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Chapter 1

Introduction

The observation of the accelerated expansion of the universe - dating back
to 1998-1999, when the seminal works [31],[32], [60] by Riess and Perlmutter
were published - stands as a milestone in the development of the modern
cosmological paradigm.

Undoubtedly, this can be considered one of the most important turning
points in cosmology, together with the discoveries of the universe expan-
sion (Hubble, 1929) and the Cosmic Microwave Background (Penzias and
Wilson, 1967).

In fact, as these produced a revolution in the way the universe was described
(the former reversing the idea of a static cosmos, the latter providing decisive
evidence in favour of the Big Bang Model); so did the type I-a supernovae
(SNe Ia) observations, shifting the paradigm to the actual ΛCDM model
where Λ, the ill-famous Einstein’s cosmological constant, has been reintro-
duced in the field equations in order to explain the accelerated expansion of
the universe.

The existence of such a constant energy density could be naivey explained in
the frame of a fundamental Quantum Field Theory, whose non-zero ground
state energy should be a natural candidate for the explanation of an ubiqui-
tous negative-pressure fluid. Unfortunately, the incredible discrepancy (more
or less, 120 orders of magnitude!) between the required value for Λ and the
predicted QFT ground-state, make such an approach (requiring a fine tuning
this huge) unsatisfactory from the theoretical point of view 1.

1Actually, these models are plagued by another kind of fine-tuning, the so called why

now? or coincidence problem; but we shall talk more in depth about it later on.

1



2 CHAPTER 1. INTRODUCTION

This is why many theorists have preferred a totally different approach to the
what is this Cosmological Constant? problem, which might be summarized
in two simple steps: first, assume that the ground energy of the fundamental
Quantum Field Theory is zero (due to some hypothetical mechanism related
to this yet unknown fundamental theory), second, find a dynamical mech-
anism to generate a negative pressure fluid (generally called Dark Energy),
which accounts for the observed accelerated expansion.

Although there’s some arbitrariness in this approach as well, it’s undeniable
that the subsequent theoretical effort has produced more than a handful of
interesting models, many of which have solid particle physics motivations
and non trivial phenomenological implications.

In this work I will study and analyze in depth the theoretical and obser-
vational features of one of these models, where the dark energy (generated
by a scalar field called Quintessence) is coupled to neutrinos. Some emphasis
will be also put on the computational and statistical techniques which have
been used throughout the whole work.

In the next sections I will describe the actual Cosmological Standard Model,
its experimental foundations, its triumphs as well as its shortcomings. The
third chapter will deal with the general properties of Quintessence models,
focusing on the ones that make them a viable candidate for Dark Energy.
Then, in the fourth chapter, I will finally introduce the coupled neutrino
model, discussing its motivations, its features and its phenomenology. The
results of the Montecarlo simulations and the likelihood analysis, which con-
siderably constrain the model’s parameters and predictions, will be shown
and discussed throughout the fifth and sixth chapters. In the end, we’ll draw
some conclusions on the model’s success and failures, and we’ll also outline
the path for a possible extensions of the model and future developments in
the field. In appendix A.1 the C++ program CMBEASY, on which most of
the results here presented rely, will be extensively described.



Chapter 2

The Standard Cosmological
Model

2.1 Theoretical Foundations

The cornerstone of the standard cosmological model is the so called cos-
mological principle, which can be easily stated as follows: the Universe is
homogeneus and isotropic; which means basically that there’s no preferential
point of observation in the Universe, and that its components have the same
density everywhere. Altough this second statement is clearly false on small
scales, on sufficently large ones it is accurate enough to justify its use.

The second fundamental ingredient in the SM are the Einstein field equa-
tions, which are derived from the General Relativity Theory:

Tµν =
8πG

3
(Rµν −

1

2
gµνR) (2.1)

and describe the effects of gravitation (due to the Tµν stress-energy tensor)
in terms of space-time geometry (the Ricci tensor Rµν).

Without any further assumption, these tensor equations are in principle
very difficult to solve exactly, since they are non linear 1. The Cosmological
Principle allows a great deal of simplification, since the metric of an homo-
geneous and isotropic universe is the so-called Friedmann-Robertson-Walker
metric:

ds2 = gµνdx
µdxν = dt2 − a(t)2

(

dr2

1 − kr2
+ rdθ2 + r2 sin2 θdφ2

)

(2.2)

1Physically, this non linearity is due to the fact that, carrying both energy and mo-
mentum, the gravitational field acts as a self-interacting source

3



4 CHAPTER 2. THE STANDARD COSMOLOGICAL MODEL

where the k, the curvature parameter, can assume the values 0,+1,−1 2.
From the Einstein equations combined with a FRW -metric we obtain the

Friedmann equations :

H2 =
8πG

3
ρtot (2.3)

ä

a
= −4π

3
(ρtot + 3ptot) (2.4)

which in turn imply the continuity equation:

ρ̇i + 3H(pi + ρi) = 0, i = b, CDM, ν, γ... (2.5)

where we recall that H = ȧ
a

is the Hubble parameter.
This set of equations describe the dynamics of an homogeneous and isotropic
universe. Since an arbitrary number of differently behaving components
could be (at least in principle) present, the measure of the global fluid con-
tent can be considered as one of the most important tasks of experimental
cosmolgy, as it allows us to deterministicallty reconstruct the evolution of
the universe and to predict its evolution.

2.2 Experimental Foundations

The ΛCDM Standard Model has so far achieved an incredible success in ex-
plaining data coming from the most different areas in observational cosmol-
ogy into a coherent (although by many points of view incomplete) theoretical
framework. Therefore, we’re going to describe in a self-consistent manner the
way these experiments have been carried and how they provide evidence for
the current cosmological model, emphasizing those whose outcomes will be
used in the subsequent sections of this work to test the coupled neutrino
quintessence model.

2.2.1 Supernovae Observations

As briefly mentioned in the introduction, the biggest evidence for an ac-
celerated expansion of the universe emerged a decade ago, when the first
high-precision data on the luminosity distance from SNe Ia-type supernovae
were published. The importance of the type Ia supernova relies on the fact
that, after their light curves are calibrated, they can be used as standard

2In the SM it is assumed to be 0, a value which is consistent with observations and is
explained in the frame of inflationary models
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Figure 2.1 — Combined confidence intervals from SNe Ia, BAO and CMB datasets
for a constant equation of state w versus Ωm. Differently shaded
regions correspond to the 68%, 95% and 98% confidence level [35].

candles, i.e. their physical properties (most notably, the intrinsic magnitude
M) are the same no matter what their redshift is.

Before discussing the issue any further, let us introduce the luminosity
distance definition:

d2
L =

Ls

4πΦE

(2.6)

where the observed energy flux ΦE is related to the emitted luminosity Ls

by an inverse square geometrical relation 3.

The above relation can be turned into an explicit form for the dL(z). To
do that, we note that, the absolute luminosity Ls and the observed one, L0,
are by definition:

3We emphasize that this is just one of the possible definitions of distance in cosmology.
For instance, depending on the type of measure, we could use the comoving or the physical

distances
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Figure 2.2 — Typical Supernovae Ia luminosity curves [32]

Ls =
∆Es

∆ts
; L0 =

∆E0

∆t0
(2.7)

that, keeping in mind ∆E ∼ ∆ν and νs

ν0
∼ 1 + z, yield:

Ls = L0(1 + z)2 (2.8)

which in turn can be combined with the geodesic equation:

ds2 = 0 = dt2 − a2(t)dr2 (2.9)

and the Friedmann equation 2.3 to obtain:

dL =
1 + z

H0

∫ z

0

dz′
√

∑

i Ωi(1 + z′)3(1+wi)
(2.10)

which explicitly relates the dL to the matter content of the Universe.

Now, the luminosity distance is related to the apparent magnitude by the
relation:

m−M = 5 log10(
dL

Mpc
) + 25 (2.11)
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Figure 2.3 — Theoretical luminosity distance versus redshift for different matter
content in a flat Universe with two components Ωm + ΩΛ = 1
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where the numerical factors are due to astronomical conventions in the mea-
sure of m and M .

The fact that type Ia supernovae share the same absolute magnitude M
allows us to reconstruct the dL at different redshift from a simple measure of
the apparent magnitude m and therefore from 2.10 to infer the total matter
content of the universe. The latest analysis on combined SN Ia datasets [38]
give for the total matter density the following best fit value:

Ωm = 0.287+0.029+0.039
−0.027−0.036 (2.12)

where the statistical and systematical uncertainties are separated.

Figure 2.4 — Confidence intervals for the Ωm and the ΩΛ. While the first two
graphs compare the analysis of [38] to the previous ones carried by
Riess et. al. [33] and Davies et. al. [39] the third one shows the
impact of the SCP Nearby 1999 data.

2.2.2 The Cosmic Microwave Background

Further striking evidence for the ΛCDM model is provided by the CMB
anisotropy measurements, which started in late 1989 with the pioneering
satellite COBE (COsmic Background Explorer) and continued through the
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years with ground based (CBI, ACBAR) and baloon (BOOMERANG) mis-
sions until the advent of WMAP (Wilkinson Microwave Anisotropy Probe),
whose first results appeared in 2003 (WMAP-1) and who subsequently re-
leased updates in 2006 (WMAP-3) and 2008 (WMAP-5). The latter data
have made available to the scientific community an unprecedented tool in
model selection, which is likely to be improved in the next years by the Planck
satellite, which is scheduled to be launched soon. These measurements aim at
giving a detailed map of the tiny temperature anisotropies (as small as 10−4)
of the microwave background cosmic radiation, whose frequency distribution
is that of a perfect black body at T = 2.75K. The observed intensity and
location of the different anisotropy peaks provide fundamental information
on the physical properties of the universe; in particular, on those related to
the time it becomes optically thin.

Multipole Expansion

To compare and extract information from the temperature anisotropy sky
maps we first have to provide a coherent and effective mathematical frame-
work for our analysis. This is straightforwardly achieved by expanding the
function ∆T

T
(θ, φ) into spherical harmonics:

∆T

T
(θ, φ) =

∞
∑

l=0

l
∑

m=−l

cml Y
m
l (θ, φ) (2.13)

which, using the orthogonality relations for Legendre polynomials, can be
rewritten as:

cml =
∫

Ω

∆T

T
(θ, φ)Y m∗

l (θ, φ)dΩ (2.14)

Figure 2.5 — The full-sky map of the temperature fluctuations as seen by the
WMAP satellite
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Figure 2.6 — The angular size of the temperature fluctuations measured by WMAP.
The solid red line stands for a concor dance ΛCDM model.

These coefficients represent the intensity of the temperature anisotropy
∆T
T

at a given angular scale.

Effects on the CMB

We can observe five different effects on our spectrum, namely:

The Sachs-Wolfe effect occurs because the photons being emitted inside
a matter overdensity, have to climb a gravitational potential and are
therefore red-shifted: this can be observed on very large scales corre-
sponding roughly to 1o[64].

The acoustic effect is due to the oscillations in radiation and matter; that,
at this stage, are strongly coupled and behave like a single component.
This effect is responsible for the big anisotropy peaks which can be
observed at scales smaller than the Jeans lenght, i.e., smaller than 1o.

The adiabatic initial conditions δγ = 4
3
δc, set the initial amplitudes of

the photon perturbations.

The Sunyaiev-Zeldovich effect results in an energy increase because of
the CMB photons travelling through hot plasma.

The integrated Sachs-Wolfe effect occurs when the gravitational poten-
tial driving the perturbations is not constant. In fact, in this case pho-
tons may enter a potential well (getting therefore blueshifted) which
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may deepen in time causing a net loss of energy (i.e. redshift) to the
photon. The estimation and analysis of this particular effect are of
great relevance in the present work.

The first three phenomena happen during radiation decoupling, while the
last two happen along the photon geodesic from decoupling era to present
times. The former effects are washed out on very small scales (approximately
4’, co rresponding to the last scattering surface’s thickness).

