Figure 3 shows the evolution for R0 = 2, 1.3, 1.1.
With R0 = 1.1, the total infected is less than 20%,
and the peak, after 9% of the population have been in-
fected (0.5% infectious at the peak time) is postponed
to 500 − 1, 000 days. This is still a high fraction of the
population, so R0 = 1.1 is not good enough, but it gives
a chance for a vaccine to be developed.

2.3 Exponential growth

Assume that at a given initial time I = Ii � 1. Approx-
imate at that time Ri = 0 (a different assumption will
not make a qualitative difference). Then Si = 1−Ii ' 1,
so by integrating eq. (3) we get

I(t) ' Ii e(R0−1) γ t . (6)

If R0 > 1 this is an exponential growth, while for R0 < 1
this is an exponential decay. Using S ∼ 1 and eq. (6),
and integrating eq. (4), we obtain for the total being
infected, T = R+ I,

T (t) ' Ii
R0 − 1

[R0 e
(R0−1) γ t − 1] . (7)

For R0 significantly larger than unity and slightly after
t = 0, the second term is negligible, so we have an ex-
ponential growth. This is a straight line in the semi-log
growth curve

log T (t) ' 0.43 (R0 − 1) γ t+ log

(
IiR0

R0 − 1

)
, (8)

where the 0.43 factor stands for log e in the transition
from natural to decimal log.

The value of R0 can be determined empirically by
comparing the model slope

slope = 0.43 (R0 − 1) γ (9)

with the best-fit experimental slope of log T (t). If both
R(t) and I(t) are known empirically, then R0 can also
be read from the offset

log T − log I ' log[R0/(R0 − 1)] . (10)

If the empirical doubling time τ2 is known, then from
eq. (9)

R0 ' 1 + 0.7γ−1/τ2 . (11)

If γ−1 ∼ 10 days, and DT ∼ 3.5days as indicated em-
pirically from Fig. 4, then R0 ∼ 3, namely still a severe
uncontrolled exponential growth in most countries.

Figure 4 shows the empirical recent evolution of
Covid-19 in several countries, some after the peak
(China, South Korea), and the rest during the early un-
controlled growth phase. As predicted by the model in
the growth phase, we see an exponential growth in each
country, with different starting points but rather similar
slopes. Interestingly, the behavior is similar worldwide.

c© 2002 RAS, MNRAS 000, 1–6



Corona 3

Figure 2. Evolution of an epidemic according to the SIR model with a basic reproduction number R0 = 2, as currently estimated for

COVID-19. Shown is the fraction of the population in the three groups: Sucseptibles, Infectious, and Removed (plus Infectious). The
time is in units of the duration of the infectious phase, set to γ−1 = 1 (assumed to be about 1-2 weeks for COVID-19). The peak time

depends on the assumed initial fraction of infectious, Ii (marked I0), here taken to be 10−5, corresponding to 100, 000 Infectious in a

population of 10 billion (as for COVID-19 in early March 2020). We learn that 80% of the population is expected to be infected, with a
peak of 15% to be reached at t ' 11.5 γ−1, which is ∼ 80− 160 days. This is unless R0 is reduced toward unity.

If the duration of the infectious period is γ−1 ∼ 10 days,
and the doubling time is ∼ 3.5 days, then R0 ∼ 3.

The other extreme limiting case is when any contact
between S and I is avoided, namely R0 = β = 0, then
from eq. (3) we obtain an exponential decay,

I(t) = Ii e
−γ t . (12)

Thus, a total confinement of the whole population (since
the infectious are not all known) for a period >∼ γ−1 is
the ultimate way to stop an epidemic, though not too
practical in most cases.

2.4 A solution curve in phase plane

A solution curve of the equations in the phase plane,
connecting S and I, is

I + S − (Ii + Si) = R−10 ln(S/Si) . (13)

Can check it by taking a time derivative and comparing
to eqs. (2) and (3). For a new epidemic Si ' 1 and
Ii ' 0.

