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The striking formal similarities between the diagram of Kruskal space in general relativity and
that of the uniformly accelerated rigid rod in special relativity are shown to be the result of

certain physical similarities.

NYONE who has contemplated the Min-
kowski diagram for the “uniformly accel-
erated rod” and the Kruskal diagram for
“extended” Schwarzschild space must have been
struck by their formal similarities. Actually,
these formal similarities correspond to physical
similarities, and since the accelerated rod is
much more easily visualized than Kruskal space,
the former can be used to understand certain
aspects of the latter. The purpose of the present
paper is to exhibit this analogy. At least one
part of the analegy was already noted implicitly
by Einstein and Rosen,! and explicitly by
Bergmann,? namely that the pseudosingularity
at the Schwarzschild radius » =2m resembles the
“cutoff” of the accelerated rod. The other major
similarity which we discuss here is that a static
gravitational field in one region of space-time
involves a preferred instant in the extended
space—time: the instant when r=2m changes
from a collapsing to an expanding light front in
Kruskal space, and the instant when X =0
changes from a negatively to a positively moving
light front in Minkowski space. (See Fig. 1.)
We must necessarily begin by summarizing,
without proof, some of the well-known proper-
ties of Kruskal space and of the accelerated rod.
In its original coordinates, the Schwarzschild
metric of an isolated point mass m is

dst={1=2m/r)de— (1 =2m/r)"1drt—ridw?, (1)
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T A, Einstein and N. Rosen, Phys. Rev. 48, 73-77 (1935).
See especially their remark at the top of p. 75: “The
hypersurface #=0 (or, in the original variables, 7=2m)
plays here the same role as the hypersurface x;=0 in the
previous example.” Nonetheless, they apparently still
believed that r=2m was an intrinsic singularity, whereas
they knew that x; =0 (our X =0) was not.

2 P. G. Bergmann, Phys. Rev. Letters 12, 139 (1964).

with
de?=d§?+sin20d¢2, (2)

where, for simplicity, the units are chosen
so as to make both the speed of light and the
constant of gravitation equal to unity.? This
metric suffers from two blemishes: (i) it has
an apparent (coordinate-dependent) singularity
at the ‘“Schwarzschild radius” r=2m, and (i1)
it is extensible—i.e., there are free paths (time-
like geodesics) which, when produced indefinitely
in their own proper time, lead outside the region
covered by the chosen coordinates without en-
countering a singularity. For example, a radially
outgoing free particle is found to have crossed
7=2m at a finite instant by its own proper time
reckoning, but at Schwarzschild coordinate time
f= — o ; again, an infalling iree particle crosses
r=2m at a finite proper time, but at {= - .

Kruskal* discovered a metric which represents
a ‘“maximal analytic extension” of Schwarz-
schild’s metric. His coordinates # and v take the
place of Schwarzschild’s » and ¢, respectively,
and his metric is

ds?= f2(dv®— du?) — r’de?,
f2=(32m?/7) exp{—r/2m), 3)

where dw? has the same significance as in (2),
and r=r(u,v) is defined uniquely by

(r/2m—1) exp(r/2m)=u>—2*, r>0. (4)
With (4), and the additional relation
t=4m arctanh (v/u), (5)

it can be shown that the “quadrant” u> |v]

3See, for example, R. C. Tolman, Relativity, Thermo-
dynomics and Cosmology, (Oxford University Press, Oxford,
England, 1934), pp. 202-203.

+M. D. Kruskal, Phys. Rev. 119, 1743 (1960). In the
present paper ds? is chosen opposite in sign to Kruskal’s,
and £ and w are written for his T and m*.
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F1G. 1. (a) The Kruskal diagram and (b) the
uniformly accelerated rod.