2.2.3 Other Observations

More valuable information on our models can be obtained by a large number
of different astrophysical and cosmological observations; namely, measures of
the Large Scale Structure Surveys, Baryon Acoustic Oscillations, Weak Lens-
ing Effects and Oldest Stellar Populations Ages give us tight constraints on
the Universe’s galaxy clustering pattern, matter content and ages. Anyway,
for the pourpose of the present work it will be enough to list them without
entering into further detail.

2.3 Open Problems

The list of experimental data which has been so far presented is in remark-
able agreement with the ΛCDM model, where the universe’s missing dark
energy is simply due to a negative pressure fluid with constant equation of
state (defined as pf = wρf where w = −1). As already noted, such a com-
ponent arises naturally in the frame of a fundamental quantum field theory
as the vaccum energy density. Assuming the Planck mass (Mp ∼ 1019 GeV)
as the fundamental energy scale for such a fundamental theory, we would
expect Λ to be of the order of M4

p ∼ 10112eV4; while the observed value is
Λ ∼ 10−10eV4, yielding a discrepancy of more than 120 orders of magnitude!

The results don’t get any better even holding the QCD scale (MQCD ∼
102MeV ) to be the fundamental one or including possible SUSY-induced
suppression. So, the puzzling smallness of the cosmological constant scale
(MΛ ∼ 10−2 − 10−3eV) requires an incredible degree of fine-tuning, which
doesn’t seem (at least for now) to present viable solution from the point of
view of particle physics.

A second conceptual problem arises when we consider that the total mat-
ter density (Ωm ∼ 0.3) and the dark energy density (ΩΛ ∼ 0.7) are roughly
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Figure 2.7 — The coincidence problem: why should we be witnessing now the
transition between two fluids whose e volution is so different and
apparently uncorrelated?

of the same order of magnitude, which means that we are in the middle of a
transition from a matter-dominated to a dark-energy dominated era: a pri-
ori, one would consider the occurrence of such an event now to be extremely
unlikely, again requiring an unnatural fine-tuning of the initial conditions
[67]. In fact, if the dark energy were to be constituted by a cosmological
constant, the witnessing of a comparable presence in the universe of the den-
sities of matter (changing as 1

a3 with the scale factor) and Λ (being costant
in time) in this period would seem extremely unlikely.

So, although extremely successful from an experimental point of view, the
ΛCDM model seems to be plagued by these two yet unsolved theoretical
problems. Quintessence models were born as an attempt to adress them and
solve these naturalness issues through a dynamical mechanism.



Chapter 3

Features of Quintessence
Models

Although different varieties of scalar-field based approaches have been pro-
posed (like phantoms, K-essence, tachyon and ghost condensates, see [19] for
a broad overview on the subject) we will focus in this chapter on quintessence
only, which, in its most general definition, is an ordinary scalar field mini-
mally coupled to gravity.

3.1 The Minimally Coupled Quintessence La-

grangian

The action for the quintessence is given by:

S =
∫

d4x
√−g

(

−1

2
(∇φ)2 − V (φ)

)

(3.1)

with (∇φ)2 = gµν∂µφ∂νφ and V (φ) is the potential of the field, depending on
the particular choice of the model. Now, the variation of the action S with
respect to the field φ gives us the modified Klein Gordon equation:

φ̈+ 3Hφ̇+
dV (φ)

dφ
= 0 (3.2)

while the variation with respect to the metric tensor gµν gives us the energy-
momentum tensor:

Tµν = ∂µφ∂νφ− gµν

[

1

2
gαβ∂αφ∂βφ+ V (φ)

]

(3.3)

13
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In a flat FRW metric we can easily calculate the energy and pressure density
of the scalar field:

ρ = −T 0
0 =

1

2
φ̇2 + V (φ) (3.4)

p = T i
i =

1

2
φ̇2 − V (φ). (3.5)

The Friedmann equations 2.3 then become:

H2 =
8πG

3

[

1

2
φ̇2 + V (φ)

]

(3.6)

and:

ä

a
= −8πG

3

[

φ̇2 − V (φ)
]

. (3.7)

Equation 3.7 in particular implies that, for φ̈2 < V (φ) the universe expands
with an increasing speed. This slow-rolling condition is satisfied for flat
enough potentials. Now, the equation of state for φ is given by:

wφ =
p

ρ
=
φ̇2 − V (φ)

φ̇2 + V (φ)
(3.8)

which, in the slow-roll regime, yields wφ = −1. Using the continuity equation
2.5 we can write:

ρ = ρ0 exp

[

−
∫

da

a
3(1 + wφ)

]

(3.9)

that for the above limit reduces to ρ = const., a cosmological constant-like
behavior.

3.1.1 Accelerated Expansion Solutions

In order to get accelerated expansion, the a(t) factor must behave (at least)
as

a(t) ∝ tp (3.10)

with p > 1. Subtracting the two members of the 3.7 from 3.6 we obtain:

Ḣ = −4πGφ̇2 (3.11)
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since:
dH

dt
=
d ȧ

a

dt
=
ä

a
−
(

ȧ

a

)2

.

The above relation can be rewritten as:

φ =
∫

dt

[

− Ḣ

4πG

]

1

2

. (3.12)

Again, from the 3.6 and 3.7 we have an explicit expression for the potential:

V =
3H2

8πG

(

1 +
Ḣ

3H2

)

. (3.13)

From the condition 3.10 we have the following relations:

H =
p

t
; Ḣ = − p

t2
; φ =

√

p

4πG
ln t (3.14)

which can be substituted into the 3.13 to give:

V (φ) = V0 exp

(

−
√

16π

p

φ

Mp

)

(3.15)

remembering that G ∼ M−2
p . Equation 3.15 shows that scalar field expo-

nential potentials give rise to an accelerated expansion. This is true also for
potentials less steep than this one.

In the following paragraphs we’ll study in detail the mathematical and
physical properties of this as well as of different forms of potential, and, in
particular, how they can be adressed to solve the naturalness problems of
the cosmological standard model.

3.2 Scaling Solutions in Quintessence Scenario

We now want to study the dynamics of a scalar field φ in the presence of a
dominant matter component. In this case the Friedmann equations can be
written as:

H2 =
8πG

3
(ρφ + ρm) (3.16)

Ḣ = −4πG(ρφ + pφ + ρm + pm) (3.17)

while the densities obey the conservation equations:
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ρ̇φ + 3H(1 + wφ) = 0 (3.18)

˙ρm + 3H(1 + wm) = 0 (3.19)

where wm is constant (so that matter density scales as ρm = ρ0a
−3(1+wm))

while we assume that wφ can change with time. For the moment, we want
to tackle the fine tuning problem so that, for any given initial condition, our
scalar field may enter into the so called scaling regime, characterized by the
relation:

ρφ

ρm
= C (3.20)

where C is a positive nonzero constant.

In the scaling regime the scalar field density remains subdominant, mim-
icking the background during radiation ad matter dominating eras. We also
note that, in order to have accelerated expansion, we need the system to exit
from this regime: we’ll discuss later on some way to achieve such a result.
Some more general results on cosmological scaling solutions are provided in
appendix C as well as in works like [4], [5], [74], [56] and [69]. In the follow-
ing section we’ll show how this regime arises in particular scalar field dark
energy models, solving the autonomous system of equations describing their
dynamics.

3.3 Autonomous System of Scalar-Field Dark

Energy Models

Consider the Lagrangian density of a minimally coupled scalar field φ:

L =
1

2
φ̇2 + V (φ) (3.21)

the Friedmann and Klein-Gordon equations read:

H2 =
κ2

3

[

φ̇2

2
+ V (φ) + ρm

]

(3.22)

Ḣ = −κ
2

3

[

φ̇2 + (1 + wm)ρm

]

(3.23)

φ̈+ 3Hφ̇+
dV

dφ
= 0. (3.24)
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It turns out extremely useful to rewrite these equations in terms of the di-
mensionless variables [18]:

N = ln a, x =
κφ̇√
6H

, y =
κ
√
V√

3H
, λ = −V,φ

κV
, Γ =

V V,φφ

V 2
,φ

(3.25)

so that the above equations can be written in the autonomous form:

dx

dN
= −3x+

√
6

2
λy2 +

3

2
x
[

(1 − wm)x2 + (1 + wm)(1 − y2)
]

(3.26)

dx

dN
= −

√
6

2
λxy +

3

2
y
[

(1 − wm)x2 + (1 + wm)(1 − y2)
]

(3.27)

dλ

dN
= −

√
6λ2

(

Γ2 − 1
)

x (3.28)

with a constraint equation:

x2 + y2 +
κ2ρm

3H2
= 1 (3.29)

The equation of state wφ and the fraction of energy density Ωφ can be rewrit-
ten as:

wφ =
pφ

ρφ
=
x2 − y2

x2 + y2
(3.30)

Ωφ =
κ2ρφ

3H2
= x2 + y2 (3.31)

while the total effective equation of state weff =
pφ+pm

ρφ+ρm
becoming:

weff = wm + (1 − wm)x2 − (1 + wm)y2. (3.32)

Accelerated expansion occurs for weff < −1
3
.

3.3.1 Stability Analysis

We can see from 3.25 that the case of constant λ corresponds to an exponen-
tial potential:

V (φ) = V0e
−κλφ (3.33)
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so that also equation 3.28 is trivially satisfied. Exponential potentials arise
very naturally in models of unifications with gravity such as Kaluza-Klein
theories, supergravity theories and string theories [72], [69]. Now we have to
find the fixed points for the coupled cosmological equations, in order to do
that, we’ll briefly review some theory and definitions related to dynamical
systems.

Dynamical Systems

Given a system of two coupled differential equations:

ẋ = f(x, y, t), ẏ = g(x, y, t) (3.34)

A point (xc, yc) is called a fixed point if it satisfies:

(f, g)|(xc,yc) = 0. (3.35)

A fixed point is said to be an attractor if:

(x(t), y(t)) → (xc, yc) t→ ∞ (3.36)

To find out whether a fixed point is an attractor, we shall study the stability of
the system around it; in other words, we have to consider small perturbations:

x = xc + δx, y = yc + δy (3.37)

and substitute them into equation 3.34:

d

dN

(

δx
δy

)

= M

(

δx
δy

)

(3.38)

where the matrix M can be explicitly written as:

M =

( ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

(x=xc,y=yc)

(3.39)

We can write the most general solution to the system of coupled linear equa-
tions using the eigenvalues µ1 and µ2 of the matrix M as:

δx = C1e
µ1N + C2e

µ2N (3.40)

δy = C3e
µ3N + C4e

µ4N (3.41)

where C1, C2, C3 and C4 are constants of integrations. The solutions to this
system can be classified as:
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Point x y Existence Stability Ωφ γφ

a 0 0 ∀ λ, γ Saddle point for 0 < γ < 2 0 −
b1 1 0 ∀ λ, γ Unstable node for λ <

√
6, 1 2

saddle point for λ >
√

6

b2 −1 0 ∀ λ, γ Unstable node for λ > −
√

6, 1 2

saddle point for λ < −
√

6

c λ√
6

√

1 − λ2

6
λ2 < 6 Stable node for λ2 < 3γ, 1 λ2

3

saddle point for 3γ < λ2 < 6

d
√

3
2

γ
λ

√

3(2−γ)γ
2λ2 λ2 > 3γ Stable node for 3γ < λ2 < 24γ2

(9γ−2)
, 3γ

λ2 γ

stable sprial for λ2 > 24γ2

9γ−2

Table 3.1 — Properties and existence of fixed points for the system of coupled
equations 3.26, 3.27, 3.28 with exponential potential and constant λ.

Stable node: µ1 < 0 and µ2 < 0

Unstable node: µ1 > 0 and µ2 > 0

Saddle point: µ1 < 0 and µ2 > 0 (and vice-versa)

Stable spiral: M has negative determinant and µ1 and µ2 have negative
real parts.

Stable spirals and stable nodes are also attractors.

