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Abstract. We use self-consistent mean-field methods in combination
with the interacting boson model (IBM) of nuclei, to establish a link-
age between universal energy density functionals (EDFs) and partial
dynamical symmetry (PDS). An application to '%®Er shows that IBM
Hamiltonians derived microscopically from known nonrelativistic and
relativistic EDFs in this region, conform with SU(3)-PDS.
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1 Introduction

The concept of dynamical symmetry (DS) is by now widely recognized to play a
key role in the structure of nuclei. Its basic paradigm is to write the Hamiltonian
of the system in terms of the Casimir operators of a chain of nested algebras,
Gayn O G1 D G2 D -+ D Ggeym, Where Ggyy is the dynamical (spectrum
generating) algebra of the system such that operators of all physical observables
can be written in terms of its generators and Gy, is the symmetry algebra [1].
A dynamical symmetry is characterized by complete solvability for all states in
terms of quantum numbers, which are the labels of irreducible representations
(irreps) of the algebras in the chain.

A notable example of such algebraic construction is the interacting boson model
(IBM) [2], which describes low-lying quadrupole collective states in nuclei in
terms of N monopole (s) and quadrupole (d) bosons. In this case, Ggyn =U(6)
and Ggym = SO(3). The model accommodates several DS chains with lead-
ing subalgebra G; = U(5), SU(3) and SO(6), whose spectra resemble known
paradigms of nuclear collective structure: spherical vibrator, axially-deformed
rotor and y-soft deformed rotor, respectively.
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Geometry is introduced in the IBM through an energy surface,
Ewm(B,7) = (8,7 N|H|B,7; N) ¢))
defined by the expectation value of the Hamiltonian in a coherent state [3,4],

18,7 N) = (N) 28,7V [0), (2a)
bi(B,7) = (14 52)"Y2[Bcosvd) + Bsiny(dh +d',)/vV2+sT]. (@b

Here ( B8, ~y) are quadrupole shape parameters in the IBM, whose values, (5o, 7o),
at the global minimum of Eipy (B ,7v) define the equilibrium shape for a given
Hamiltonian. The shape can be spherical (59 = 0) or deformed (8y > 0)
with 79 = 0° (prolate), 79 = 60° (oblate), 0° < vy < 60° (triaxial) or ~-
independent. The equilibrium deformations associated with the DS limits, con-
form with their geometric interpretation, and are given by By = 0 for U(5),
(Bo = V2,70 = 0°) for SU(3) and (B = 1, arbitrary) for SO(6). The co-
herent state |Bo,v0; V) (2), with the equilibrium deformations, serves as the
intrinsic state for the ground band.

The merits of a DS, with its analytic and geometric attributes, are self evident.
However, in the majority of nuclei, an exact DS rarely occurs and one is com-
pelled to break it. More often some states obey the patterns required by the
symmetry, but others do not. The need to address such situations, but still pre-
serve important symmetry remnants, has motivated the introduction of partial
dynamical symmetry (PDS) [5,6]. The essential idea is to relax the stringent
conditions imposed by an exact DS so that solvability and/or good quantum
numbers are retained by only a subset of states. Detailed studies in the IBM
framework, have shown that PDSs account quite well for a wealth of spectro-
scopic data in various types of nuclei [5-11] and are relevant to related quantum
phase transitions and shape-coexistence [12—16]. In all these phenomenological
studies, an Hamiltonian with a prescribed PDS is introduced, its parameters are
determined from a fit to the spectra, and the PDS predictions (which are often
parameter-free) are compared with the available empirical energies and transi-
tion rates. In the present contribution, we show that the PDS notion is robust and
founded on microscopic grounds [17].

PDSs do not arise from invariance properties of the Hamiltonian, hence can be
referred to as emergent symmetries. The role of an emergent Sp(3,R) DS has
been recently demonstrated within ab-initio calculations of light nuclei [18, 19].
Here we focus on heavy nuclei, and present an efficient procedure to uncover
the microscopic origin of PDS by linking it to universal nuclear energy density
functionals. We apply the procedure to '®®Er, in which the SU(3)-PDS was
previously recognized on phenomenological grounds [6-8].