2.5 The peak

From eqs. (3) and (5)

İ = (R0 S − 1) γ I . (14)

If R0 6 1, then İ 6 0, so this is not an epidemic. If
R0 > 1, this is an epidemic. It starts slowing down

when I is at maximum, namely İ = 0. From eq. (3),
this peak of I happens at

Sm =
γ

β
= R−10 . (15)

Using the solution curve of eq. (13), inserting Sm

from eq. (15) (as well as Si = 1 and Ii = 0), one obtains
the fraction of the population that is infectious at the
peak

Im = 1−R−10 (1 + lnR0) . (16)

This is ∼ 0.15 for R0 = 2, namely a significant fraction
of the population is sick during the peak. If the peak
of I is too high, it could lead to a collapse of the med-
ical system, thus increasing the death rate among the
infected. By reducing R0 one can lower the peak to the
level that could be handled by of the medical system.
With R0 = 1 the peak is reduced to zero (above Ii).

Figure 5 shows the peak height Im and peak time
tm as functions of R0. If R0 is maintained at 2− 3, the
peak level is 15 − 30% of the population, guaranteeing
a collapse of the medical system. When R0 is reduced
toward unity, the peak height is reduced, but it may be-
come manageable only when R0 is really reaching unity
or less. Along the ”flattening of the curve”, the reduc-
tion of R0 is associated with a delay in the peak time,
pushing it to a few years once R0 is below 1.1. This
means that if R0 is not reduced to below unity, the epi-
demic will stay with us for a very long term.

Assume that the medical system can provide res-
piratory treatment to 10−4 of the population simul-
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Figure 3. Evolution of log fraction as a function of time (in

γ−1 ∼ 10 days). I0 = 10−4 (1,000 as of mid March in Israel,
assuming ×5 undetected). Shown are the cases R0 = 2 (high

curves) and R0 = 1.1 (low curves). A peak capacity of respiratory

machines of 10−4 of the population (1,000 in Israel), and assuming
optimistically that 1% of I (including a-symptomatic) need them,

correspond to the critical line for medical-system collapse at I ∼
10−2 (100,000 in Israel). With R0 = 2, the critical line will be
crossed in ∼ 40days, and will be surpassed by more than a factor

10 at the peak. R0 has to be reduced to 1.1 for the peak to get

below the critical line. Then the peak is delayed by more than a
year, giving a chance for a vaccine to be developed.

taneously (e.g. 1,000 people out of 9 million in Is-
rael). With 10% critical cases out of the infected, this
means Im = 0.001 infectious at the peak, which requires
R0 ' 1.05, and will take tm ∼ 100γ−1 ∼ 2− 3 years to
get to. We better get used to live with Covid-19...

This is actually the case for a common flue, for
which R0 remained about 1.5− 2 in recent years. This
means that about 10% of the population is being in-
fected every year. However, the death rate once infected
by a flu is 0.001 compared to ∼ 0.03 for COVID-19.

2.6 The final size

Using eq. (13), one can deduce the final size of the
epidemic at t→∞, Z∞ = 1− S∞,

Z∞ = −R−10 lnS∞ = −R−10 ln(1− Z∞) . (17)

This yields the final-size formula (Kermack and McK-
endrick 1927)

Z∞ = 1− e−R0Z∞ . (18)

Again, with R0 significantly larger than unity, the solu-
tion is with Z∞ ∼ 1, namely most of the population in-
fected. As R0 approaches unity the final size approaches
� 1. The total fraction of deaths is a fraction of Z∞,
say on average 0.03Z∞, and higher for youngsters older
than 70...

China

AustraliaAustralia

Figure 4. Empirical early evolution of Covid-19 (put together by

Andi Burkert). As predicted by the model, we see an exponen-

tial growth (straight line in this semi-log plot) in each country,
with different starting points but similar slopes. Interestingly, the

behavior is similar worldwide. If the duration of the infectious

period is γ−1 ∼ 10 days, and the doubling time is ∼ 3.5 days,
then R0 ∼ 3.