Fixed points for Quintessence with exponential potentials

Now let’s go back to our system of equations 3.26 and 3.27; the eigenvalues
of the associated matrix are:

Point (a): µ1 = −3
2
(2 − γ), µ2 = 3

2
γ

Point (b1): µ1 = 3 −
√

6
2
λ, µ2 = 3(2 − γ)

Point (b2): 3 +
√

6
2
λ, µ2 = 3(2 − γ)

Point (c): µ1 = 1
2
(λ2 − 6), µ2 = λ2 − 3γ

Point (d): µ1,2 = −3(2−γ)
4

[

1 ±
√

1 − 8γ(λ2−3γ)
λ2(2−γ)

]
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where we have defined new variables γ = 1 + wm and γφ = 1 + wφ.
By definition we have 0 < γ < 2 (wm can vary from 0 to 1). Looking at

the properties of our solutions in 3.1 we see that our equations can have two
fixed points, namely, (c) and (d). Substituting the x and y from (c) into 3.32
we obtain weff = λ2/3 − 1; therefore in order to have accelerated expansion
the relation λ2 < 2 must hold.
In the case of the fixed point (d), from 3.30 we see that wφ = wm: this is
the case of scaling solutions, since quintessence behaves like the dominant
component, even though it cannot account for late-time acceleration.

1 1000 1e+06 1e+09 1e+12

z+1

1

1e+12

1e+24

1e+36

ρ

Figure 3.1 — Scaling solutions in uncoupled exponential quintessence: the red
solid line is the solution for the field on the radiation attractor,
dashed thin black lines are the quintessence densities for different
initial conditions while solid blue and green lines are total matter and
radiation densities. We see that starting scalar field values don’t
need to be fine tuned since every solution will enter the scaling
regime. This kind of solution, however, does not provide a desired
late-time accelerated expansion

In fact, while the constraints on early dark energy require λ ≥ 10, to
account for accelerated expansion we should have λ ≤ 3. Therefore, in order
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not to give up to the scaling properties, we have to add other ingredients to
our model, introducing some modifications to our potentials or allowing the
quintessence field to couple.
The first solution can be realized in several different ways. One of these is
relaxing the constraint of a constant λ and allowing it to depend on t or φ.
Another way consists in considering a double exponential potential of the
form:

V (φ) = M4
p

[

exp

(

−λ1φ

Mp

)

+ exp

(

−λ2φ+ φ0

Mp

)]

(3.42)

where the constant φ0 is fine tuned so that the first exponential, with a large
λ1, prevails for early times whereas the second one accounts for the late-time
Ωφ domination. Acceleration can also be realized within the framework of
more general quintessence models, those having non-canonical kinetic terms
[44].

3.4 Coupled Dark Energy Models

Probably more interesting are the consequences of a non-minimal coupling
between quintessence and matter fields, which, in general, would be ac-
counted for by an effective Yukawa type term of the form:

∑

i

Fi(φ)ψ̄iψi (3.43)

where we sum on different fermion species. As shown in [43], this kind of
interaction can arise as the result of quantum corrections to the quintessence
potential.

Measures of different materials falling towards the sun constrain such an
equivalence principle violating term [63] in the baryon sector to be:

Fb < 10−24 (3.44)

which strongly suppresses any possible interaction between dark energy and
ordinary matter. Nonetheless, there’s still room left for a coupling in the
dark matter or leptonic sector, where present bounds still allow it to take
place.

Quite remarkably, it turns out that such a kind of coupling provides new
attractor solutions [69], [45], [4], [5] that can provide late time acceleration
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while preserving the scaling regime for a large portion of cosmic history and
thus solving the coincidence problem [56]. Furthermore, interactions of the
type 3.43 usually induce time-varying masses, a recurrent feature of most of
the coupled quintessence models [12]. Usually, this coupling also implies that
only the sum, but not the separate terms, of the energy-momentum tensors
for matter and scalar field is conserved:

T
α(m)
β;α = −F (φ)T (m)φ,α (3.45)

T
α(φ)
β;α = F (φ)T (m)φ,α (3.46)

Anyway, we won’t enter now into the details of these models, since our next
chapters will be completely devoted to the study of the coupled neutrino
scenario, which shares important mathematical and physical properties with
most of the interacting quintessence theories.

3.5 Experimental Constraints

To look beyond ΛCDM, we have to search for the signatures of dynamical
dark energy that would leave a detectable imprint in observable data. In
particular, we have two model-independent quantities that can impose sig-
nificant constraints (and eventually rule out) our cosmological models: the
early amount and equation of state of the dark energy fluid.

3.5.1 Early Dark Energy

While the contribution of a cosmological constant to the total density at early
stages would be completely negligible, quintessence scenarios often admit a
sizable quantity of dark energy to be present even during early epochs of the
universe [24], [16], [9], [27].

Important informations on the amount of early dark energy can be ob-
tained from:

Big Bang Nucleosynthesis: the observed atomic abundances depend on
the interplay bewteen interaction rate and expansion of the universe:
precise measures of the former considerably constrain the value of the
latter, giving us informations on the components which were present
at the time.
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Figure 3.2 — Constraints on Early Dark energy, a Leaping Kinetic Term dark
energy is shown against the reference ΛCDM [26]

Structure Formation: a big amount of early dark energy would cause an
accelerated expansion which, in turn, would suppress the growth of the
structures.

CMB Anisotropies: The height and position of the peaks also is affected
by the expansion history of the universe, in particular, by the time of
the last scattering and the age of the universe, which depend both on
the amount of dark energy.

3.5.2 Equation of State

Supernovae and CMB spectrum measurements are sensitive to the recent
expansion history of the universe and can probe the dynamics of dark energy,
in particular, constraining the dark energy equation of state wDE [20]. If
the dark energy were a cosmological constant, we would expect to observe
w = −1 at every redshift. On the other hand, if this were not the case, we
would have a clear hint of a dynamical dark energy component [70], [22].
Anyway, present bounds are still compatible with a w = −1 and cannot
provide reliable constraints on its evolution due to large experimental error.
Nonetheless we hope that an improved accurracy of these measures will give
important informations on the nature of dark energy.
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Figure 3.3 — Confidence intervals for the dark energy equation of state from SNe
Ia, CMB and LSS measurements [33]



Chapter 4

Neutrinos Coupled to
Quintessence

Neutrinos’ cosmological key role can be hardly overstimated: almost all of
the most recent observations (BBN, CMB anisotropies, LSS, BAO...) provide
valuable informations on neutrinos masses and numbers. Since some of the
most recent cosmological theories involve neutrinos, it is worth investigating
how their properties affect the outcome of observations and can be therefore
used for model constraining and selection.

4.1 Cosmic Neutrino Background

Most of the actual role of neutrinos in cosmology is played by the cosmic
neutrino backgroud (CNB), i.e. by those neutrinos that, at T ∼ 1MeV de-
coupled from the background evolution and started to freely stream across
the universe. Altough no direct evidence for CNB has been found so far, a
great number of measures give us indirect proof of the presence of a uniformly
distributed neutrino background. This allows us to perform the most precise
(better than an order of magnitude, if compared to terrestrial experiments)
estimates of neutrino masses.

The importance of this kind of observations relies also in the fact that,
differently from solar or nuclear neutrino oscillation measures, they are sen-
sitive to the neutrino absolute mass scale

∑

imνi
(see [49], [75] and [10]) and

not simply to the differences
∑

ij ∆mij between different neutrino flavours,
as the standard neutrino oscillations measures are. Moreover, some kinds
of observations (like Large Scale Surveys) are in principle dependent on the

25
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Figure 4.1 — How different neutrino densities affect the matter power spectrum
at z = 0.5. From the plot it appears that higher densities (and
therefore bigger neutrino masses) suppress the clustering of matter
on smaller scales. The plot has been calculated with CMBEASY for
a standard ΛCMD model in the synchronous gauge.

different masses of each one of the neutrino species [65], so that future high
precision detection might determine all of the mνi.

Neutrino mass scale determines the epoch of the transition from the rela-
tivistic to the non relativistic regime, and a change of a few eV in its value
can affect dramatically galaxy clustering and structure formation[6]. Al-
though Hot Dark Matter scenario are currently ruled out by LSS (therefore
excluding any identification between neutrinos and dark matter), massive νs
could nonetheless contribute to dark matter halos mass and properties.

4.2 Massive Neutrinos and CMB Anisotropies

As we can see from fig. 4.2, different neutrino densities have nontrivial ef-
fects on the CMB spectrum, since heavier νs slightly increase the height of
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Figure 4.2 — The CMB spectrum calculated for different values of the neutrino
density. ΩΛ is kept fixed while the change in Ων is compensated by
a change in Ωcdm

anisotropy peaks. In fact, mν of the order of a few eV s (corresponding to
0.01 ≤ Ων ≤ 0.1) neutrinos would still be relativistic at the time of equality
and therefore should be counted as radiation. Indeed, during this epoch we
have ρcdm + ρb = ρν + ργ , a relation that implies:

a−3
eq (ρ

(0)
cdm + ρ

(0)
b ) = a−4

eq (ρ(0)
ν + ρ(0)

γ ) →

aeq =
ρ(0)

ν + ρ(0)
γ

ρ
(0)
cdm + ρ

(0)
b

(4.1)

from which we see that the equality is postponed in the case of higher neutrino
densities. This means that also the epoch of decoupling takes place later;
therefore, perturbations in the strongly coupled photon-baryon fluid can grow
for a longer time, enhancing the anisotropy peaks seen on the CMB spectrum.
In this way we can highly constrain the value of the neutrino mass, obtaining
(at a 95% confidence ) from the WMAP data alone[49], [75], [41]:
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∑

i

m(i)
ν ≤ 2.2eV (4.2)

a limit which can be improved if we take into account other cosmological
datasets [52].

4.3 Mass Varying Neutrinos

A link between mass-varying neutrinos and dark energy was proposed by
several authors (see [40], [13], [46]), starting from the idea that the similarity
between energy scales of the cosmological constant (Λ ∼ 10−2−10−3eV) and
of neutrinos (mν ∼ 10−1−10−3) is not a coincidence, but rather the result of
some kind of interaction. Fardon, Nelson and Weiner [40] proposed a model
in which neutrino mass arises as a result of the coupling with a scalar field
A (Acceleron) whose potential V depends on mν .

Takig the non-relativistic limit (mν < k) for the standard expression for
the neutrino contribution to the total energy density:

Eν =
∫ d3k

(2π)3

√

k2 +m2
νfν(k) (4.3)

we have Eν ∼ nνmν . Therefore, we can write an effective potential:

V (mν) = mνnν + V0(mν) (4.4)

where V0(mν) is the scalar field potential.
The equation of state of the total energy density in the neutrino-dark

energy sector is:

w + 1 = −mνV
′
0(mν)

V
(4.5)

from which we see that:

(a) it is the coupled fluid that accelerated expansion, and not the scalar field
alone (like in most of quintessence models)

(b) in order to have a w ∼ −1 (as required by observtions) either we have
a fairly flat V0(mν) potential or neutrinos have a very small density
compared to the dark energy sector.

Some authors claim that this kind of model may give rise to instabilities
[1], however, this issue is still under debate [11]. An instability-free coupled
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neutrino model, which combines some of the features that we outlined here
with some others taken from coupled dark energy dark matter models [45],
will be introduced in the following section and deeply investigated throughout
the rest of the present work.

4.4 Growing Neutrinos

The growing neutrino model was first proposed by Amendola, Baldi and
Wetterich [3] as another attempt to solve the naturalness problems of the
standard model, combining some aspects of coupled quintessence as well as
others from the previously discussed mass varying neutrinos models.

In this scenario, neutrinos couple through their mass to the scalar field:

m(φ) = m0e
−β φ

Mp (4.6)

so that the overall density goes like:

ρν = ρν0a
3(γ−1), γ > 1 (4.7)

The main feature of this model is that neutrinos play the role of a density-
growing matter component (for a negative value of β), which triggers the
onset of dark energy domination at z ∼ 0.5.