68



Linking Partial Dynamical Symmetry to Nuclear Energy Density Functionals
2 SU(3) PDS: A Phenomenological Approach

The SU(3) dynamical symmetry limit and basis states correspond to the chain,
U(6) > SUB) > S0(B3)  [INJ(AwKL) | )

The SU(3)-DS Hamiltonian involves the Casimir operators, é(;, of the alge-
bras in the chain. The spectrum consists of SU(3) multiplets with the states
[[N](A, ) K L) specified by the total boson number N, the SU(3) irrep (A, p),
the angular momentum L, and the label K which corresponds to the pro-
jection of the angular momentum on the symmetry axis. The lowest multi-
plets have (A, ) = (2N,0) which contains the ground band g(K = 0), and
(A, ;1) =(2N — 4, 2) which contains both the (K =0) and (K =2) bands.

Following the general algorithm [5, 10,20], the SU(3)-PDS Hamiltonian is con-
structed to be [6],

Hpps = hoPJPy+haP) - Py +pL- L. )

Here P} = dt-df —2(s")2, Pf = 2d} st-+v7(dtd))P, Py = (=1)™ Py _pn,
L the angular momentum operator and standard notation of angular momentum
cpupling is uss:d. For hQ = Ahg, prDsAreduces to the SU(3):DS Hamiltonian
Hps = ha[=Csy(3)+2N (2N +3)]+p Cso(s)- For hg # ha, Hpps is no longer
diagonal in the SU(3)-DS chain (3), but still has a subset of eigenstates with good
SU(3) symmetry. This comes about because Py and P, annihilate the states
|[[N](2N,0)K =0, L) comprising the ground band g(K =0) and P, annihilates
also the states |[N](2N — 4k, 2k) K =2k, L) comprising the v* (K = 2k) bands.
In particular, the ground and gamma bands remain solvable with good SU(3)
quantum numbers, (A, 1) = (2N,0) and (2N — 4, 2), and energies

g(K=0): E=pL(L+1), (5a)
Y(K=2): E=hy6(2N — 1)+ pL(L+1), (5b)

while the 5(K =0) band is mixed.

In a phenomenological approach, the parameters of Hppg are determined from
a fit to experimental energies; ho and p from E(21) and E(25), using Eq. (5),
and hg from E(03). As shown in Figure 1, a PDS calculation with parameters
indicated in the caption, provides a good description for the lowest bands in
168Fr, [6]. The ground and gamma are pure SU(3) bands, but the beta band
is found to contain 13% admixtures into the dominant (2N — 4,2) irrep [7].
Since the wave functions of the solvable states are known, it is possible to obtain
analytic expressions for matrix elements of observables between them. The E2
operator can be transcribed as T'(E2) = a Q® + 0 (d's + std), with Q) =
dis + std — ?(de)(z), an SU(3) generator. Since the solvable ground and
gamma bands reside in different SU(3) irreps, Q(Q) cannot connect them and,
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Figure 1. (Color online) Left panels: observed spectrum of ‘8Er compared to an SU(3)-
PDS calculation employing Hpps of Eq. (4) with hg = 8, ho =4, p = 13 keV and
N = 16, for which the ground and v bands are pure while the 8 band is mixed, with
respect to SU(3). Right panel: comparison of the PDS parameter-free predictions with
the data on relative B(E2; L, — L) values for y — g F2 transitions in '*®*Er. Adapted
from [6,8].

consequently, B(E2) ratios for v — g transitions do no depend on the E2
parameters («, #) nor on parameters of the PDS Hamiltonian (4). Overall, as
shown in the right panel of Figure 1, these parameter-free predictions of SU(3)-
PDS account well for the data in 1%%Er [6, 8].

