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Extraction of Rotational Energy
from a Black Hole

TuEeRE has been considerable interest recently in the question of
the gravitational collapse of a massive body and of the possible
astrophysical consequences of the existence of the “black hole”
which general relativity predicts should sometimes be the result
of sucha collapse. In particular, the question has arisen whether
the mass—energy content of a black hole could, under suitable
circumstances, be a source of available emergy. We now
consider the extraction of rotational energy from a black hole,
not least, becanse the rotational energy (defined appropriately)
of a black hole should, in general, be comparable with its total
mass—energy’.

The extraction of rotational energy from neutron stars is
important in the theory of pulsars (in which case the rotational
energy is of the general order of only 10-° of the mass-energy
of the object), where the coupling between angular momentum
of the star and the surrounding medium is presumed to be
achieved by means of magnetic field lines in plasma. It is
exceedingly unlikely that such a process could be made to work
in the case of a black hole, for the magnetic dipole moment of
a collapsing body should be effectively swallowed in a very
short space of time by the resulting black hole, the external
dipole field being radiated away (ref. 2 and unpublished work
of W. Israel). The coupling we shall now describe between the
angular momentum of the black hole and that of the external
world depends on a somewhat contrived process, but once it has
been established that such a process is theoretically possible, it
becomes reasonable to ask whether processes of this general
kind might occasionally even occur naturally. (An even more
contrived process is described in ref. 3.)

The process we suggest depends on a property of Kerr’s
solution of Einstein’s vacuum equations*. This solution
describes a rotating black hole, and is interesting because there
are strong indications that it may in fact represent the general
limiting situation of a black hole, any additional asymmetries



being rapidly eliminated by gravitational radiation (ref. 2 and
unpublished work of B. Carter). Our process depends on the
existence of a region between the two surfaces known as the
stationary limit and the (absolute) event horizon. Thestationary
limit is a surface at which a particle would have to travel with
the local light velocity in order to appear stationary to an
observer at infinity; and just inside which no particle (its
velocity having to be bounded by the local light velocity) can
sremain stationary as viewed from infinity. The event horizon
is the effective boundary of the black hole inside which no
information can escape to the outside world. The stationary
limit lies outside the event horizon in the Kerr solution touching
it only where they intersect the rotation axis. (The stationary
limit and the event horizon coincide in the case of the Schwarz-
schild solution, which is thelimiting case of the Kerr solution for
zero angular momentum).

To define the stationary limit more precisely, we consider
the Killing vector (say, ¢/d¢) which generates the time-translation
symmetry of the Kerr solution. This becomes null at the
stationary limit and spacelike within it. The Killing vector
/0t is uniquely defined by the property that it is timelike with
unit norm at infinity. The mass—energy of a test particle with
four-momentum p, is defined to be its scalar product with 9/ot,
namely the f-component, p,. This quantity is conserved in
collisions, is conserved along the world line of a freely moving
particle between collisions, and agrees with the ordinary
definition of mass—energy at infinity, so unquestionably it does
describe the energy of a test particle correctly (as measured from
infinity). The significance of the region between the stationary
limit and the event horizon is that because 0/0¢ is spacelike there,
it is possible for the energy po to be negative in this region even
though the vector p, may be timelike (or null) and future
pointing (as it must be for a real particle). Inside the event
horizon this can still be true, but is of little value to us because
the effects cannot be observed from outside.

Our process is now as follows, A particle (0) with four-
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momentum p, is dropped into the relevant region. It then splits
into two particles 1 and 2, with
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Pa=pPatDa
so that the mass—energy (as measured from infinity) of one of
them is negative
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and such that the other escapes back to infinity. The first of
these is then “swallowed’’ by the black hole (it crosses the event
horizon, in other words) while the second carries more mass—
energy back to infinity than the original particle possessed
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Thus some of the energy of the black hole has been extracted in
the process.