The scalar field Lagrangian can be written as:

L =
∫

d4x
√−g

(

gµν 1

2
∂µφ∂νφ+ V (φ) +mν(φ)ψ̄ψ

)

(4.8)

and we assume a standard exponential form for the potential:

V (φ) = M4
p e

−α φ

Mp (4.9)

The presence of an interaction between quintessence and neutrinos modifies
the Klein-Gordon equation:

φ′′ + 2Hφ′ = −a2∂V

∂φ
+ a2β(φ)

Mp

(1 − 3wν)ρν (4.10)

where the ′ denotes a derivative with respect to the conformal time dτ = dt/a
and H = aH is the Hubble constant in terms of the conformal time variable.
The term ∝ βρν(1 − 3wν) counteracts and eventually stops the evolution
of the field when neutrinos become nonrelativistic, i.e. wν = 0 whereas
their influence is negligible during the relativistic era when wν = 1

3
. The

conservation equation for the growing neutrinos and for the scalar field is:
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ρ′φ = −3H(1 + wφ)ρφ + β(φ)φ′(1 − 3wν)ρν (4.11)

ρ′ν = −3H(1 + wν)ρν − β(φ)φ′(1 − 3wν)ρν (4.12)

which have the same form of the general equation for the conservation of the
sum of the energy momentum tensors 3.45.

4.4.1 Scaling Behaviour

In this section we’ll briefly show some of the most remarkable effects of our
model, constraining our analysis to the particular case where the coupling
β is a constant. As long as neutrinos are relativistic (during radiation and
most of matter domination eras) the scalar field follows a tracker solution
[68], with a constant fraction of early dark energy:

Ωφ =
n

α2
(4.13)

with n = 3(4) for matter (radiation). This simple behaviour is guaranteed
by the intermediate attractor solution (d) of table 3.1; we recall that in the
notation we used we had:

Ωφ =
8πG

3

(

1

2
φ̇2 + V (φ)

)

= x2 + y2 (4.14)

where the dimensionless variables x and y were defined in 3.25. If we now
take (d), which in terms of these variables was given by:

x =

√

3

2

γ

α
, y =

√

3(2 − γ)γ

2α2
(4.15)

and substitute it into 4.14 we obtain:

Ωφ =
3

2

γ2

α2
+

3

2

(

γ(2 − γ)

α2

)

=
3γ

α2
(4.16)

Since γ was defined as:

γ = 1 + wn; n = m, γ (4.17)

knowing that wm = 0 and wγ = 1
3
, we see that 4.16 reduces to 4.13. When

neutrinos are relativistic, the term β(1 − 3wν)ρν is negligible (since wν ≃ 1
3
)

and the 4.10 has the simple solution:

φ = φ0 +
2M

α
ln
(

t

t0

)

(4.18)
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We can easily verify that, during the scaling regime, the following relations
hold :

mν ∼ Ων ∼ t2(γ−1),

ρν ∼ t2(γ−2),

ρc ≃ ρn + ρφ ≃ ρφ(1 + 1/α2) ≃ V (φ) (4.19)

Equations 4.18 and 4.19 can be combined to obtain the remarkable relation:

γ = 1 +
β

α
(4.20)

so that we see that for β > 0 and α > 0 equation 4.7 gives us a growing
neutrino density.
When neutrinos become non-relativistic our model shows a completely differ-
ent behaviour: with wν = 0 the interaction term in equation 4.10 is switched
on; the scaling regime ends and the dynamics is described by a different at-
tractor [5], where scalar field and neutrinos become dominant. In this second
phase we have [69]:

Ωφ = 1 − Ων = 1 − 1

γ
+

3

α2γ2
,

w =
pφ

ρφ + ρν

= −1 +
1

γ
(4.21)

where ΩM = Ωcdm + Ωb + Ων for t → ∞ becomes ΩM ∼ Ων ∼ 1/γ. The
present value Ω ≈ 0.25 indicates that we’re in the middle of a transitin from
matter to dark energy domination.

Combining equation 4.10 with the result:

∂V (φ)

∂φ
= − α

Mp
V (φ) (4.22)

we see that that when βρν = −αV (φ) the evolution of the field stops at a
value φ(tc) ≡ φc. Thus, for t ≥ tc we recover the behaviour of the standard
ΛCDM model, where the cosmological constant assumes the value of V (φc).
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Figure 4.3 — The evolution of background densities and density fractions in a
coupled neutrino scenario with β = 50, α = 10 and Ων = 0.01
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4.4.2 Observable Features

The whole evolution of the universe is determined by the value of α and β
(which are the most relevant ones in our model) and the value of m(0)

ν at some
given time t0. From 4.13 we see that the value of α can be constrained by
measures on early dark energy coming from SNe Ia and CMB [25]. Further-
more, if we assume that the ratio Ων/Ωφ has currently reached its asymptotic
value 4.19 we have:

Ωφ(t0) =





γ

1 − 3
α2γ2

− 1





mν(t0)

30.8h2eV
≈ γmν(t0)

16eV
(4.23)

which yields, for the present dark energy density, the follwing expression in
terms of γ and mν :

[ρφ(t0)]
1/4 = 1.07

(

γmν(t0)

eV

)(1/4)

10−3eV. (4.24)

We can also relate the present day equation of state to the neutrino mass
using the previous result and 4.19, obtaining the remarkable expression:

w = −1 +
mν(t0)

12eV
(4.25)

which, for example, gives mν(t0) < 2.4eV for w < −0.8.

4.5 Linear Perturbations

After having determined some interesting results on background quantities,
we’ll now discuss some important results related to the resolution of the first
order perturbation theory1 for the coupled fluid of neutrinos and dark energy.

4.5.1 Evolution Equations in the Newtonian Gauge

In the growing neutrino scenario, we can write the evolution equations for
the density contrasts in the Newtonian gauge (see appendix D) as [58]:

δ′φ = 3H(wφ − c2φ)δφ − β(φ)φ′ρν

ρφ

[(1 − 3wν)δφ − (1 − 3c2ν)δν ]

1For a more in-depth analysis of the perturbation theory we refer to the work of Ma
and Bertschinger [54] while many basic results on the perturbed Boltzmann equation can
be found in [21]
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−(1 + wφ)(kvφ)(kνφ + 3Φ′)

+
ρν

ρφ
(1 − 3wν)

(

β(φ)δ′ +
dβ(φ)

dφ
φ′δφ

)

(4.26)

δ′ν = 3(H− β(φ)φ′)(wν − c2ν)δν − (1 + wν)(kvν + 3Φ′)

−β(φ)(1 − 3wν)δφ
′ − dβ(φ)

dφ
φ′δφ(1 − 3wν). (4.27)

The δs, called density contrasts, are defined as:

δf =
δρf

ρ̄f
(4.28)

where the δρf is the over/under density of the fluid f with respect to the
average background density ρ̄f .
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Figure 4.4 — Evolution of density contrasts in coupled and uncoupled quintessence
models: note the enhancement of both scalar field and neutrino
perturbations caused by the coupling.
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Velocity perturbations, which appear into the evolution equations for the
density contrasts, evolve according to:

v′φ = −H(1 − 3wφ)vφ − β(φ)φ′(1 − 3wν)
ρν

ρφ
vφ − w′

φ

1 + wφ
vφ + kc2φ

δφ
1 + wφ

+kΨ − 2

3

wφ

1 + wφ
kπTφ

+ kβ(φ)δφ
ρν

ρφ

1 − 3wν

1 + wφ
, (4.29)

v′ν = (1 − 3wν)(β(φ)φ′ −H)vν −
w′

ν

1 + wν

vν + kc2ν
δν

1 + wν

+kΨ − 2

3
k

wν

1 + wν

πTν
− kβ(φ)δφ

1 − 3wν

1 + wν

. (4.30)

We also define the gravitational potentials Φ and Ψ as:

Φ =
a2

2k2M2

[

∑

α

(δρα + 3
H
k
ρα(1 + wαvα))

]

(4.31)

Ψ = −Φ − a2

k2M2

∑

α

wαραπTα
(4.32)

where πTα
is the anisotropic stress for the species α.

If we solve the perturbed Klein-Gordon equation (see [58]) we obtain the
expression for the linear perturbations of the scalar field:

δφ =
φ′vφ

k
, (4.33)

δφ′ =
φ′v′φ
k

+
1

k

[

−2Hφ′ − a2dU

dφ
+ a2β(φ)(ρν − 3pν)

]

vφ (4.34)

4.5.2 The Perturbed Boltzmann Equation

In order to be able to compute the evolution of neutrinos in the presence
of a coupling with the quintessence scalar field, we recall that pressure and
energy density are determined by the relations:

ρν = a−4
∫

q2dqdΩǫ(φ)f(~x, q, τ, n̂) (4.35)

pν =
a− 4

3

∫

q2dqdΩ
q2

ǫ(φ)
f(~x, q, τ, n̂) (4.36)
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where we write the neutrino distribution function f as:

f(~x, τ, q, n̂) = f0(q)[1 + Ψps(~x, τ, q, n̂)]. (4.37)

In the above equations we have defined the term f0(q) as the zeroth-order neu-
trino distribution (i.e. a Fermi-Dirac one), q as the comoving 3-momentum,
~x as the spatial coordinate, τ as the conformal time and n̂ as the versor of
the direction of observation.

To solve 4.35, we therefore need to find the form of the perturbed distri-
bution function Ψps, solving the Boltzmann equations for coupled neutrinos
(see for example [54], [47]). This equation, in its most general form, is simply:

Df

dτ
=
∂f

∂τ
+
∂~x

∂τ

∂f

∂~x
+
∂q

∂τ

∂f

∂q
+
∂n̂

∂τ

∂f

∂n̂
= C[f ] (4.38)

where the right hand involves all terms due to collisions. Interactions and
perturbations of the metric (see appendix D) have to be considered when
expanding this equation for the coupled neutrinos; it can be therefore shown
that the Boltzmann equation for the perturbed neutrino distribution in the
Fourier space and in the newtonian gauge takes the form [71], [54], [47]:

∂Ψps

∂τ
+ i

q

ǫ
(~n · ~k)Ψps +

d ln f0

d ln q

[

−Φ′ − i
ǫ

q
(~n · ~k)Ψ

]

=

= i
q

ǫ
(~n · ~k)ka

2m2
ν

q2

∂ lnmν

∂φ

d ln f0

d ln q
δφ (4.39)

which can be solved expanding Ψps in a Legendre series:

Ψps(~k, τ, q, n̂) =
∞
∑

l=0

(−i)l(2l + 1)Ψ(ps)l(~k, q, τ)Pl(~k · n̂) (4.40)

We can write explicitly the Boltzmann hierarchy for neutrinos:

Ψ′
ps,0 = −qk

ǫ
Ψps,1 + Φ′d ln f0

d ln q

Ψ′
ps,1 =

qk

3ǫ
(Ψps,0 − 2Ψps,2) −

ǫk

3q
Ψ
d ln f0

d ln q
+ κ,

...

Ψ′
ps,l =

qk

2l + 1
[lΨps,l−1 − (l + 1)Ψps,l+1] , ∀l ≥ 2. (4.41)
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where:

κ = −1

3

q

ǫ
k
a2m2

ν

q2

∂ lnmν

∂φ

d ln f0

d ln q
δφ. (4.42)

With these expressions, from 4.35 we can calculate the perturbed energy
density and pressure for the neutrinos:

δρν = a−4
∫

q2f0(q)

[

ǫ(φ)Ψps,0 +
∂ǫ(φ)

∂φ
δφ

]

dφdΩ (4.43)

δpν =
a−4

3

∫

q4

ǫ2(φ)
f0(q)

[

ǫ(φ)Ψps,0 −
∂ǫ(φ)

∂φ
δφ

]

dφdΩ (4.44)

4.5.3 Neutrino Clustering

As we have seen in the previous sections, a coupling between neutrinos and
scalar field dark energy induce important changes in our evolution equations
for density perturbations, with dramatic result with respect to the growth
of the perturbations, a feature shared by most of the coupled dark energy
models [7]. Therefore, having seen the effect of neutrino masses alone on
matter power spectra (figure 4.1), we shall expect some stronger signatures
of neutrino interaction in the dark sector in galaxy clustering [58], [61].

For mν ≤ 2eV we expect neutrinos to become non relativistic at zR ≈ 5,
so that for z > zR neutrinos have been free-streaming suppressing perturba-
tions’ growth inside the horizion. On the other hand, larger fluctuations are
still present and start to grow with a large growth rate for z < zR, opening
the possibility for neutrinos to form lumps [14] on supercluster scales; thus
providing an observable effect of growing neutrino scenario. In fact, while
neutrinos grow non linear at a redshift z ≈ 1, forcing us to abandon linear
perturbation theory, the formation of structures on supercluster scales (me-
diated either by gravity or by the scalar field) is still an open question that
requires the solution of hydrodinamical equations for a spherically symmet-
ric neutrino overdensity [73]. Nonetheless, the linear approximation gives
us valuable hints and quantitative limits on the late-time behaviour of the
model.