ﬁst in Eq. (4) decomposes naturally into intrinsic and collective parts. The
former, consisting of the A and ho terms, determines the energy surface (1) and
band-structure, while the latter, consisting of the p term, determines the in-band
rotational splitting. Such a resolution is valid also for the general IBM Hamilto-
nian describing the dynamics of a prolate-deformed shape, which reads [21],

H= hoPg(ﬂo)Po(ﬂo) + thg(ﬂo) : 152(ﬂ()) + pf/ L. (6)

Here P (Bo)=d' -d" — B2(s")2 and P (o) = Bov/2d}, st + VT(dTdN P Tts
energy surface, obtained from Eq. (1), is given by

Epm(B8,7) = N(N —1)(1 + B%)?[ho(ﬁz - B83)?
+2ho (8% — 2B0Bcos 3y + B3)] . (7)

For hg, he >0, the surface has a global minimum at (B =B >0,7v=0°), corre-
sponding to a prolate-deformed equilibrium shape. The contribution of the rota-
tional p-term to the energy surface is 1 /N suppressed, hence negligible. Py(5o)
and Ps,, (5o) annihilate the states with angular momentum L projected from the
intrinsic state |39, =0; N) (2). The Hamiltonian H of Eq. (6), reduces to
ﬁst of Eq. (4), when the following conditions are met,

SUB)PDS: ho#hy , Bo=V2. (8)

In what follows, we show that IBM Hamiltonians derived from microscopic con-
siderations for '58Er, exhibit spectral properties of SU(3)-PDS.
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3 SCMF to IBM Mapping

The nuclear energy density functional (EDF) framework allows for a reliable
quantitative prediction of ground-state properties and collective excitations of
nuclei over the entire region of the nuclear chart. Its basic implementation is in
self-consistent mean-field (SCMF) methods, in which an EDF is constructed as
a functional of one-body nucleon density matrices that correspond to a single
product state. Pairing correlations are taken into account by a choice of pairing
force. In the present contribution, we consider both nonrelativistic [22,23] and
relativistic [24,25] EDFs, so as to ensure the robustness of the results.

The starting point is a set of constrained SCMF calculations of an energy
surface [26]. The constraints refer to those for mass quadrupole moments,
which are associated with the deformation parameters 3 and - [27]. For the
nonrelativistic SCMF calculations, we employ the the Hartree-Fock plus BCS
model [28, 29] with two parameterizations of the Skyrme EDF [26] and a
density-dependent delta force with strength Vj. Specifically, the SLy4 [30] pa-
rameterization with pairing strengths V; = 1000 and 1250 MeVfm?®, and the
SkP [31] parameterization with V; =800 and 1000 MeVfm?®. A smooth cut-off
of 5 MeV below and above the Fermi surface is invoked for these zero-range
pairing forces [31]. For the relativistic SCMF calculations, we employ the rela-
tivistic Hartree-Bogoliubov model [24,32] with two types of EDFs. Specifically,
the density-dependent point-coupling (DD-PC1) [33] and meson-exchange (DD-
ME?2) [34] functionals, both with a separable pairing force of finite range [35]
and strengths V) = 728 and 837 MeVfm?, resembling a finite-range Gogny in-
teraction D1S.

The calculated SCMF energy surfaces Escyr(3,7) for 1°®Er, based on the
above nonrelativistic and relativistic EDFs, are displayed on the first and third
columns of Figure 2, respectively. As seen, all adopted EDFs lead to energy
surfaces accommodating a pronounced prolate-deformed global minimum at
(8 ~ 0.35,7 = 0°). The minimum tends to be less steep, in both the 5 and
~ directions, for larger pairing strengths. This is anticipated since pairing corre-
lations favor a more spherical shape.

From the ensemble of Hamiltonians given in Eq. (6), the IBM Hamiltonian ap-
propriate for '*®Er is derived by the procedure developed in [36—38]. The param-
eters {ho, ha2, Bo} are determined by mapping the microscopic energy surface
Escmr(8,7), obtained for a given EDF, onto the corresponding IBM surface
Ersm(B,7) of Eq. (7). The condition,

Escvr(B,7) = Em(B,7) , &)

is imposed to ensure similar topology in the neighborhood of the global mini-
mum. (The two surfaces are expressed in terms of (3, since the IBM and SCMF
deformations are related by 3 = C'3, where the constant C is determined by the
mapping). N is fixed by the usual boson counting, from the number of valence
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Figure 2. (Color online) SCMF energy surfaces in the 8- plane for '%®Er, based on the
nonrelativistic Skyrme SLy4 and SkP EDFs (first column) and the relativistic DD-PC1
and DD-ME2 EDFs (third column) with different values of pairing strengths V in units
of MeVfm?®. The corresponding mapped IBM energy surfaces are plotted on the second
and fourth columns. Contour spacing is 0.25 MeV, and the global minimum is indicated
by a solid circle. Adapted from [17].

