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Lattice simulations are the only viable way to obtain ab-initio Quantum Chromodynamics (QCD)
predictions for low energy nuclear physics. These calculations, however, are done in a finite box
and therefore extrapolation is needed to get the free space results. Here we use nuclear Effective
Fields Theory (EFT), designed to provide a low energy description of QCD using baryonic degrees
of freedom, to extrapolate the lattice results from finite to infinite volume. To this end, we fit the
EFT to the results calculated with nonphysical high quark masses and solve it with the stochastic
variational method in a finite and infinite volume. Moreover, we perform similar EFT calculations
for physical quark mass and predict the finite-volume effects to be found in future Lattice QCD
calculations.

I. INTRODUCTION

At low energies, characterizing the nuclear structure,
Quantum Chromodynamics (QCD), the fundamental
theory of the strong interactions, is non-perturbative.
The only feasible way to obtain ab-initio QCD predic-
tions for nuclear physics is through Lattice simulations
of QCD, dubbed LQCD [1].

These calculations are done via numerical evaluation
of path integrals on a discrete space- and time-like lattice
and summing over all possible paths. When the volume
of the lattice is taken to be infinitely large and its sites
infinitesimally close to each other, the continuum is re-
covered.

After years of development, LQCD simulations are ful-
filling their promise of calculating static and dynamical
quantities with controlled approximations. Progress has
been made to a point where meson and single-baryon
properties can be predicted quite accurately; see, e.g.,
[2–4]. However, the complexity and peculiar fine-tuning
aspects in nuclear systems make this fundamental ap-
proach significantly more difficult relative to the extrac-
tion of single-baryon observables. For a recent reviews,
see, e.g. [5, 6].

Currently, a few LQCD collaborations are studying
multi-baryon systems, including HAL QCD [7, 8], PACS
[9, 10], NPLQCD [11–13], CalLat [14], and the Mainz
group [15]. Most teams try to extract the nuclear bind-
ing energies directly from the lattice simulations. HAL
QCD collaboration takes a different approach, trying to
extract the nuclear potential from the lattice simulation,
and then calculate observables using standard nuclear
physics techniques with the resulting potential. At this
point, HAL QCD results are different from the results of
the other groups.

A more common approach to study nuclear physics
is based on Effective Field Theories (EFTs). In nuclear
EFTs, baryons and mesons replace the quarks and gluons
as the fundamental degrees of freedom. This framework
provides a practical theory to analyze nuclear physics
while incorporating the essential features of QCD. For
low energy aspects of nuclear physics, like the descrip-

tion of light nuclei, even the mesons are not needed, and
one is left with baryonic EFT, commonly referred to as
pionless EFT, which will be employed here. This EFT is
especially appropriate in a heavy pion mass world, where
the pion dynamic is suppressed.

The first application of EFT for LQCD faced the chal-
lenge of using LQCD results to predict the binding en-
ergies of larger nuclei. A pionless EFT was fitted to the
LQCD results and then used to predict the ground-state
energies of 5He and 6Li [16], as well as 16O [17].

As mentioned above, LQCD calculations necessarily
take place in finite volumes, thus affecting their infrared
properties. For two-body systems, it is fair to claim that
the implications of the finite volume on the spectrum
are well understood through the Lüscher formalism in
the asymptotic regime [18, 19]. The formalism perti-
nent for systems beyond the 2-body system has not yet
reached this level of maturity, while significant progress
is achieved in recent years, see e.g., [20–25].

The complexity of the problem suggests that an alter-
native road map towards the determination of infinite-
volume quantities is called for.

Such an approach could be to build a nuclear EFT
with the same boundary conditions as LQCD. This way
the EFT is built directly matching the LQCD results in a
finite lattice, and the extrapolation to the infinite lattice
can be easily carried out through the nuclear EFT. Doing
so, LQCD calculations may be performed with smaller
lattice volumes, giving more accurate results, leaving the
extrapolation to be done with the EFT.