We can distinguish four separate regimes based on the different rate of
perturbations’ growth within different cosmological scales, namely:
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Figure 4.5 — Longitudinal density perturbations for both CDM and neutrinos vs
wavenumber k in the linear approximation. We also show the results
for CDM fluctuations for a reference ΛCDM at z = 0.5 and z = 5.

(a) On larger than superclusters scales the universe is still homogeneous and
perturbations are still linear today

(b) On supercluster scales (from 14.5 Mpc to approximately 4.4×10−3) strong
nonlinearities, enhanced by the coupling with quintessence, forming po-
tential wells where both scalar field and CDM could fall into. This ef-
fect also induces CDM to cluster earlier with respect to the concordance
ΛCDM model.

(c) On lenghts included between 0.9 Mpc and 14.5 Mpc we expect CDM
to take over since neutrinos approach their free-streaming scale, under
which perturbations are washed out.

(d) On very small scales, below clusters, CDM becomes highly nonlinear,
while neutrinos enter the free streaming regime.
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Observations

One may ask about the observable consequences of this model on superclus-
ter scales, where we expect neutrino clustering to take the lead.
In fact, such an effect is supposed to leave an imprint on CMB-fluctuations,
in particular through the integrated Sachs-Wolfe (ISW) effect. In dealing
with this latter phenomena, however, we must take great care in handling
nonlinear contributions, which should reduce by several orders of magnitude
the overall contribution of the ISW to the large-scale CMB perturbation.
Indeed, as shown in fig. 4.4, perturbation theory (which is based on the
assumption of a small δ) must break down at z ≈ 3, when δν is ∼ 1, and
it won’t be reliable on smaller redshifts, where δν eventually grows to 106.
However, a more in-depth analysis of this effect will be carried on in chapter
6, where we’ll try to constrain the free parameters of the model using WMAP
5 years data.

A second possibility concerns the detection of structures on very large scales,
which could be found via their gravitational potential. In fact, these struc-
tures could not form by gravitational means alone, but require additional
interactions (provided, in our model, by quintessential scalar field) which
are obviously absent in the ΛCDM concordance model. Therefore, their de-
tection would be a clear hint for physics beyond the cosmological standard
model.
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Chapter 5

Parameter Constraint from
Supernovae

As we have seen in the previous section, coupled neutrino models are char-
acterized by a great number of significant phenomenological features, which
can be used to constrain strongly the possible values of its two free parame-
ters.

Remarkably, as a first step, we could gather some important information
just looking at the non-perturbative aspects of the cosmological evolution,
i.e., how the different components of the universe evolve throughout the
different cosmological epochs: this behaviour is strongly correlated to the
quintessence’s coupling to neutrinos (which determines the entrance into the
dark energy-dominated era) and to the quintessence’s potential (which con-
straints the amount of early dark energy).

5.1 Analysis Techniques

Before entering into the details of the results, we’ll briefly outline both the
technique used and the assumptions that have been made throughout this
first part of our work.

The whole analysis was carried using a modified version of the publicly avail-
able Boltzmann-code CMBEASY (see Appendix A.1) which allowed us to
calculate the background evolution in the presence of a neutrino-quintessence
coupling.

The constraining procedure is then based on a Markov Chain Monte Carlo

41
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(see Appendix A.4) analysis, which enables us to obtain the confidence in-
tervals and likelihoods of the different parameters through direct comparison
with a set of experimental data. This entire MCMC analysis was based on
the cosmological constraint packet Analyze This!, an extension of the CM-
BEASY code.

5.1.1 The Riess Gold Sample

SNe Ia light curves measurements are among the most valuable ones to study
and constrain properties of dynamical dark energy [51]. The dataset that we
have used for comparison is the so called Riess ”gold” sample [33], a collection
of 182 high-redshift (z > 1) Ia type supernovae detected with the Hubble
space telescope from 2004 to 2006. This sample confirms (at 98% confidence
level) the transition from a decelerated to an accelerated expansion at a
redshift of z ∼ 1, confirms the presence of a cosmological constant-type fluid
(w = −1) and rules out rapidly-changing dark energy models (dw

dz
>> 1).

5.2 Preliminary Considerations

Before actually running the chains, we had to deal with some matters,
namely:

• choosing a set of MC parameters

• choosing a suitable interval for every free parameter of our MC run

• avoiding computation of unphysical models

• improve computational speed

Monte Carlo Parameters

We chose to run our Monte Carlo Markov Chain with six free parame-
ters, namely: ΩCDM , Ωb, h (the Hubble constant measured in units of
100 km

sMpc
), Ων , α and β. The latter three are the free parameters of our

model, i.e. the neutrino density (which is related to the yet unknown total
neutrino mass), the exponential potential α and the coupling β. Since we
assume a flat universe, the dark energy density is simply given by: Ωφ =
1 − ΩCDM − Ωb − Ων − Ωγ .
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In addition to the three unknown parameters, in our MCMC we have in-
cluded Hubble’s constant and the total matter fraction (the sum of ΩCDM

and Ωb), which in our model could have differen best-fit values than ΛCDM.

Interval Selection

After having selected a suitable set of parameters, we had to correspondingly
impose boundaries on them. For the Ωs and the Hubble constant our choices
were straightforward, as we simply loosened usual ΛCDM parameter inter-
vals, which we expect not to be too different in our model.

On the other hand, we had to deal with two model parameters whose values
were a priori completely unknown. As far as α is concerned, the lower bound
was chosen on the following grounds:

Radiation Attractor: we implemented an algorithm which initialized φ
directly on the radiation attractor, using the formula:

φ0 =
Mp

α
ln

4

3α2

Ω0
ν + Ω0

γ

1 − 4
α2

Although this choice corresponds to a fine-tuning of the scalar field, it
can be safely implemented without dramatic influences on the physics
of the model. In fact, we could have chosen to pick-up a random value
(within an interval of, let’s say, 1 to 10 Planck masses) to initialize φ;
but this would have forced us to implement also a ”trigger” algorithm,
to discard unphysical early dark energy dominated solutions, which can
take place for some particular initial values. But since late-time physics
effects will be the same for most of the φ0s, we can safely fine tune
φ to avoid random picking and triggering algorithms saving valuable
computational time. Therefore, the expression for the field to be on
the radiation attractor implies α > 2.

Early Dark Energy: since on the radiation attractor we have Ωφ = Ωγ+Ων

α2 ,
early dark energy constraints from BBN impose on α similar lower
bouds.

In the end, we found appropriate to constrain α between 5 (which is almost
the lower value possible) and 50, which we considered to be reasonably high.

In the case of the coupling parameter β, we only knew it had to be greater
than zero, since β = 0 would correspond to the uncoupled case without
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late time acceleration. Therefore we set to zero the lower bound, expecting
a lower value βmin > 0 to arise naturally from the MCMC. On the other
hand, since theoretical considerations alone couldn’t limit the upper value
of our β, we based our choice of the higher extreme of the interval on the
numerical simulations of the background, which showed good results (i.e. Ωφ

domination for z ≥ 0.5) for β ∼ 50 − 100.

5.3 Monte Carlo Run Results

5.3.1 First Run

On the grounds of our previous considerations, for our first run we have
chosen the following parameters and intervals, with a flat prior:

MC Parameter Lower Bound Higher Bound Initial Step Size
Ων 0.01 0.1 0.01

ΩCDM 0.1 0.4 0.1
Ωb 0.01 0.1 0.01
h 0.5 0.85 0.1
α 5 50 2
β 0 100 5

Table 5.1 — List of parameters with corresponding intervals and step sizes for the
first SNe Ia MCMC run

Then we started two chains and we let them run until ∼ 10, 000 points
in the chain were accepted. The two chains were running in a LAM/MPI
environment using CPUs from the cosmology cluster of the Institut fuer The-
oretische Physik in Heidelberg, for a total computing time of around 40 hours.
The analysis of the output (including the plot of likelihood intervals) was car-
ried out using the CMBEASY graphical user interface and the Analyze This!
package (see appendix A.4).

Analysis of the Results

In figure 5.1 we show the marginalized likelihood function for our model’s
parameter mTOT

ν , α and β, where the bayesian confidence levels at 68%, 95%
and 98% are marked by the three differently coloured bins. The three plots
in fig. 5.2 show the likelihood contours in the β-α, β-Ωφ and α-Ωφ planes.
We explicitly show in table 5.2 our parameter’s most likely values together
with the related confidence intervals.
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Parameter Maximum Likelihood 68% C.L. 95% C.L.
Ων 0.126 +0.088 -0.052 +0.167 -0.086

ΩCDM 0.182 +0.067 -0.082 +0.116 -0.172
Ωb 0.073 +0.054 -0.056 < 0.184
Ωφ 0.577 +0.052 -0.053 +0.081 -0.072

Σmν (eV) 1.38 +1.28 -1.04 < 4.17
α 12.8 +11.61 -6.7 < 39.98
β 99.99 > 64.37 > 35.33

Table 5.2 — Maximum likelihood and confidence levels for the values of the pa-
rameters of the first MCMC SNe Ia run.

From these results, in particular, we can gather important information about
the unknown parameters α, β and mTOT

ν . About this latter, our model
predicts that a total neutrino mass of

mTOT
ν = 1.38+1.28

−1.04

should be observed today; a value which is in good agreement with present
day earth based experiments on β decay [36], [34], [37] that give:

mν < 2.2eV

for a single degenerate neutrino mass. Cosmological constraints would not
apply here, since most of them (such as CMB anisotropy and Lyman α
measures) refer to the neutrino mass at earlier times, when we assume it
to be much smaller than today due to a negligible coupling with the dark
energy.
Then we have the β, the coupling between neutrino and scalar field. Its
likelihood curve (see fig. 5.1) has a lower bound at β ∼ 8, as expected; while
it is not limited from above. This latter phenomenon can be also seen in fig.
5.2, where we notice that the late time dark energy density is substantially
independent (above a certain threshold β ∼ 30) from the value of the coupling
β.
On the other hand, α’s likelihood curve shows upper and lower bounds,
substantially constraining this parameter between 5 and 40, with a clear
peak in the region α ≃ 12. We can also see a loose relation between Ωφ, with
higher dark energy density fractions more likely to be present with smaller
coupling.
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For completeness, in table 5.3 we show the values of the best fit model,
i.e. the model with the overall highest likelihood.

Parameter Best Fit Value
Ων 0.156

ΩCDM 0.288
Ωb 0.049
Ωφ 0.506
α 26.35
β 86.49

Table 5.3 — Best fit model as obtained from the SNe Ia Riess gold dataset first
MCMC run.
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Figure 5.1 — Likelihood curves for, β, α and mTOT
ν obtained in the first MCMC

SNeIa run. Every plot is made marginalizing over all the other pa-
rameters.
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Figure 5.2 — Confidence intervals for α−β, β−mν , Ωq −β and Ωq −λ obtained
in the first MCMC SNeIa run. Differently shaded regions represent
the 65%, 95% and 98% confidence levels.
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5.3.2 Second Run: the Small-Coupling Region of the

Parameter Space
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Figure 5.3 — Degeneracy between α and β. A smaller coupling can give rise
to the same dark energy density of a bigger one, provided that the
potential parameter α is corrispondingly decreased.

A second run has been performed in order to determine whether it was
possible to have late time acceleration with a smaller β coupling, using the
degeneracy among β, α and mν . Given that in our model the quintessence
fraction in the scaling regime is given by Ωφ/α

2 we see that the net effect
of reducing α is to increase the scalar field’s energy density. We also know
that, since it is the combined effects of neutrino masses and β that causes
the field to stop evolving and start acting like a cosmological constant, an
increase in the former may allow a lower value for the latter. Therefore, we
have two effects that can compensate a substantial reduction of the coupling
parameter. As we will see in the following section, a smaller β is required
in order to decrease the size of the ISW, an effect that heavily plagues this
kind of model 1. The latter was the main reason why we wanted to look at

1This problem will be deeply analyzed in the next chapter
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the shape of the parameter space once tighter constraints on α (which we let
run from 5 to 35) and β (going from 0 to 50) are being put, while letting al
the other intevals unchanged.