[marked S, in Fig. 1(a)] of Kruskal space cor-
responds to (i.e., transforms into) the whole
of “outer’” Schwarzschild space, characterized
by (1) with — o <f<-4» and r>2m. On the
other hand, the metric (3), subject to (4), is
analytic throughout the region »?—#?<1, and it
is inextensible. At ?—u?=1, (i.e.,, r=0) the
space becomes intrinsically singular, in the sense
that the curvature becomes infinite. As a matter
of fact, the quadrant « < — |v| (marked Sq) cor-
responds to another copy of outer Schwarzschild
space, while each of the regions || <v < (1+u?)},
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—(14uw)i<yv<—|u| (marked S; and S; re-
spectively) corresponds to a space having metric
(1) but r<2m, i.e., an “inner” Schwarzschild
vacuum metric, which also satisfies the Einstein
vacuum-field equations and spherical symmetry;
in that region, however, r is timelike and ¢
spacelike.

The definition of time in general relativity is
very largely arbitrary. Any one-parameter family
of spacelike hypersurfaces drawn through space~
time, such that each event lies on exactly one
of them, and such that the (real, continuous)
parameter \ is in one—one correspondence with
the hypersurfaces, provides an acceptable defini-
tion of time, viz.,, A. (Even this kind of time
cannot always be globally defined.) Evidently
Kruskal’'s » is an acceptable and convenient
time coordinate. The hypersurfaces v=constant
before time y=—1 consist of two disconnected
branches, each quasi-Euclidean for large |u],
but having a spherically symmetric cuspidal
singularity at 7=0: the three-dimensional analog
of the two-dimensional singularity obtained by
sticking a sharp pencil into a stretched rubber
sheet. At time v= —1 these two branches spring
a connection at their cusps, which develops into
a smooth bridge or “wormhole,” reaching its
maximum radius 2m at 9=0; thereafter the
bridge shrinks and finally breaks off at »=1,
whereupon the branches separate again. To
avoid such splitting of the spatial universe by
a mass point (although it may well be objected
that a real mass point corresponds to a more
sophisticated metric), I have elsewhere® sug-
gested a topological identification of the Kruskal
event pairs (#,9,8,¢) and (—u, —v, 6, ¢).

It is important to observe that in Kruskal’s
metric there is no singularity whatever at r = 2m,
though what goes on there is nevertheless of
considerable interest. Radial light-rays (null
geodesics) in that metric correspond precisely
to the lines with slope &1 in the diagram
(e.g., v==u). The hypersurface r=2m is null,
i.e., a potential light front, and the paths r=2m,
6=constant, ¢=constant, are null geodesics. At
each v instant, the surface r=2m is simply a

5 W. Rindler, Phys. Rev. Letters 15, 1001 (1965). I learned
recently that G, Szekeres had already proposed thisin Publ.
Math. Debrecen 7, 285 (1960), and that he, in fact, had
independently obtained the Kruskal metric.
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2-sphere of radius 2m. Note, incidentally, that
each point in the Kruskal diagram represents a
2-sphere having for its radius the » correspond-
ing to that point. Now suppose an observer A
remains at fixed 7, 8, ¢ in the region S,. It is easily
verified® that A is then in “hyperbolic motion”
with proper acceleration m/#2(1—2m/r)%, and
thus he experiences a constant gravitational field
of precisely that intensity. Moreover, his world
line is infinitely extensible in his own proper
time into past and future. It is therefore some-
what surprising that the cause of this time-
infinite static field in S, is nonstatic: what goes
on inside r =2m has a definite time development,
and, in fact, a preferred time origin, v=0. At
that instant the light front v= —u, which we
call L; and which bounds S; below, suddenly
peels off and disappears into “another space,”
while from that other space a second light front
Ls (v=wu) has come to replace L;.

It is clear from the diagram that every radially
outgoing light ray in .S; can be produced back-
wards, and has crossed L; at some finite
(negative) v instant. The same can be shown
to be the case for radially outgoing free particles.
Observers like A can therefore have knowledge
of events inside r=2m, though not of all such
events: precisely of those in the region S;. Events
of that region are seen by A at all times. Events
occurring above the line v=# in the diagram
are totally unknowable to observers confined to
Sy: thus L is an “event horizon”7 for all such
observers. Of course, both light and particles
can be sent from .Sy into »=2m, but, again, not
to all events inside: precisely to those in the
region S;.