Here we use the NPLQCD results for pion mass of
mπ = 806 MeV [11] to calibrate a leading order pionless
EFT at finite box size and extrapolate the results toward
the free space limit. Moreover, we perform the inverse
procedure for the case of physical pion mass, i.e. we fit
our EFT to the experimental results in the continuum
and then predict the finite-box effect to be calculated in
future LQCD calculations.
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II. THEORY

LQCD calculations are done in a finite volume, making
the challenge of correcting the lattice size effects to get
the physical relevant results.

The common approach to do so is based on Lüscher’s
work [18, 19], which solves the two-body problem in a
large box. Doing so, one can get the first order correction
for the free-space binding energy,

EB − EL = −24π|A|2 e
−κL

mL
+O

(
e−
√

2κL
)

(1)

where EB is the free space binding energy, EL is the
binding energy in a lattice with size L, |A|2 ∼ 1 is a
normalization constant, and κ =

√
mEB is the binding

momentum. To utilize Lüscher formula one has to cal-
culate the binding energies for a few lattice sizes and fit
the results with Eq. (1) to extract the free space pa-
rameters. Similar method enables the extraction of free
space scattering parameters from finite box bound state
calculations, avoiding the complication of dealing with
continuum states.

A few years ago a different variant was proposed [26,
27], which is to calculate in a single lattice several boosted
states differ by their total angular momentum. Using the
asymptotic solution of boosted states in a box, the free
space parameters can be extracted.

However, the generalization of such methods to larger
systems is a challenge. The three-body case can be solved
in some simple cases, and based on that several methods
to correct the finite lattice effects were developed [20–24].

Here we would like to take a different path, relevant to
arbitrary particle number, based on the construction of
a relevant EFT which can be solved in any lattice size.

Effective field theories are a powerful tool to study the
low energy properties of a system whenever a separation
of scales exists between the energy scale of the studied
process and the typical scale of the underlying theory.

Weinberg [28] has formulated the idea that in order
to calculate low-energy observables of a given theory, it
is sufficient to write down the most general Lagrangian,
whose form is only limited by general properties like ana-
lyticity, unitarity, and the symmetries of the theory under
investigation. In the case of QCD, it is Lorentz symme-
try, parity, time reversal, and charge conjugation. Chiral
symmetry, which is an approximated symmetry for the
physical u and d quarks, does not apply in our case of
heavy quarks. The fields used as degrees of freedom in
this effective Lagrangian should be those which are seen
as asymptotic states in the regime one is interested in.
For low-energy nuclear physics, the relevant degrees of
freedom are the nucleons.

A general Lagrangian constructed this way contains an
infinite number of terms. The key ingredient to resolve
this obstacle is the scale separation mentioned above: Be-
ing only interested in low-energy observables, one can as-
sume that the terms in the Lagrangian are ordered by a

small parameter, which is the ratio of the energy scales
involved.

The resulting theory for baryonbaryon interactions,
which does not contain explicit pions but only contact
interactions, is known as pionless EFT. The process of es-
tablishing the order of terms in the EFT is called power
counting. For pionless EFT it is well known that the
naive power counting, based on counting powers of mo-
mentum, fails due to the emergence of Efimov physics
[29], and the three-body contact term is to be promoted
to leading order [30]; see, however, [31].

The relevant Lagrangian at leading order is therefore,

L = N†
(
i∂0 +

∇2

2m

)
N − C0

2
(N†N)2 − C1

2
(N†σN)2−

− D

6
(N†N)3

(2)

where N is the nuclaon field operator, and C0, C1 and
D are the low-energy constants (LECs). This lagrangian
can be supplemented with terms containing more fields
and/or more derivatives, which are subdominant. Since
in this work we focus on the leading order, such terms
will be neglected in the following.

