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On the Gravitational Field of a Mass Point according
to Einstein’s Theory1

K. Schwarzschild

§1. In his work on the motion of the perihelion of Mercury (see Sitzungsberichte
of November 18, 1915) Mr. Einstein has posed the following problem:

Let a point move according to the prescription:

δ
∫

ds= 0,

where (1)

ds= √6gµνdxµdxν µ, ν = 1, 2, 3, 4,

where thegµν stand for functions of the variablesx, and in the variation the
variablesx must be kept fixed at the beginning and at the end of the path of
integration. In short, the point shall move along a geodesic line in the manifold
characterised by the line elementds.

The execution of the variation yields the equations of motion of the point:

d2xα
ds2
=
∑
µ,ν

0αµν
dxµ
ds

dxν
ds
, α, β = 1, 2, 3, 4, (2)

where2

0αµν = −
1

2

∑
β

gαβ
(
∂gµβ
∂xν
+ ∂gνβ
∂xµ
− ∂gµν
∂xβ

)
, (3)

1Original title: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Pub-
lished in: Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften zu Berlin,
Phys.-Math. Klasse 1916, 189–196. Submitted January 13, 1916. Translation by S. Antoci, Diparti-
mento di Fisica “A. Volta,” Universit`a di Pavia, and A. Loinger, Dipartimento di Fisica, Universit`a di
Milano. The valuable advice of D.-E. Liebscher is gratefully acknowledged.

2Editor’s note: It should be noted, that Schwarzschild defined the Christoffel symbols with an addition
minus sign in comparison with today’s usual definition.
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952 Schwarzschild

and thegαβ stand for the normalised minors associated togαβ in the determinant
|gµν |.

According to Einstein’s theory, this is the motion of a massless point in the
gravitational field of a mass at the pointx1 = x2 = x3 = 0, if the “components
of the gravitational field”0 fulfill everywhere, with the exception of the point
x1 = x2 = x3 = 0, the “field equations”∑

α

∂0αµν

∂xα
+
∑
αβ

0αµβ0
β
να = 0, (4)

and if also the “equation of the determinant”

|gµν | = −1 (5)

is satisfied.
The field equations together with the equation of the determinant have the

fundamental property that they preserve their form under the substitution of other
arbitrary variables in lieu ofx1, x2, x3, x4, as long as the determinant of the
substitution is equal to 1.

Let x1, x2, x3 stand for rectangular co-ordinates,x4 for the time; furthermore,
the mass at the origin shall not change with time, and the motion at infinity shall
be rectilinear and uniform. Then, according to Mr. Einstein’s list,loc. cit. p. 833,
the following conditions must be fulfilled too:

1. All the components are independent of the timex4.
2. The equationsgρ4 = g4ρ = 0 hold exactly forρ = 1, 2, 3.
3. The solution is spatially symmetric with respect to the origin of the co-

ordinate system in the sense that one finds again the same solution when
x1, x2, x3 are subjected to an orthogonal transformation (rotation).

4. Thegµν vanish at infinity, with the exception of the following four limit
values different from zero:

g44 = 1, g11 = g22 = g33 = −1.

The problem is to find out a line element with coefficients such that the field equa-
tions, the equation of the determinant and these four requirements are satisfied.
§2. Mr. Einstein showed that this problem, in first approximation, leads to

Newton’s law and that the second approximation correctly reproduces the known
anomaly in the motion of the perihelion of Mercury. The following calculation
yields the exact solution of the problem. It is always pleasant to avail of exact solu-
tions of simple form. More importantly, the calculation proves also the uniqueness
of the solution, about which Mr. Einstein’s treatment still left doubt, and which
could have been proved only with great difficulty, in the way shown below, through
such an approximation method. The following lines therefore let Mr. Einstein’s
result shine with increased clearness.
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§3. If one callst the time,x, y, z the rectangular co-ordinates, the most general
line element that satisfies the conditions (1)-(3) is clearly the following:

ds2 = Fdt2− G(dx2+ dy2+ dz2)− H (xdx+ ydy+ zdz)2

whereF , G, H are functions ofr =
√

x2+ y2+ z2.
The condition (4) requires: forr = ∞ : F = G = 1, H = 0.
When one goes over to polar co-ordinates according tox = r sinϑ cosφ,

y = r sinϑ sinφ, z= r cosϑ , the same line element reads:

ds2 = Fdt2− G(dr2+ r 2dϑ2+ r 2 sin2 ϑdφ2)− Hr 2dr2 (6)

= Fdt2− (G+ Hr 2)dr2− Gr2(dϑ2+ sin2 ϑdφ2).