In this second MCMC run we let two chains run for ∼ 30 hours until they
accepted around 10,000 points each.

Analysis of the Results

Parameter Maximum Likelihood 68% C.L. 95% C.L.
Ων 0.234 +0.068 -0.055 +0.138 -0.097

ΩCDM 0.167 > 0.099 > 0.055
Ωb 0.0254 +0.014 -0.014 < 0.05
Ωφ 0.603 +0.041 -0.038 +0.081 -0.072

Σmν(eV ) 7.28 +1.59 -1.81 +2.41 -2.74
α 11.96 +7.07 -4.49 +13.58 -7.37
β 49.99 > 31.25 > 17.82

Table 5.4 — Maximum likelihood values and confidence levels for parameters of
the second MCMC SNe Ia run.

In table 5.4 we show the maximum likelihood and confidence limits on
our model’s parameters as obtained in our second MCMC run. We see that
the biggest effects of our tighter constraints can be seen on Ων and mTOT

ν ,
which have considerably higher most likely values with respect to our pre-
vious run. We stress here that such a high neutrino mass prediction is still
consistent, within 2σ, with the earth based experiments we mentioned before
which yield an upper limit of 6-7 eV for three almost degenerate neutrinos.
This effect is of course a compensation to the reduction of β, as we can see
from equation 4.10, which tells us that the onset of the accelerated phase is
proportional to ρν(1 − wφ)β.

A second remarkable feature is the shape of the likelihood curves in the
α-β plane (see 5.3.2), where we notice a strong intercourse among the two
parameters; in the way we foresaw in the introduction to this paragraph. On
the other hand, the contours in the other planes do not show substantial dif-
ferences to the ones we obtained in our first MCMC run; with an Ωφ almost
independent of β above the ∼ 20 threshold value and a loose relation with
α. In the same way, the marginalized likelihood curve for the scalar field
potential’s parameter shown in 5.4 has the same peak for α ∼ 12 we got in
our first results.
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In table 5.5 we show the best fit model parameter values.

Parameter Best Fit Value
Ων 0.118

ΩCDM 0.18
Ωb 0.035
Ωφ 0.675
α 5.16
β 28.98

Table 5.5 — Parameter values for the best fit model from the SNe Ia Riess gold
dataset second MCMC run.

In the end, we could see in this second MCMC run that our model can
run and reproduce our SNe Ia data with a small er coupling; implying a
substantially bigger neutrino mass (and density) which is by no means yet
completely ruled out by earth based experiments’ bounds. So, after having
obtained precious informations on our parameters and on our model’s be-
haviour by looking at the background evolution, we can switch to the study
of the perturbative regim e, in particular, we can carry on a detailed analysis
of the CMB anisotropy implications of growing mass neutrinos coupled to
quintessence.
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Figure 5.4 — Likelihood curves for mTOT
ν , β and α obtained in the second MCMC

SNeIa run marginalizing over all the other parameters.
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Figure 5.5 — Confidence intervals for α-β, β − mν , Ωq-β and Ωq-λ obtained in
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Chapter 6

Parameter Constraint from
CMB

As we have seen in section 4.2, massive neutrinos have important effects on
the outlook of the CMB anisotropy spectrum. Still, these kinds effects can
only loosely constrain our model, since we expect that in a growing neutrino
model, νs only have a negligible mass during the decoupling era. This feature
was stressed before, when explaining why cosmological neutrino mass bouds
do not apply in this model.
In fact, the main detectable contributions of our model do not come from the
decoupling era but are directly related to the peculiar evolution of neutrino
and dark energy densities, that imply important large-scale effects as we will
see in the following paragraph.

6.1 The ISW Effect

In section 2.2.2 we mentioned the Sachs-Wolfe effect, which affects by blue
(red) shifting photons extiting from under (over) densities at decoupling time.
In a similar way, photons entering a potential well are blue (red) shifted if
the depth of this well is decreased (increased) when they exit from it; this
effect is called integrated Sachs-Wolfe (ISW).
In [28] it is shown that the global contribution to the gauge-invariant mul-
tipole spectrum M(µ, τ0) (with τ0 being the conformal time variable today

and µ = n̂·~k
|k| , n̂ being the direction of the photon and ~k the Fourier space

vector) takes the form:

M(µ, τ0) =
∫ t0

0
dτeiµk(τ−τo)ST (τ, k) (6.1)
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where ST (τ, k) is the source term, that can be explicitly written as:

ST (τ, k) = −eiµκ(τ)−κ(τ0)
[

Ψ̇ − Φ̇
]

+ ġ
[

Vb

k
+

3

k2
Ċ
]

+ g̈
3

2k2
C + g

[

1

4
Dγ

g +
V̇

k
− (Φ − Ψ) +

C

2
+

3

2k2
C̈

]

(6.2)

In this equation, C is the scattering term entering the photon Boltzmann
equation (related to polarization phenomena), Dγ

g is the gauge invariant pho-
ton overdensity, Vb is the baryon velocity at decoupling, κ(τ) is the optical
depth defined as κ̇ = aneσT , g = k̇exp(κ(τ) − κ(τ0)) is the visibility function,
Ψ and Φ are the potentials entering the perturbed metric tensor. Dγ

g is the
main contribution on scales within the horizion at decoupling time, whereas
the term Φ − Ψ, i.e. the Sachs-Wolfe effect, dominates on the largest scales
well outside the horizon, inducing perturbations of the form [21]:

∆Tk

T
= −H

2
0

2

δTOT
k

k2
(6.3)

The Φ̇−Ψ̇ in equation 6.2 accounts for the ISW effect, that can be directly
related to temperature anisotropies through the formula [15]:

∆T

T
= − 2

c2

∫ tL

0
[Φ̇(t) − ˙Ψ(t)]dt (6.4)

which clearly shows that steep potential derivatives induce huge fluctuations
on large scales.
It is now useful to write the explicit form of the longitudinal gravitational
potential Φ which depends on the scale k through:

Φ(k) = −4πa2

k2

[

δtot +
3H(1 + w)Θ

k2

]

(6.5)

We are then able by the above formulas to relate the evolution of neutrino
density contrasts δν discussed in chapter 4.5.3 to the temperature fluctua-
tions observed in the CMB spectrum. We expect the rapid growth of those
perturbations to contribute overwhelmingly to the large scale temperature
anisotropies, even though, on the other hand, nonlinear effects my dramat-
icaly affect such an expectation. In the following section we’ll introduce a
perturbation cutoff, which we will use to model the onset of the regime where
first order perturbation theory ceases to be valid.
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Figure 6.1 — Longitudinal gravitational potential vs wavenumber k at a redshift
of z = 0.5 and z = 5; a reference ΛCDM is also shown.

6.2 The Cutoff

The previous analysis together with the results previously shown in figure 4.4
force us to take into account the strongly nonlinear effects arising from the
coupling. Since we do expect perturbation theory to break down at δ ∼ 1,
our first concern at this stage was to find a suitable stategy to deal with it
in order to be able to produce reliable (although approximated) results from
Monte Carlo simulations. Our strategy was to introduce a perturbation cut-
off setting the onset of the nonlinear regime. We assumed that in this latter
stage of cosmological evolution clustering effects prevailed on the growth of
perturbations, causing neutrinos to decouple from the background evolution.
Their contribution to the the overall gravitational potential through equation
6.5 would subsequently be suppressed, and would have to be replaced by the
average contribution coming from clustered neutrino lumps [14], [61].

Unfortunately, theory gives us no clear clues on the size and the type of
cutoff that we should introduce, since the whole issue of neutrino structure
formation hasn’t yet been studied in detail enough to provide reliable esti-
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mates on the initial conditions which could induce clustering. Therefore, we
were left with several viable options when trying to tackle the problem of
modelling the transition between the two regimes. Our first guess was to
track the evolution of the δs and simply stop them once their value reached
unity. However, in this case several questions would arise: should we simply
block the evolution of δν once it has reached a value of order one? Or maybe
should we stop δν and δφ at the same time, because of the strong interac-
tion between the two components? How much could we trust the evolution of
other δs once we stopped some of them? Rough numerical estimates coulnd’t
give reliable solutions to these problems.

Therefore, we were elaborated another stategy, facing the problem from a
slightly different point of view: instead of looking at the theory to get some
kind of reliable cutoff, we decided to use this cutoff as another parameter to
be determined by our simulations. Such a cutoff would have to be used in a
second step as a boundary condition in the nonlinear hydrodinamycal equa-
tions, to see whether this could induce neutrinos to form structures. Since
these equations all depend on the gravitational potential through Poisson-
type relations (which also include scalar field interaction terms), we chose
our cutoff to be a potential cutoff.

In other words, neutrino contributions to the gravitational potential would
be stopped once they reached the size of our new parameter ∆c = Φν/ΦTOT ,
whose value had to be estimated through our MCMC runs using the WMAP5
data. Again, we stress here that this ∆c has to be seen as a parameter whose
value, at this stage of our knowledge, is a priori unknown. What we want to
find out is which size Φν can reach in order to induce gravitational and/or
scalar field mediated neutrino clustering and preserve at the same time an
ISW effect consistent with today’s WMAP5 data. What we need to do, then,
is to see whether this data-consistent potential may cause neutrino structures
to form; an issue that is however out of the scope of this work. We also want
to point out that ∆c doesn’t have to be necessarily unity, since it refers
only to gravitation: we must keep in mind that in this scenario the strong
coupling between νs and φ also mediates the clustering, possibly inducing a
lower threshold on the Φ that would normally cause neutrino structures to
form.
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Figure 6.2 — In the first picture we show the CMB anisotropy spectrum for a
model with no cutoff (∆c=1) and a 5% cutoff. We also print a
reference ΛCDM model for comparison. In the second image we
also show that this model, with β = 15 and α = 10 can account for
the observed late-time accelerated expansion of the universe.
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6.3 The WMAP5 Dataset

The Wilkinson Microwave Anisotropy Probe (WMAP) is the first new gen-
eration satellite which provided high resolution temperature surveys of the
CMB anisotropies, providing full-sky maps with a resolution higher than one
degree. WMAP data have been published in 2003 (after the first year of
flight), 2005 (WMAP3) and most recently in 2008 (WMAP 5). The latter
set, in particular, has been used to put the most stringent neutrino mass
limit up to date as well as constraining the main parameters of the standard
ΛCDM cosmology [48]. The whole WMAP dataset, together with analysis
software, images and results is freely and publicly available on the NASA
website 1.

6.4 Preliminary Considerations

In equation 4.27 we see that neutrino density contrasts’ evolution in the non-
relativistic regime (i.e. when wν 6= 1

3
) is strongly affected by β, as shown also

by numerical simulations in figure 6.3, where we also notice that a relatively
small change in β modifies the final evolution of δν by several orders of
magnitude.

As we have seen before, steep δ derivatives imply also a large ISW, there-
fore we expect our ∆c parameter to be strongly correlated with β.

6.4.1 Montecarlo Parameters

In the choice of our MC parameters and intervals, we had to deal with compu-
tational time issues. Whereas the computation of the background densities is
a matter of a very few seconds, calculating the CMB spectrum requires from
30 to 40 seconds, to which we must add the likelihood computation time.
Furthermore, initial testing simulation of this MCMC showed an acceptancy
rate of ∼ 10%-20%, depending on the number of parameters and the choice
of the intervals. If we assume that we need at least ∼ 5.000 points to have
an efficient exploration of the parameter space, the overall number of models
we have to compute goes from 25.000 to 50.000, that is, if we distribute these
points among two chains, from four to eight days of computing.