Contact interactions are singular and therefore regu-
larization is needed; here we use a Gaussian regulator
g̃(p) = exp[−(p/Λ)2] that suppresses momenta above an
ultraviolet cutoff Λ. Since the cutoff is not a physical
quantity, the theory observables must not be depend on
it. This is achieved via renormalization, i.e. by fitting
the values of the LECs C0 = C0(Λ), C1 = C1(Λ) and
D = D(Λ) such that chosen physical quantities are fixed
at their observed values.

The leading order interaction in pionless EFT is to
be iterated, which is equivalent to solving the non-
relativistic Schrödinger equation with the Hamiltonian

H = − 1

2m

∑
i

∇2
i +

∑
i<j

V2(rij) +
∑
i<j<k

V3(rij , rjk), (3)

where the two-body interaction is

V2(rij) = (C0 + C1σi · σj) gΛ(rij), (4)

the three-body interaction is

V3(rij , rjk) = D
∑
cyc

gΛ(rij)gΛ(rjk) (5)

where gΛ(r) = Λ3

8π3/2 exp(−Λ2r2/4) and
∑
cyc stands for

cyclic permutation of {i, j, k}.
Putting our system in a box with periodic boundary

conditions, one has to solve

HΨL = ELΨL (6)

where the subscript L denotes that the wavefunction ΨL

is to obey periodic boundary condition,

ΨL(r1, r2, . . . ) = ΨL(r1 + n1L, r2 + n2L, . . . ). (7)
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for arbitrary integers trios {n1,n2, . . .}. For finite vol-
ume the potential V transforms into a periodic potential

VL(r1, r2, . . .) =
∑

n1,n2,...

V (r1 +n1L, r2 +n2L, . . .) . (8)

For example, the x-axis component of the two-body po-
tential becomes

exp[−Λ2x2
ij/4] −→

∑
q

exp[−Λ2(xij − qL)2/4],

where in principle the sum over q runs over all integers
from minus infinity to infinity. In practice, due to the
short-range nature of the interaction, far boxes are neg-
ligible and the sum is limited to −Nbox ≤ q ≤ Nbox.
We have verified that our results are fully converged for
Nbox = 5

III. METHODS

To solve the N -body Schrödinger equation we first
note that with the leading order interactions (4),(5) spin
and isospin are good quantum number. Thus we can
write the wave-function as a product of a spatial func-
tion time a spin state χSSz (s1, s2, . . . ) and an isospin
state ξTTz (t1, t2, . . . ) antisymmetrized to ensure Fermi
statistics. To satisfy the periodic boundary conditions we
follow Ref. [32] and expand the spatial part of the wave-
function using a correlated Gaussians basis. Using the
abbreviations r = (r1, r2, . . . rA) for the A-body coordi-
nates, and x = (x1, . . . xA) for the x component (same
for y, z) these basis function are written as a product of
periodic functions in the x, y, z directions

GL(r) = GLx(x)GLy(y)GLz(z) . (9)

The x-component basis functions GLx (same for
GLy, GLz) are defined by a symmetric positive definite
A × A matrices Ax, a positive definite diagonal matrix
Bx, and a shift vector d = (d1, . . . dN ),

GLx =
∑
nx

G(Ax, Bx,dx;x− Lnx) (10)

with

G = exp

[
−1

2
xTAxx−

1

2
(x− d)TBx(x− d)

]
, (11)

and nx = (n1, n2, . . . nN ), ni ∈ Z.
The desired solution for the Schrodinger equation

Ψ =
∑
k

ckΦ(Ak, Bk,dk; r, s, t), (12)

is then expanded on the basis,

Φk =Â
[
GL(Ak, Bk,dk; r)χSSz

(s)ξTTz
(t)
]
, (13)

where Â is the antisymmetrization operator, s =
(s1, s2, . . . sA), and same for t. The linear parameters ck
are obtained solving the generalized eigenvalue problem
Hc = ENc, where Hij = 〈Φi|H|Φj〉 are the Hamiltonian
matrix elements, and Nij = 〈Φi|Φj〉 the normalization
matrix elements. One of the advantages of the Gaus-
sian basis is that the matrix elements can be calculated
analytically [32].