The observer A might draw a space—time
diagram such as that in Fig. 2(a) of his region
of interest. He has realized the deficiencies of
the Schwarzschild time coordinate £, and adopts
Kruskal’s ». He straightens the “kink” in the
lower bound (v<0: Ly, v>0: Ly) of S, and he
also straightens his own world line. Except for
the hypertubular region » <2m, his space-time
is reasonably ‘‘ordinary,” and becomes Min-
kowskian for large r. But the tube has that
strange origin v="0, at which instant it changes
the direction of its penetrability to light rays

5 See W. Rindler, Phys. Rev. 119, 2082 (1960).

?See W. Rindler, Monthly Notices Roy. Astron. Soc.
116, 662 (1956).
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Fic. 2. Space-time diagrams of (a) outer Schwarzschild
space and (b) the parallel gravitational field.

(indicated by the dotted lines) and matter. And,
of course, it is a gateway, or wormhole, to an-
other whole universe similar to, but distinct
from, A’s (unless some such identification as
suggested in Ref. 5 above is adopted).

Now for the uniformly accelerated frame. Con-
sider a rod of arbitrary length resting along the
x axis of Minkowski space V. At time (=0, we
wish to give one point of the rod a certain
positive constant proper acceleration, and we
want the rod as a whole to “‘move rigidly,”? i.e.,
in such a way that the proper length of each of
its infinitesimal elements is preserved. It turns
out that each point of the rod must then move
with a different though also constant proper
acceleration, the necessary acceleration increas-
ing in the negative x direction and becom-
ing infinite at a well-defined point of the rod;
the rod can evidently not be extended beyond
or even quite up to that point, since an infinite
proper acceleration corresponds to motion at the
speed of light. If we arrange things so that this
“cutoff”’ point lies originally (i.e., at £=0) at the
origin, the equation of motion of the point origi-
nally at x=X is

P— =X 6)

(we recall that the units are chosen so as to
make ¢=1). We take X as a convenient spatial
coordinate oxn the rod. We can, of course, con-
tinue the motion backward in time, i.e., assume
that what we called the *‘original” position of

& For a discussion of this situation, see, for example, W.
Rindler, Special Relativity (John Wiley & Sons, Inc,
New York, 1966), 2nd ed., p. 42.
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the rod at t=0 was merely a position of instan-
taneous rest, and that the various points of the
rod are subject to constant proper acceleration
for all t>— ». Figure 1(b) shows the world
lines X =constant (hyperbolas) of some fixed
pointts of the rod, and ‘‘snapshots’” of the rod
at t=0 and two other instants of Minkowski
time. The lines ¢= & x divide the plane into four
regions, viz., Ry (that occupied by the rod) and
then, counterclockwise, R;, Bo, and R,.

It can be seen from (6) that the proper ac-
celeration of the point X of the rod is 1/X.
Hence an observer at X feels a constant gravi-
tational field of intensity 1/X. The observers
on the rod can so synchronize their clocks that
each sees all the other clocks neither gain nor
lose relative to his own; each observer must
simply speed up his proper clock by a factor
equal to the reciprocal of his coordinate X. Let
T denote this new time. Then the relation be-
tween x, ¢ (Minkowski coordinates) and X, T
(rod coordinates) is given by

x=X cosh?, =X sinhT, )
whence
t/x=tanhT, (8)
and also
dst=dpR—dx?=X2d1?—dX2. (9

The ‘“‘velocity reversal” event of each fixed
point on the rod is, of course, not absolute: it
depends on the inertial frame from which the
rod is viewed. A Lorentz transformation applied
to the Minkowski coordinates,

x’ =% coshy —¢ sinhy,

¥ = —x sinhy+£ coshy, (10)
where
exp2y = (1+v)/(1-v)
induces the transformation
X'=X, T'=T—y (11)

on the rod coordinates (X’ and 7" being defined
similarly to X and 7 in terms of 1" and #'). Thus
the hyperbolas X = constant go over into them-
selves and each T'=constant line goes over into
another. The velocity reversal for all rod points
now occurs ¢ units earlier by rod time. But the
velocity reversal of the cutoff point X=0 45 a
unique event! The lines {= +x (marked Z, and
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L, in the diagram) are potential light paths. At
t=0 the photon L, at the end of the rod peels
off and disappears into the distance. Another
photon I, has come from distant space and
taken its place. Thus, A knows theoretically that
his extended space has, relative to him, a pre-
ferred time origin, though in his own region he
cannot find a preferred moment.