Now the volume element in polar co-ordinates is equal tor 2 sinϑdrdϑdφ,
the functional determinantr 2 sinϑ of the old with respect to the new coordinates
is different from 1; then the field equations would not remain in unaltered form if
one would calculate with these polar co-ordinates, and one would have to perform
a cumbersome transformation. However there is an easy trick to circumvent this
difficulty. One puts:

x1 = r 3

3
, x2 = − cosϑ, x3 = φ. (7)

Then we have for the volume element:r 2dr sinϑdϑdφ = dx1dx2dx3. The new
variables are thenpolar co-ordinates with the determinant 1. They have the evident
advantages of polar co-ordinates for the treatment of the problem, and at the
same time, when one includes alsot = x4, the field equations and the determinant
equation remain in unaltered form.

In the new polar co-ordinates the line element reads:

ds2 = Fdx2
4 −

(
G

r 4
+ H

r 2

)
dx2

1 − Gr2

[
dx2

2

1− x2
2

+ dx2
3

(
1− x2

2

)]
, (8)

for which we write:

ds2 = f4dx2
4 − f1dx2

1 − f2
dx2

2

1− x2
2

− f3dx2
3

(
1− x2

2

)
. (9)

Then f1, f2 = f3, f4 are three functions ofx1 which have to fulfill the following
conditions3:

1. Forx1 = ∞ : f1 = 1
r 4 = (3x1)−4/3, f2 = f3 = r 2 = (3x1)2/3, f4 = 1.

2. The equation of the determinant:f1 · f2 · f3 · f4 = 1.
3. The field equations.
4. Continuity of thef , except forx1 = 0.

3Editor’s note: It should be noted that Schwarzschild had an obvious error in the first of these conditions,
which has now been corrected by the translator.
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§4. In order to formulate the field equations one must first form the components
of the gravitational field corresponding to the line element (9). This happens in
the simplest way when one builds the differential equations of the geodesic line
by direct execution of the variation, and reads out the components from these. The
differential equations of the geodesic line for the line element (9) result from the
variation immediately in the form:

0= f1
d2x1

ds2
+ 1

2

∂ f4

∂x1

(
dx4

ds

)2

+ 1

2

∂ f1

∂x1

(
dx1

ds

)2

−1

2

∂ f2

∂x1

[
1

1− x2
2

(
dx2

ds

)2

+ (1− x2
2

)(dx3

ds

)2]
,

0= f2

1− x2
2

d2x2

ds2
+ ∂ f2

∂x1

1

1− x2
2

dx1

ds

dx2

ds

+ f2x2(
1− x2

2

)2(dx2

ds

)2

+ f2x2

(
dx3

ds

)2

,

0= f2
(
1− x2

2

)d2x3

ds2
+ ∂ f2

∂x1

(
1− x2

2

)dx1

ds

dx3

ds
− 2 f2x2

dx2

ds

dx3

ds
,

0= f4
d2x4

ds2
+ ∂ f4

∂x1

dx1

ds

dx4

ds
.

