Statistical Mechanics (77802)

 Prof. Ofer Biham
 Office: Danciger B, room 210
 Phone: 02-6584363

 Class times:
 Monday     10:00 -  11:45
 Wednesday 8:00 - 8:45
 Office hours: Monday 14:00-16:00, or any other time by a phone or email appointment.


Equilibrium statistical physics:

Liouville theorem and Boltzmann Equation.

Classical and quantum ideal gas. Gas of interacting molecules: the virial expansion.

Phase transitions and critical phenomena:

liquid-gas transition, Van der Waals equation, Maxwell's construction,

the law of corresponding states, Clausius-Clapeyron relation

Magnetic systems: Ising model, x-y model, Heisenberg model, mean-field theory, exact

solution of the Ising model in one dimension, Landau theory

The critical point, critical exponents, scaling, universality and the renormalization-group theory

Stochastic processes:

Random walk models and their applications to diffusion processes and catalysis.

Fluctuation effects, the master equation, Langevin equation and Fokker-Planck equation.

The fluctuation-dissipation theorem.

H.E. Stanley, Phase transitions and critical phenomena, Oxford Press, 1971.

J.J. Binney et al., The theory of critical phenomena, Oxford Press, 1992.

N.G. van Kampen, Stochastic processes in physics and chemistry, North Holland Press, 2007.

C.W. Gardiner, Handbook of stochastic methods, Springer, 2004.

R. Dorfman, An introduction to chaos in nonequilibrium statistical mechanics, Cambridge, 1999.


 Problem set no.   1         Solution
 Problem set no.   2         Solution
 Problem set no.   3         Solution

 Problem set no.   4         Solution
 Problem set no.   5         Solution
 Problem set no.   6         Solution
 Problem set no.   7         Solution