Figure 5. The peak height Im (eq. (16)) and peak time tm (nu-

merical solution) as functions of R0. With R0 ∼ 2−3 the peak will
involve a significant fraction of the population and lead to collapse
of the medical system. For a sizeable reduction that will make it

manageable, R0 = 1 has to become unity or less. In parallel, a
reduction of R0 is associated with a delay in the peak time, im-

plying a long-term epidemic as long as R0 remains slightly above

unity.
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Figure 6. The final size of infected Z∞ as a function of the basic
reproduction number R0. This is a solution of eq. (18) or eq. (19).

A value of R0 of unity or less is required to avoid the infection of

a large fraction of the population. Reducing R0 to a value that
is still above unity is not good enough for reducing Z∞ to � 1,

though it helps in flattening the curve, reducing and delaying the

peak of I.

BTW, if Z∞ is known, one can invert the final-size
relation to explicitly estimate post-hoc what R0 was,

R0 = −Z−1∞ ln(1− Z∞) . (19)

Figure 6 shows the final size as a function of R0.
Indeed, R0 has to become very very close to unity or less
for the final size to be much smaller than the population
size.

2.7 Varying R0

One can mimic the effect of reducing R0 by connecting
solutions where R0 is constant for finite periods. Fig-
ure 7 shows a case where R0 is reduced from 2.5 to
unity within 5.5γ−1 ∼ 55 days, such that reaching the
critical hospital capacity is avoided.

3 CONCLUSION

The first thing I learned, soon after Covid-19 started, is
that it is going to be a disaster unless strict measures
are taken to reduce R0 to unity or below. It seems that
now it became the common wisdom.

There are two obvious ways to reduce R0. One is
to reduce the chances to be infected given a contact.
This can be achieved by personal measures of wash-
ing hands frequently, not touching face, using masks,
etc. The other is to reduce the numbers of contacts,
first by isolation though closing borders and avoiding
flights, and then all the way to a full quarantine. If this
is taken very seriously, forcing severe confinements and
ignoring the economic costs, it seems that reducing R0

to unity may be doable. It seems that doing it drasti-
cally (a full quarantine) will shorten the epidemic and
may eventually be less damaging to the economy.

One did not need the above model for coming up

Figure 7. Compared to the standard case with R0 = 2.5 (solid),

here is a second case where R0 starts at 2.5, and is forced to
decrease to 1.0 at t = 5.5γ−1 = 55 days. With this kind of re-

duction, the infectious population turns around before reaching

the critical hospital capacity, marked by the dashed line. It is the
infectious fractioni (including non-symptomatic), assuming that

1% of them need respiration. With raspiratory machines avail-

able for 10−4 of the total population (∼ 1, 000 in Israel), this is
I = 10−2 of the population infectious at the same time (100,000

in Israel).

with these obvious preventive steps. However, besides
satisfying my curiosity about how an epidemic works,
the severe prospects that emerge from the model with
R0 ∼ 2 made me take this epidemic much more se-
riously than I would have otherwise, at a very early
stage. Going to wash my hands now, and put myself in
a voluntary home quarantine...

APPENDIX A: INTERACTION BETWEEN
COMMUNITIES

The SIR model could be applied to multipe commu-
nities that interact with each other, such as countries
with open borders (a genralization proposed by my col-
leagues Tvi and Zoe Piran). Each community is divided
to three groups Si, Ii and Ri, such that

Si + Ii +Ri = 1 . (A1)

Each comunity has its own transmision rate βii, and
each pair of communities has a cross transmission rate
βij . The equations are

Ṡi = −Si
∑
j

βijIj , (A2)

İi = Si
∑
j

βijI−γIi , (A3)
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Ṙi = γIi . (A4)

Between countries the cross transmission rate is
typically lower than in each country. One may consider
alternatively subpopulations within a given community
where the cross transmission rate is larger when involv-
ing a specific subpopulation, e.g., a large transmission
rate for people who have frequent contacts with many
others, such as bus drivers or supermarket cashiers.
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