The comparison with (2) gives the components of the gravitational field:

01
11 = −

1

2

1

f1

∂ f1

∂x1
, 01

22 = +
1

2

1

f1

∂ f2

∂x1

1

1− x2
2

,

01
33 = +

1

2

1

f1

∂ f2

∂x1

(
1− x2

2

)
, 01

44 = −
1

2

1

f1

∂ f4

∂x1
,

02
21 = −

1

2

1

f2

∂ f2

∂x1
, 02

22 = −
x2

1− x2
2

, 02
33 = −x2

(
1− x2

2

)
,

03
31 = −

1

2

1

f2

∂ f2

∂x1
, 03

32 = +
x2

1− x2
2

,

04
41 = −

1

2

1

f4

∂ f4

∂x1

(the remaining ones are zero).
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Due to the rotational symmetry around the origin it is sufficient to write
the field equations only for the equator (x2 = 0); therefore, since they will be
differentiated only once, in the previous expressions it is possible to set everywhere
since the beginning 1− x2

2 equal to 1. The calculation of the field equations then
gives

a)
∂

∂x1

(
1

f1

∂ f1

∂x1

)
= 1

2

(
1

f1

∂ f1

∂x1

)2

+
(

1

f2

∂ f2

∂x1

)2

+ 1

2

(
1

f4

∂ f4

∂x1

)2

,

b)
∂

∂x1

(
1

f1

∂ f2

∂x1

)
= 2+ 1

f1 f2

(
∂ f2

∂x1

)2

,

c)
∂

∂x1

(
1

f1

∂ f4

∂x1

)
= 1

f1 f4

(
∂ f4

∂x1

)2

.

Besides these three equations the functionsf1, f2, f4 must fulfill also the equation
of the determinant

d) f1 f 2
2 f4 = 1, or :

1

f1

∂ f1

∂x1
+ 2

f2

∂ f2

∂x1
+ 1

f4

∂ f4

∂x1
= 0.

For now I neglect (b) and determine the three functionsf1, f2, f4 from (a), (c),
and (d). (c) can be transposed into the form

c′)
∂

∂x1

(
1

f4

∂ f4

∂x1

)
= 1

f1 f4

∂ f1

∂x1

∂ f4

∂x1
.

This can be directly integrated and gives

c′′)
1

f4

∂ f4

∂x1
= α f1, (α integration constant)

the addition of (a) and (c′) gives

∂

∂x1

(
1

f1

∂ f1

∂x1
+ 1

f4

∂ f4

∂x1

)
=
(

1

f2

∂ f2

∂x1

)2

+ 1

2

(
1

f1

∂ f1

∂x1
+ 1

f4

∂ f4

∂x1

)2

.

By taking (d) into account it follows

−2
∂

∂x1

(
1

f2

∂ f2

∂x1

)
= 3

(
1

f2

∂ f2

∂x1

)2

.

By integrating

1
1
f2
∂ f2
∂x1

= 3

2
x1+ ρ

2
(ρ integration constant)
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or

1

f2

∂ f2

∂x1
= 2

3x1+ ρ .

By integrating once more,

f2 = λ(3x1+ ρ)2/3. (λ integration constant)

The condition at infinity requires:λ = 1. Then

f2 = (3x1+ ρ)2/3. (10)

Hence it results further from (c′′) and (d)

∂ f4

∂x1
= α f1 f4 = α

f 2
2

= α

(3x1+ ρ)4/3
.

By integrating while taking into account the condition at infinity

f4 = 1− α(3x1+ ρ)−1/3. (11)

Hence from (d)

f1 = (3x1+ ρ)−4/3

1− α(3x1+ ρ)−1/3
. (12)

As can be easily verified, the equation (b) is automatically fulfilled by the expres-
sions that we found forf1 and f2.

Therefore all the conditions are satisfied apart from thecondition of continuity.
f1 will be discontinuous when

1= α(3x1+ ρ)−1/3, 3x1 = α3− ρ.
In order that this discontinuity coincides with the origin, it must be

ρ = α3. (13)

Therefore the condition of continuity relates in this way the two integration con-
stantsρ andα.

The complete solution of our problem reads now:

f1 = 1

R4

1

1− α/R
, f2 = f3 = R2, f4 = 1− α/R,

where the auxiliary quantity

R= (3x1+ ρ)1/3 = (r 3+ α3)1/3

has been introduced.
When one introduces these values of the functionsf in the expression (9) of

the line element and goes back to the usual polar co-ordinates one getsthe line
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element that forms the exact solution of Einstein’s problem:

ds2 = (1− α/R) dt2− d R2

1− α/R
− R2(dϑ2+ sin2 ϑdφ2), R= (r 3+ α3)1/3.