The analogy with Kruskal space should now
be clear:

(i) Each radius vector (f=-constant, ¢=con-
stant, # > 2m) in outer Schwarzschild space .S,
corresponds qualitatively to a uniformly accel-
erating rod. Of course, the force laws are differ-
ent: in Sy the force varies inversely as the
squared distance, while on the rod it varies in-
versely as the distance.

(iii) Minkowski and rod coordinates corre-
spond to Kruskal and Schwarzschild coordinates,
respectively. This is seen by comparing (4) and
(5) with (6) and (8), or simply from the diagrams
in Fig. 1.

(iii) Just as the accelerated rod cannot be
continued beyond X =0, so a radial rod, each of
whose points is fixed at constant » in .Sy, cannot
be extended beyond r=2m. The changeover of
the photons at the lower “‘ends’ of the rods is
analogous in Sy and R,. L. is the event horizon
for observers in Ry, who can have knowledge of
events in R; but not in R; or Ry; they can send
information only to events in R;. Events of R;
are seen by observers on the rod at all times.

(iv) A pseudo-Lorentz transformation (10)
applied to #, v in place of x, ¢ leaves invariant
the form of the Kruskal metric, just as (10)
leaves invariant the form of the Minkowski
metric, and it induces a transformation

v'=r, t'=t—4my (12)

of the Schwarzschild coordinates associated with
the Kruskal coordinates in analogy with (11).

(v) If we consider not one rod but many, one
along each line y=constant, g=constant, in ¥V,
and all moving according to (6), we have the
standard model of a parallel gravitational field.
Of course, there is a cutoff, namely the “plane”
X =0, where the field becomes infinite. An ob-
server A in that field might draw a space-time
diagram of his region of interest such as is shown
in Fig. 2(b), which is analogous to Fig. 2(a).
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(vi) To illustrate the formal similarity be-
tween conditions at »=2m and X =0, we adapt
Bergmann’s argument (Ref. 2) and then go one
step further. By a suitable choice of the units
of mass, time, and distance we can make not
only the constant of gravitation and the speed
of light equal to unity, but also m=%, whence
r=1% at the Schwarzschild radius. Then, writing
X*=1—-2m/r and T =¢, we have (suppressing
the 8, ¢ terms) from (1)

45t = (1=2m/r)de— (1= 2m/)dr?
=X — (1—X?)~4dX?

=X0T2— (144X - - -)dX? (13)

for small X. This shows an analogy between the
metrics (1) and (9) near the “critical” loci. A
further transformation of type (7)—say, u
=X coshT, v=X sinh?—Ileads to

1 } (udu —vdv)?

ds2=dv2——du2+{i-—
(I+e2—u?)t)  (u?—2%)

(14)
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This metric does not reduce to dv*—du? at the
critical locus #2—92=0, but it is nevertheless
regular there. In fact, though much less elegant
and convenient than Kruskal's, the metric (14)
also represents a maximal analytic extension
of outer Schwarzschild space. In it, the singu-
larity #=0 has gone to the infinite part of the
diagram (2*—2%— =) while 7= has come to
the finite part: #?—?=1.

It may be remarked that deSitter space, in
the original time-independent metric, also repre-
sents a static gravitational field and as such
possesses a cutoff, namely at the well-known
horizon light front. In the maximal analytic
extension there also exists a definite moment at
which this horizon changes its character from
an outgoing to an incoming light front. Similar
sudden changeovers occur in the Reissner—
Nordstrém and Kerr metrics, which each pos-
sess fwo horizons. This situation seems to be
characteristic of static gravitational fields, and
the uniformly accelerating frame illustrates the
mechanism.