Therefore, to save computing time, we chose a minimum set of MC pa-
rameters, i.e. β, α, mν and ∆c, where the former was the only ”new” one
with respect to the old MCMC runs. We fixed all densities to the most likely

1http://map.gsfc.nasa.gov/
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values as obtained in the second SNe Ia MC run, with the total density of
quintessence determined by the condition of a flat universe. The list of pa-
rameter and corresponding intervals are listed in table 6.1:

The intervals were determined on physical grounds. Whereas for our α and

MC Parameter Lower Bound Higher Bound Initial Step Size
Ων 0.01 0.1 0.01
α 5 20 1
β 10 25 1
∆c 0.01 1 0.005

Table 6.1 — List of parameters with corresponding intervals and step sizes for the
WMAP5 MCMC run.

Ων no particular consideration was required, the strong interplay between β
and ∆c required some additional care. In fact, numerical simulations showed
that the CMB spectrum obtained with ∆c < 0.01, for almost any given β,
was equivalent to the ∆c = 0 case, i.e. where no perturbation growth was
allowed. On the other hand, the case with β > 25 would require ∆c < 0.01
to produce WMAP 5 consistent CMB spectra. Both these bounds have been
implemented in our choice; in addition we put the lowest limit on β to 10 (a
relatively high value according to CMB simulations) while we let ∆c go until
1, i.e., the case in which there’s no perturbation cutoff.

Once the intervals and the parameters were chosen, we started two chains
and let them run until each one of them acceppted ∼ 2.500. The run took
approximately one week on a machine running a dual core intel processor.

6.5 Monte Carlo Run Results

The list of the parameters together with the maximum likelihood and the
68% and the 95% confidence level obtained in our runs are shown in table
6.2. In figure 6.4 we show the marginalized likelihood curves for α, β, ∆c

and ΣmTOT
ν ; while in figure ?? we show the 68%, 95% and 98% confidence

level intervals in the planes α− β, α− ∆c and β − ∆c.
These pictures show different constraints than the ones we had in our pre-

vious SNe Ia runs. Most notably, the likelihood curve for β has a maximum
likelihood value right at the lowest limit of the interval, whereas in the other
runs it had exactly the opposite behaviour. However, as we often mentioned
in our previous paragraphs, this behaviour was somehow expected; what we
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Parameter Maximum Likelihood 68% C.L. 95% C.L.
∆c 0.031 +0.016 -0.016 < 0.066

Σmν(eV ) 2.25 +0.07 -0.07 +0.14 -0.15
α 14.31 +3.26 -1.28 +5.41 -1.85
β 10.01 < 12.76 < 15.06

Table 6.2 — Maximum likelihood values and confidence levels for parameters of
the second MCMC SNe Ia run.

were at most interested in was the tale of this likelihood curve, which could
in principle display non trivial superpositions with the one obtained in the
SNe Ia.

Another quite remarkable result is the overall size of the cutoff ∆c, which
is peaked around the 0.03 region. Although this might seem an unnaturally
low value, we must keep in mind that in our model neutrinos cluster due
to the combined effect of gravity and quintessential scalar field interaction:
therefore, a small cutoff does not a priori rule out our hypothesis of clumping
even if the final word on the subject relies on yet to come analytical results.

On the other hand, α is in good agreement with both SNe Ia constraints
while mTOT

ν is only consistent with the lower value obtained in the first MC
simulation.
In table 6.3 we show for completeness the best-fit values for the four MC
parameters of our model.

Parameter Best Fit Value
mν (eV) 2.27

∆c 0.052
α 15.05
β 11.36

Table 6.3 — Best Fit Values for the WMAP 5 MCMC
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from MCMC CMB runs marginalizing over all the other parameters.



Chapter 7

Conclusions

In this work we have performed a broad analysis of a model in which dark
energy is coupled to neutrinos, a scenario where νs behave as a non standard
form of matter with a growing mass. We also pointed out its main phe-
nomenological and theoretical motivations, namely, the similarity between
quintessence and mν energy scales and the solution to the main fine-tuning
and naturalness problems of the actual cosmological standard model. In
fact, it is the entrance into the relativistic regime for massive neutrinos that
naturally drives the quintessential scalar field to behave like a cosmological
constant, triggering the onset of the accelerated expansion for the universe.

Then, after having written the equations that govern the growth of densities
and density perturbations in the coupled neutrino scenario, we have solved
them numerically, pointing out some peculiar predictions of our models like
the clustering which should take place on very large scales. The following
step was to try to constrain the parameters of our model using two kinds of
dataset, which we chose to be the Riess Gold SNe Ia sample and the WMAP
5 years collaboration data.

This analysis was carried using the CMBEASY data constraint package Ana-
lyze This!, which made use of Monte Carlo Markov Chains and the Metropolis
algorithm. We performed two different runs of Monte Carlo Markov Chains
using SNe Ia data and a single MCMC using WMAP 5 data. Before actually
running the chain with the latter dataset, we decided to model nonlinearities
taking into account a cutoff, which we used as an additional parameter of
our MCMC from which we could gather informations on the maximum size
that the neutrino-induced gravitational potential could reach.

We saw then that SNe Ia couldn’t provide tight constraints on the value
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of our coupling parameter β, since late time acceleration requirements were
consistent with an arbitrarily high value. On the other hand, WMAP 5 data
provided stringent upper limits on this same parameter; at the point that the
likelihood curves we obtain from them have a non-zero superposition only at
the 3σ confidence level with the second SNe Ia MCMC run. Furthermore, we
have seen that the value of the total mν , one of the remarkable predictions of
our model, depends strongly on the interval we choose for our β; the bigger
it is, the smaller should be the neutrino mass.

7.1 Future Developements

The constraints we obtained from SNe Ia and WMAP5 data give us results
which are consistent only at the 3σ level, which makes our simple model
an unlikely candidate to account for the universe’s accelerated expansion.
Therefore, we can drop some of the assumptions we made at the beginning,
in order to see whether extensions of this model may still provide interesting
results.

7.1.1 Out of the Scaling Attractor

We recall here that in our analysis we excluded the interval α < 5 since
we wanted our model to have an early time scaling regime for quintessence,
given by the attractor Ωφ = Ωγ

α2 , which in turn implied that bound due to
consistency with BBN limits on early dark energy. However, as is shown in
figure 7.1, we see that we can account both for the present CMB anisotropy
spectrum and quintessence domination just by dropping this assumption and
fine tuning our initial condition to a smaller value for the scalar field φ0.

Even though we would lose an appealing feature of our model, it might
be worth in future developements to see whether some combinations of α, β
and mν admit a broader range of initial field values, removing to some extent
the need of fine tuning it. In this way, it is also reasonable to assume that
we can find regions of the parameter space where the cutoff ∆c doesn’t have
to be as low as the one we found during our WMAP5 based MCMC.
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−0.5Mp.
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7.1.2 Variable Coupling

Another interesting developement of this simplest coupled neutrino model
may be realized including the more general case of a time-dependent cou-
pling.

As a matter of fact, we already wrote most of the equations for the evo-
lution of the background and neutrino overdensities (like 4.11, 4.27) for the
general case of β(φ), so that the calculations in this new model might be
made quite straightforwardly.

Field dependent couplings were already proposed for dark matter-dark energy
interactions [2], [55]; in the case of the coupled neutrino scenario, Christof
Wetterich (see [71]) motivated a β of the form:

β(φ) = β̂ +
dβ̂

d ln(φ)
(7.1)

within a particle physics model.

7.1.3 Non-Degenerate Neutrino Masses

In our model we have always considered three neutrinos with degenerate
masses, i.e. m1 ≃ m2 ≃ m3. This assumption could be in principle relaxed,
introducing a different coupling for every non degenerate neutrino mass, of
the form:

mνi
(φ) = m(0)

νi
e

βi(φ) φ

Mp (7.2)

It is reasonable to assume that in the case of a strong neutrino mass hier-
archy, substantial changes (mainly due to the three different times in which
neutrinos enter the non-relativistic regime) can affect the evolution of δνs.
Neutrino mass mixing effects could also play an interesting role in this sce-
nario.



Appendix A

CMBEASY

A.1 Program Overview

The C++ Boltzmann-code CMBEASY [17] has been developed by Michael
Doran, Christian Mueller and Georg Robbers as an object oriented version
of the well known program CMBFAST. It hasn’t been written from scratch,
although most of the code has been rewritten in order to benefit from the
redesign [29]. The modularity of the program ensures that each part of the
code can be tested and modified indipendently, an extremely useful feature
for cosmological computing: new models or modifications of the elder ones
can be easily implemented making use of the properties of inheritance and
without need to know any detail about the rest of the program.

Figure A.1 — A screenshot of CMBEASY’s graphical user interface
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The program comes with a graphical user interface (GUI) which can be
used for plotting results and also for data analysis. The GUI is based on the
freely available Trolltech QT libraries [66]. The latest release of CMBEASY
allows to compute background quantities as well as perturbative ones (like
CMB and matter power spectra) for universes with baryons, dark matter,
neutrinos, photons and different kinds of dark energy like cosmological con-
stant and quintessence. The latter can have different features like inverse
power law (IPL) or exponential potentials and leaping kinetic terms (LKT).

The program can be run from command line (allowing a high degree of cus-
tomization through the configuration file configuration.cfg) or directly from
the GUI, where only the basic settings can be user-defined.

A.2 Design

As previously stated, the CMBEASY makes a large use of basic objetct
oriented programming properties, as can be seen by looking at fig. A.2
where modularity and inheritance are shown to be largely used throughout
the main classes of the code.

Figure A.2 — Hierarchy of the main classes of CMBEASY

All classes dealing with mathematics inherit from the MathObject from
technical reasons. Then we have the Cosmos class, which calculates the evo-
lution of background quantities: object-oriented programming allows us to
easily extend it to subclasses (such as QuintCosmos) which take into account
different scenarios. Perturbation equations are encapsulated in the Pertur-
bation class, which implements two different gauges as subclasses. We then
have the CmbCalc class, which is the central instance invoking Cosmos, Per-
turbation and Integrator classes in order to be able to calculate the CMB
anisotropy spectrum.
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In addition to the previously mentioned ones, we have a large set of other
smaller classes, some of them (like the ControlPanel) holding common set-
tings and some others providing additional mathematical functions (like the
MiscMath class).

A.3 CMB Spectrum Calculation

In order to calculate the CMB anisotropy spectrum we have to:

(a) solve the expansion and thermal background evolution

(b) propagate the perturbation equations in Fourier space

(c) map the temperature anisotropy into the sky today

The core class CmbCalc implements these three steps, scheduling the
call of other objects. The first step is achieved by the Cosmos class, which
provides background quantities as ρi(τ),Ωi(a) where i = ν, γ, φ . Different
background cosmologies can be easily implemented, inheriting from the Cos-
mos class and modifying only small portions of the code, as most of it is
completely indifferent to the precise mechanism causing acceleration.

Then we have to compute fluctuations: this task is carried by the Pertur-
bations class, most notably, we can perform calculations in different gauges
using the various sub-classes which inherit from it. Perturbations determine
the sources of CMB anisotropies: these sources are then convoluted with
Bessel functions using the ScalarIntegrator sub-class to give us the Cl coeffi-
cients.

A.4 The Analyze This! package

In order to compute likelihoods and be able to constrain parameters, the
CMBEASY code comes with an additional software [23] that allows such
operations to be performed, the Analyze This! package. This is composed of
two main parts: a MCMC driver, using LAM/MPI for parallel execution of
chains, and the AnalyzeThis class, which evaluates likelihoods with respect to
given data sets (such as WMAP, ACBAR, SDSS, 2dFGRS, SNIa compilations
by Riess, Tonry and many others). Different sets can be easily added.
The MCMC driver consists of two routines: master() and slave(), allowing
up to ten slave() and one master() routines to be started using LAM/MPI
[50]. The master() determines the initial starting position of each chain,
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sending the parameters to the slave()s and collecting the results and stores
parameters and likelihoods whenever a step is accepted.
The AnalyzeThis class provides routines concerning CMB, SNe Ia and LSS
measurements as well as tool for marginalizing and plotting MC output data.
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Monte Carlo Markov Chains

Monte Carlo Markov Chain methods are an efficent way to explore the pa-
rameter space of a given model, since it depends only linearly on the number
of parameters whereas n-dimensional grids depend on them exponentially.
We’ll now review briefly the basic ideas of MCMC simulations.