(14)
The latter contains only the constantα, that depends on the value of the mass at
the origin.
§5.The uniqueness of the solutionresulted spontaneously through the present

calculation. From what follows we can see that it would have been difficult
to ascertain the uniqueness from an approximation procedure in the manner of
Mr. Einstein. Without the continuity condition it would have resulted:

f1 = (3x1+ ρ)−4/3

1− α(3x1+ ρ)−1/3
= (r 3+ ρ)−4/3

1− α(r 3+ ρ)−1/3
.

Whenα andρ are small, the series expansion up to quantities of second order
gives:

f1 = 1

r 4

[
1+ α

r
− 4

3

ρ

r 3

]
.

This expression, together with the corresponding expansions off2, f3, f4, satisfies
up to the same accuracy all the conditions of the problem. Within this approxima-
tion the condition of continuity does not introduce anything new, since disconti-
nuities occur spontaneously only in the origin. Then the two constantsα andρ
appear to remain arbitrary, hence the problem would be physically undetermined.
The exact solution teaches that in reality, by extending the approximations, the dis-
continuity does not occur at the origin, but atr = (α3− ρ)1/3, and that one must
set justρ = α3 for the discontinuity to go in the origin. With the approximation
in powers ofα andρ one should survey very closely the law of the coefficients in
order to recognise the necessity of this link betweenα andρ.
§6. Finally, one has still to derive themotion of a point in the gravitational

field, the geodesic line corresponding to the line element (14). From the three facts,
that the line element is homogeneous in the differentials and that its coefficients do
not depend ont and onφ, with the variation we get immediately three intermediate
integrals. If one also restricts himself to the motion in the equatorial plane (ϑ = 90o,
dϑ = 0) these intermediate integrals read:

(1− α/R)

(
dt

ds

)2

− 1

1− α/R

(
d R

ds

)2

− R2

(
dφ

ds

)2

= const. = h, (15)

R2 dφ

ds
= const. = c, (16)
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(1− α/R)
dt

ds
= const. = 1 (determination of the time unit). (17)

From here it follows(
d R

dφ

)2

+ R2(1− α/R) = R4

c2
[1− h(1− α/R)]

or with 1/R= x (
dx

dφ

)2

= 1− h

c2
+ hα

c2
x − x2+ αx3. (18)

If one introduces the notations:c2/h = B, (1− h)/h = 2A, this is identical to
Mr. Einstein’s equation (11),loc. cit.and gives the observed anomaly of the peri-
helion of Mercury.

Actually Mr. Einstein’s approximation for the orbit goes into the exact solution
when one substitutes forr the quantity

R= (r 3+ α3)1/3 = r

(
1+ α

3

r 3

)1/3

.

Sinceα/r is nearly equal to twice the square of the velocity of the planet (with
the velocity of light as unit), for Mercury the parenthesis differs from 1 only
for quantities of the order 10−12. Thereforer is virtually identical toR and Mr.
Einstein’s approximation is adequate to the strongest requirements of the practice.

Finally, the exact form of the third Kepler’s law for circular orbits will be
derived. Owing to (16) and (17), when one setsx = 1/R, for the angular velocity
n = dφ/dt it holds

n = cx2(1− αx).

For circular orbits bothdx/dφ andd2x/dφ2 must vanish. Due to (18) this gives:

0= 1− h

c2
+ hα

c2
x − x2+ αx3, 0= hα

c2
− 2x + 3αx2.

The elimination ofh from these two equations yields

α = 2c2x(1− αx)2.

Hence it follows

n2 = α

2
x3 = α

2R3
= α

2(r 3+ α3)
.

The deviation of this formula from the third Kepler’s law is totally negligible
down to the surface of the Sun. For an ideal mass point, however, it follows that
the angular velocity does not, as with Newton’s law, grow without limit when the
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radius of the orbit gets smaller and smaller, but it approaches a determined limit

n0 = 1

α
√

2
.

(For a point with the solar mass the limit frequency will be around 104 per second).
This circumstance could be of interest, if analogous laws would rule the molecular
forces.