It will be necessary to go into some detail in order to show
that such a process actually can be realized with physical
particle orbits, We demonstrate this with an explicit example.
It is convenient to choose coordinates for the Kerr metric so
that it takes the form '

ds?=dt2—dr?—dp2+2a sin? 0 dr do—(r*+a?) sin® 8 do?
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where S=r2+ 42 cos? 0 (ref. 5). We choose units so that c=1;
then m= GM and a=J/M, where M is the gravitational mass,
G is Newton’s constant of gravitation and J is the angular
momentum of the “hole”, and thus « is the specific angular
momentum of the hole. The coordinates have been chosen so
that for a> 0, test particles with ¢ > 0 revolve in the same sense
as the hole spins, and so that when a=0 the metric reduces to
the Eddington-Finkelstein form of the Schwarzschild solu-
tion® 7, ¢ being an advanced time parameter.
The stationary limit and the event horizon occur at

r=m+/m*—a* cos* 9

and
r=mta/mi—a*=rs

respectively. For a particle travelling on an equatorial geodesic
9=mn/2, and p* and p, are always zero (numbering the coordin-
ates xX°=1, xt=r, x2=9, x3=¢). Because both 0/0f and o/op
are Killing vector fields, not only the particle’s energy E=pg
but also its angular momentum A= — p5 is a conserved guantity.
In the equatorial plane the stationary limit is at r=2mand a
physical (that is, non-spacelike and future-directed) test particle
has negative energy E if and only if A<0 and r—2m< — Ap?
r/AZ2, where |1 is the rest mass of the particleand A=r2—2mr+a*.
The least energy such a particle can have is

2maA + v/ Ar{rAZ + p? (r3+a*r+2ma®)}
r34+a® (r+2m)
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Taking a=9m/10, a specific angular momentum not very
different from that of the Sun, then the event horizon occurs
at re=m(1++/19/10)<3m/2. Let the particle (0) have unit
rest mass and unit energy (so it drops from rest at infinity).
Suppose that at r=1.75m, (0) splits into particles (1) and (2)
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pi =p1 __I_p‘.l

From formula (1), the least energy a physical test particle can
have at r=1.75m, obtained by putting p=0, is approximately

(1)
0.0872A/m. Therefore a convenient permitted value for E is
1) @
E=A[20m €)
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Writing A =om E and solving equations (2) and (3) for E and
(2)
E we get
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In order for (0) to get inside r=2m, it is necessary that

(0) o~

A <481m/180. Therefore the numerator is positive, and to

recover the largest possible amount of energy we must take the

largest possible value of a less than 20. A physical test particle

at r=1.75m which ultimately escapes to infinity must have A

less than approximately 2.96 Em. Hence it is convenient to take
© 1) @ (0)

a=2,9. In order to be able to satisfy pt=p*--p! at r=1.75m, p?

(©)
must be small. Thus we choose A so that (0) has nearly reached
©0)
an apsis at »=1.75m. The choice A=2.63m will do. With these
©) 1) ()

values for a and A, we have E= —0.0158 and E=1.0158. The

apsidal equation

wr3r2=(E*>—pu®)r3+ 2mucr? +(a*(E*— p?) —A¥r+

2m(A—aE)?



©) (1)
for (0) gives p* = —0.0341. Ch oosing p=0 the apsidal equations

1) @) (2)
for (1) and (2) givep' = — 0.0411, p*==0.007 and p=0.306. Thus
(2) is moving outwards with more energy than (0) possessed and
escapes to infinity. The particle (1) has negative energy and
cannot escape outside 7=2m; it finally falls to within the event
horizon. The angular momentum of (2) exceeds that of (0) by
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— A, that is, approximately 0.3 16m.
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&e do not know what upper limit for E is attainable for
processes of this kind. But if the efficiency of the process is to
be gauged by the ratio of energy gained to angular momentum
(because, after all, it is the rotational energy of the hole that we
are proposing to extract), then we are constrained by formula (1)
which gives us the inequality
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This also expresses the fact that the scalar product of p* with
the null Killing vector at the event horizon must be positive
(1)
when (1) crosses the horizon. Thus the energy gain (— E) cannot
be greater than a/2mir+ times the angular momentum gain

(1)

(=A). ;
It is interesting to note the relation of this inequality to
another phenomenon, namely the apparent fact that ithe size
of the hole (as measured by the surface area of its event horizon)
increases even though its mass M can decrease. The surface
area of r=r; at f=constant (or, indeed, of any other cross-
section of the tube r=r4) is

A=8mmrs

: ) : 1) _
setting dm= — E and d{ma)y=—A we retrieve the inequality (4)
in the form d4>0. In fact, from general considerations one
may infer that there should be a natural tendency for the
surface area of the event horizon of a black hole to increase
with time whenever the situation is non-stationary. Thus the
ideal of maximum efficiency would appear to be achieved
whenever this surface area increase is as small as possible. The



particular example described here is somewhat inefficient in this
respect.
We thank R. P. Geroch for discussions.
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