To optimize our basis we use the Stochastic Variational
Method (SVM) [33]. To add a function to our basis, the
elements of Ak, Bk, and dk are chosen randomly one
by one, and the values which give the lowest energy are
taken.

IV. RESULTS

A. mπ = 806 MeV

First, we would like to deal with the results of the
NPLQCD collaboration [11]. These calculations assume
SU(3) symmetry, where the mass of the u and d quarks
were enlarged to the value of the s quark mass. The
resulting pion mass was calculated to be mπ = 806 MeV
and the nucleon mass was m = 1.634 GeV.

Calculations were done for three lattice sizes, L ≈ 3.4
fm, 4.5 fm and 6.7 fm. The masses of light nuclei and
hypernuclei with atomic number A ≤ 4, and strangeness
|s| ≤ 2, were calculated. Here we focus on nuclei with
A ≤ 3.

Given a cutoff value, three data points are needed to
calibrate the EFT. Here we choose to use the binding
energies of the deuteron, di-neutron (which is found to
be bound for such heavy pion) and triton.

To verify that our results are cutoff independent we
perform calculations with different cutoff values (from 2
fm−1 to 10 fm−1). The results of the largest cutoff values,
which are fully converged, are shown hereafter.

Tab. I summarizes the results from NPLQCD col-
laboration [11] for the finite-volume binding energies of
two and three-nucleon systems calculated at pion mass of
mπ = 806 MeV. For each state three energies were calcu-
lated, corresponding to zero total momentum (n = 0)
as well as two lowest boosted states (n = 1, 2). For
the largest lattice, we use all three states, while for the
two smaller lattices the boosted states deviate from the
ground state, and therefore we did not use them. We
checked, however, that our results do not change sub-
stantially when all states are taken into account.

Solving the Schrödinger equation for each box size, we
find the LECs that best fit the LQCD results of Tab. I
employing least-squares fit. One can then predict the val-
ues for the continuum by solving the Schrödinger equa-
tion in the limit of L −→∞.

Two systems are bound in the two-body s = 0 sector,
namely the deuteron and the di-neutron. The di-neutron
binding energy calculated from the EFT is shown in Fig.
1 as function of lattice size. NPLQCD results, which were
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TABLE I. Light nuclei binding energies (in MeV) calculated
in [11] using LQCD with mπ = 806 MeV for different lattice
size L (in fm).

system L = 3.4 L = 4.5 L = 6.7

nn 17.8 ± 3.3 15.1 ± 2.8 15.9 ± 3.8
2H 25.4 ± 5.4 22.5 ± 3.5 19.5 ± 4.8
3H 65.6 ± 6.8 63.2 ± 8.0 53.9 ± 10.7

2 4 6 8 10 12 14 16
L [fm]

−35

−30

−25

−20

−15

−10

−5

E
[M

eV
]

EFT

NPLQCD

NPLQCD →∞

FIG. 1. The dineutron ground state energy as a function
of the lattice size. EFT results (for Λ = 10 fm−1) are shown
in blue curve, and the NPLQCD results used for fitting are
shown in black squares. The red square shows Ref. [11] esti-
mate for infinte lattice.

used to fit our EFT, are also shown. The band stands for
the error estimation of the EFT, where the main source
of the error is the uncertainty and scatter of the LQCD
results.

In Fig. 2 we show the deuteron binding energy cal-
culated from the EFT, as well as the data points from
LQCD used for fitting. Here also the main source of error
(shown as a band) comes from the LQCD results.

Two bound states exist for nuclei in the three-body
sector, namely 3H and 3He. Following the LQCD calcu-
lations, we eliminate charge-symmetry breaking terms as
well as Coulomb forces and therefore their energies are
degenerate. The triton ground state energy is shown in
Fig. 3 as a function of the lattice size.