First of all, suppose that we are given a vector Θ containing all model’s
parameters and some observed data X; L(X|Θ) is the likelihood to observe
X given Θ so that, specifying a prior distribution P (Θ) for the parameters,
Bayes’ theorem yields:

π(Θ|X) =
P (Θ)L(X|Θ)

∫

P (Θ)L(X|Θ)dΘ
(B.1)

where the function π(Θ|X) is the posterior distribution, which can be used
to compute expectation values and confidence levels.

The idea of the MCMC method is to sample the posterior distribution
π(Θ|X) in order to estimate its statistical properties: this can be accom-
plished using a Markov Chain, i.e. a stochastic process {Θ0,Θ1...Θn} where
Θi only depends on Θi−1.
We want to choose the next point in the chain based on the previous point
so that π(Θ|X) becomes the stationary distribution of the chain:

Dist{Θ0, ...,Θn} → π(Θ|X), n→ ∞ (B.2)

Even though there are many different ways to accomplish this, we will
concentrate on the Metropolis algorithm, which is also the one used in the
CMBEASY package.
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B.1 The Metropolis Algorithm

Figure B.1 — The Metropolis algorithm for two parameters: filled circles are
points accepted by the chain while the empty ones are proposed
but rejected points [23].

The global version of the Metropolis algorithm (the original one is the
one presented in [57]), where all parameters change with every step, goes as
follows:

(a) Choose a starting parameter vector Θ0

(b) Compute the likelihood L0(X|Θ0)

(c) Get a new parameter vector Θi sampling from a ”proposal distribution”

(d) Compute Li(X|Θi)

(e) If Li > Li−1 save Θi and go back to (c)

(f) If Li < Li−1 generate a random variable u from [0, 1]. If u < Li/Li−1

take the step, otherwise reject it. Then, go back to (c) and start the
whole procedure again.
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This algorithm assumes flat priors P (Θ), it also assigns likelihood zero to
any parameter set having at least one point outside of its prior.
Every chains starts randomly picking values from every parameter’s interval,
the second point then depends on the step size (which is set by the user)
which determines it coordinates in the parameter space. This procedure is
repeated for every point; the initial step size can be fixed or vary in order to
ensure a better exploration of the parameter space. The latter procedure is
implemented by CMBEASY using a so called adaptive step size algorithm.

B.2 Convergence Testing

At the beginning, the chain moves from Θ0 into regions of higher likelihood.
Points taken during this initial ”burn-in” phase do not sample π(Θ|X) and
therefore should be eliminated. Since it is difficult, at least in principle, to
tell whether a single chain has converged towards π(Θ|X), we use several
different chains with random starting points. Then, we monitor mixing and
convergence using the test of Gelman and Rubin [42], which works as follows.
We label by ψij one entry of the parameter vector Θ at a point j = 1, ..., n
in the chain i; ψ̄i is the mean for the chain i and ψ̄ denotes the mean of
all chains. The variance between the chains B and the variance within the
single chain W are given by:

B =
n

m− 1

m
∑

i=1

(ψ̄i − ψ̄)2, (B.3)

W =
1

m

m
∑

i=1

s2
i , s2

i =
1

n− 1

n
∑

j=1

(ψij − ψ̄i)
2 (B.4)

and the quantity:

R =
n−1

n
W + 1

n
B

W
(B.5)

should converge to one. A value of R < 1.2 for all parameters indicates that
the chain is sampling from π(Θ|X), and therefore, from this point onwards,
points can be used for parameter estimates. In CMBEASY this also freezes
the step size to a fixed value, suspending the adaptive algorithm. The ex-
act number of points necessary for a good sampling of the parameter space
usually depends on the model, the used data set and the desired accurracy.
This is the reason why in CMBEASY the MCMC simulation runs indefinitly,
although a ”breaking” criterion may be introduced at user’s will.
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Appendix C

Scaling Solutions in a General
Background

We will now derive the general conditions for the existence of scaling solutions
given a general cosmologic background. To do so, we consider an action of
the form:

Stot =
∫

d4x
√−g[ρ(X, q) +

1

2
M2

plR] + Sm(φ) (C.1)

where X = −1
2
gµν∂µφ∂νφ is the standard kinetic term.

We assume that the general form of the first Friedmann equation holds:

H2 = β2
nρ

n
T (C.2)

Now, considering the case of a single dominant component and a subdomi-
nant scalar field, and allowing the two fluids to interact (we can easily recover
the uncoupled case simply letting Q→ 0), we write the continuity relations:

dρφ

dN
+ 3(1 + wφ)ρphi = −Qρm

dφ

dN
,

dρm

dN
+ 3(1 + wm)ρm = Qρm

dφ

dN
. (C.3)

From the scaling condition ρφ/ρm = C we have that:

ln ρφ − ln ρm = C ′ (C.4)

which in turn implies:
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d ln ρφ

dN
=
d ln ρm

dN
(C.5)

Substituting into this last relation the equations C.3 we obtain:

dφ

dN
=

3Ωφ

Q
(wm − wφ) = const. (C.6)

that, using again the C.3, gives us:

d ln ρφ

dN
= 3

[

−(1 + wm) +
ρφ

ρφ + ρm
(wm − wφ)

]

=
−(1 + wm)(ρm + ρφ) + ρφ(wm − wφ)

ρm + ρφ

= −3(1 + weff) (C.7)

where weff is:

weff =
wmρm + wφρφ

ρmρφ

(C.8)

a general model independent definition.

Looking back at our definition of X we see that:

2X = H2

(

dφ

dN

)2

∼ H2 ∼ ρn
T (C.9)

which implies:

d lnX

dN
= −3n(1 + weff) (C.10)

so that, remembering pT = ρTwT , we have:

d ln pφ

dN
= −3(1 + weff). (C.11)

These last two relations, combined with equation C.6, give:

n
d ln pφ

d lnX
− 1

λ

d ln pφ

dφ
= 1 (C.12)

where:

λ = Q

[

1 − Ωφ(wm − wφ)

Ωφ(wm − wφ)

]

(C.13)
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The equation C.12 has the following general solution [62]:

pφ(X, φ) = X
1

n g(Xenλφ) (C.14)

We can easily show that the variable Y = Xenλφ, on which the function g
depends, is constant along the scaling solution; therefore, we have:

Xenλφ = Y0 = const. (C.15)

which in turn implies p ∼ X1/n. This result gives us the defining property
of scaling solutions, i.e., that in this regime the Lagrangian and the pressure
density depend upon the kinetic energy alone.
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Appendix D

Gauge Choice in Cosmological
Perturbation Theory

Introducing the cosmological standard model, we stated that the main as-
sumption on which it relied was the cosmological principle, i.e. the assump-
tion that the universe is homogeneous and isotropic. Of course, this cannot
be on all scales: structures like planetary systems, galaxies and galaxy clus-
ters are the most evident proof of the non-homogeneity of the universe.

Nonetheless, these inhomogeneities are well understood in the frame of the
cosmological standard model; in particular, we can study how primordial
small fluctuations (supposedly set at the end the inflationary epoch) grew
until they clustered into complex structures to gravitational non linear phe-
nomena.

We’ll make here a concise description of cosmological perturbation theory.
For a more in-depth analysis we refer to standard works on the subject, such
as [54] as well as textbooks like [21]. The initial step in perturbation theory
consists in perturbing the metric; at first order we have:

gµν = g(0)
µν + g(1)

µν , (D.1)

general relativity requires that this transformation leaves the line element:

ds2 = gµνdx
µdxν (D.2)

invariant with respect to a change in the coordinate system. Coordinate
transformations of this type are called gauge transformation; the choice of
the coordinate system (gauge) is not unique, and has to be made according
to the specific problem we have to face.
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The two most popular choices are the:

Newtonian Gauge : a coordinate transformation that leaves the unper-
turbed part of the metric tensor, g(0)

µν unchanged [59]

Synchronous Gauge : a system of coordinates in which all the observers
share the same conformal time [53]

In addition to these two gauges, it is possible to introduce gauge invariant
variables [8], [30], i.e. a set of variables, built as combinations of ordinary
perturbative quantities like potentials Φ and density contrasts δ; which re-
main unchanged for arbitrary gauge transformations.

The line element in the newtonian gauge takes the form:

ds2 = a2(τ)[(1 + 2ψ)dτ 2 − (1 − 2φ)dxidx
i] (D.3)

whereas in the synchronous gauge we have:

ds2 = a2(τ)(dτ 2 − (δij − hij)dx
idxj) (D.4)

We notice that the metric in the newtonian gauge has a diagonal form, while
in the synchronous one it has also non diagonal elements. Furthermore, since
in the latter section we’ll write our perturbed equations in the Fourier space,
it turns out useful to explicitly write our spatial perturbation field for the
synchronous gauge hij :

hij(~x, τ) =
∫

d3kei~k·~x[k̂ik̂jh(~k, τ) + (k̂ik̂j −
1

3
δij)6η(~k, τ)] (D.5)

where h and η are two scalar functions for the metric perturbations in this
gauge.

Perturbation of the Evolution Equations

Once that the gauge has been chosen, we have to substitute our new per-
turbed metric into the Friedmann equations and the energy-momentum con-
servation relations. First of all, we rewrite the Friedmann equations in terms
of the conformal time where the scale factor is a = a(τ):

H2 =
8πa2

3
(ρtot) (D.6)

H′ = −4π

3
a2(ptot + 3ρtot) (D.7)
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while the conservation of the energy-momentum tensor T µ
ν implies the van-

ishing of the covariant divergence, that can be written as:

T µ
ν;µ = T µ

ν,µ + Γα
βαT

β
ν − Γα

νβT
β
α = 0 (D.8)

The next step is writing the new Christoffel symbols Γ in terms of the per-
turbed metric, we recall that:

Γγ
αβ =

1

2
gγη(gαη,β + gβη,α − gαβ,η) (D.9)

which, substituting D.3, yields:

δΓ0
ij = δij [2H(φ+ ψ) + φ̇]

δΓ0
00 = ψ̇

δΓ0
0i = δΓ0

i0 = ikφ/sqrt3

δΓi
j0 = δi

jφ̇

for the newtonian gauge; similar relations can be obtained the synchronous
one, too. We can thus straightforwardly write our continuity relation:

Newtonian Gauge:

δ̇ = −(1 + w)(Θ − 3φ̇− 3
ȧ

a

(

δP

δρ
− w

)

)δ

Θ̇ = − ȧ
a
(1 − 3w)Θ − ẇ

1 + w
Θ +

δP/δρ

1 + w
k2δ − k2σ + k2ψ(D.10)

Synchronous Gauge:

δ̇ = −(1 + w)

(

Θ +
ḣ

2

)

− 3
ȧ

a

(

δP

δρ
− w

)

δ

Θ̇ = − ȧ
a
(1 − 3w)Θ − ẇ

1 + w
Θ +

δP/δρ

1 + w
k2δ − k2σ(D.11)

and the Friedmann equations :

Newtonian Gauge:
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k2φ+ 3H(φ̇+ Hψ) = −4πa2ρδ

k2(φ̇+ Hψ) = 4πa2Θρ

φ = ψ (D.12)

Synchronous Gauge:

Hḣ = 2k2η + 8πa2δT 0
0

η̇ = −4π
a2

k2
ikiδT 0

i

ḧ = Hḣ + 8πa2(δT 0
0 − δT i

i ) (D.13)

for both the newtonian and synchronous gauges, in the Fourier space; where
we have denoted with Θ the fluid velocity divergence, ∇ivi.

Relation between the Two Gauges

We can obtain the relations connecting perturbative quantities in the two
gauges remembering that the energy-momentum tensor in the synchronous
gauge T µ

(s)ν (with coordinates yµ) is related to the one in the newtonian gauge

T µ
(n)ν (with coordinates xµ) by the transformation:

T µ
(s)ν =

∂yµ

∂xα

∂xβ

∂yν
T α

(n)β (D.14)

which yields:

δ(s) = δ(c) − α
ρ̇tot

ρtot

Θ(s) = Θ(c) − αk2

δP(s) = δP(c) − αṖtot

if we evaluate these perturbations at the same spacetime coordinate value.
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