Due to the deeper binding of the triton, its wavefunc-
tion is more compact and therefore finite lattice correc-
tions are less important here, as one can see comparing
Fig. 3 to Figs. 1 and 2.

The extrapolated results are summarized in Tab. II
and compared to the values of the largest lattice which
were taken as the infinite lattice limit in Ref. [11]. From
this comparison as well as from the Figs. it can be
seen that our infinite volume results are consistent with

2 4 6 8 10 12 14 16
L [fm]

−40

−35

−30

−25

−20

−15

E
[M

eV
]

EFT

NPLQCD

NPLQCD →∞

FIG. 2. The deuteron ground state energy as a function of
the lattice size. EFT results (for Λ = 10 fm−1) are shown
in blue curve, and the NPLQCD results used for fitting are
shown in black squares. The red square shows Ref. [11] esti-
mate for infinte lattice.

2 4 6 8 10 12 14 16
L [fm]

−100

−90

−80

−70

−60

−50

−40
E

[M
eV
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EFT

NPLQCD

NPLQCD →∞

FIG. 3. The triton ground state energy as a function of the
lattice size. EFT results (for Λ = 10 fm−1) are shown in blue
curve, and the NPLQCD results used for fitting are shown in
black squares. The red square shows Ref. [11] estimate for
infinte lattice.

NPLQCD [11], to within one standard deviation. The
errors associated with our L → ∞ extrapolations are
smaller due to the use of more data points, associated
with smaller error bars.

B. Physical pion mass

In the near future, one would hope to see LQCD calcu-
lation for the physical pion mass. Here we try to predict
the lattice size corrections to the binding energies of light
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TABLE II. Light nuclei binding energies (in MeV) from the
largest lattice of Ref. [11] and extrapolated to to infinite
lattice with out EFT.

system Ref. [11] This work

nn 15.9 ± 3.8 13.8 ± 1.8
2H 19.5 ± 4.8 20.2 ± 2.3
3H 53.9 ± 10.7 58.2 ± 4.7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
L [fm]

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

E
[M

eV
]

FIG. 4. The deuteron energy as a function of box-size for
physical pion mass.

nuclei, which may be utilized to choose the appropriate
lattice size for such calculations.

Three bound nuclei are known with A ≤ 3, namely the
deuteron, triton and 3He. Charge symmetry breaking is
typically ignored in LQCD calculation, and we adopt this
assumption here.

In Fig. 4 the results for the deuteron are shown. The
deuteron binding is very shallow, resulting in a large spa-
tial extent state. As a consequence, the deuteron binding
energy is converged to its asymptotic value only for very
large lattices, L & 20 fm. This emphasizes the impor-
tance of an extrapolation technique to such calculations.

In Fig. 5 the triton binding energy is shown as a func-
tion of the lattice size. Here the results converge faster
to the infinite volume limit, and asymptotic results are
shown for L & 12 fm.

V. CONCLUSION

The effect of the finite lattice size on the light nuclei
binding energies is explored by the construction of pion-

less effective field theory. This theory, fitted to the LQCD
results for small lattices, is then used to extrapolate to
the infinite volume limit by solving the Schrödinger equa-
tion in a finite and infinite boxes.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
L [fm]

−30

−25

−20

−15

−10

−5

0

E
[M

eV
]

FIG. 5. The triton energy as a function of box-size for
physical pion mass.

We study the results of NPLQCD collaboration for
pion mass of 806 MeV and present values for the infi-
nite lattice limit. Our extrapolated binding energies are
similar to those extracted by the NPLQCD collaboration,
albeit with smaller error bars reflecting the use of more
data points with better accuracy.

With an eye on future calculations with physical pion
mass, we predict the lattice size correction for light nu-
clei, showing that results are converging to the infinite
lattice size limit only for L & 20 fm for the deuteron and
for L & 12 fm for the triton. This emphasizes the impor-
tance of proper technique to extrapolate the results from
small lattices.
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