nucleon pairs counted from the nearest closed shell. The parameter p, Eq. (6), is
obtained by equating the cranking moment of inertia in the IBM to the Thouless-
Valatin value [39], the procedure discussed in detail in [38]. The mapped IBM
energy surfaces, based on the nonrelativistic and relativistic EDFs, are shown on
the second and fourth columns of Figure 2, respectively. One clearly sees that
the IBM and microscopic surfaces share common essential features near and up
to a few MeV above the global minimum. In what follows, we examine to what
extent the derived EDF-based IBM Hamiltonians fulfill the conditions (8) for
SU(3)-PDS.

4 SU(3) PDS: An EDF-Based Approach

The parameters of the Hamiltonian H, Eq. (6), derived microscopically from
various EDFs, are given in Table 1, along with the parameters of Hppg, Eq. (4),
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obtained from a fit to '%3Er [6]. As discussed in Section 2, in the latter phe-
nomenological calculation, SU(3)-PDS was pre-assumed, hence condition (8) is
satisfied with 5y = v/2 and hg /ho =2. In comparison, in most SCMF calcula-
tions, 1.9 < hg/he < 2.8, consistent with values obtained in global IBM fits
in the rare-earth region [7]. The derived values of 3 are close or slightly larger
than the SU(3)-PDS value (8p = v/2 ~ 1.41). A notable exception are the pa-
rameters derived from the SkP EDF with pairing strength V5 = 1000 MeVfm?,
which exhibit pronounced large ratio ho/ho = 6.95 and small 8y = 0.99. This
is a consequence of the fact that the corresponding SCMF energy surface for this
case, shown in Figure 2, is peculiarly soft in the v deformation, with a shallow
local minimum on the oblate side. For any chosen EDF, a larger pairing strength
results in a larger (smaller) value for ho/ha (Bo).

Excitation spectra appropriate for '%*Er are obtained for each EDF by diagonal-
izing the Hamiltonian (6), using the parameters in Table 1 and N =16. Typical
spectra resulting from representative nonrelativistic and relativistic EDFs are
displayed in Figure 3. They satisfactorily conform with the calculated SU(3)-
PDS spectrum which, in turn, agrees with experimental spectrum. The bandhead
energies, £/(22) and E(02) for the y and § bands, and their ratios for the differ-
ent cases, are listed in Table 1. In general, the description for the ground and ~y
bands is stable with respect to different choices of EDFs. The description of the
B-band is more case-sensitive and all EDFs place E(03) above the empirical and
SU(3)-PDS values. The following observations are in order. (i) The relativistic
EDFs generally result in higher S-band energies than the Skyrme EDFs. (ii) The
increase of the pairing strength (Vp) systematically decreases the (3-band ener-
gies. (iii) The SkP EDF with V; = 1000 MeVfm?3, is the only case where both
E(22) and E(02) are placed below the SU(3)-PDS and empirical values.

Table 1. Parameters ho, h2, p (in keV) and By, of the Hamiltonian (6) obtained from
SCMEF calculations based on nonrelativistic Skyrme SLy4 and SkP EDFs, and relativistic
DD-PC1 and DD-ME2 EDFs, with pairing strengths V5 (in MeV fm®). The correspond-
ing parameters for SU(3)-PDS [6], are also shown. E(22) and E(02) are the calcu-
lated bandhead energies (in keV) for the v and § bands and R = ggi; For '®®Er,
FE(22) =821, E(02)=1217 (in keV) and R=1.48 [40]. Adapted from [17].

EDF Vo ho  ho p Bo E(22)  E(02) R
SLy4 1000 10 5.3 11.8 1.59 1132 1911 1.68
1250 104 4.0 12.3 1.39 809 1334 1.65
SkP 800 10.5 3.7 12.6 1.45 776 1306 1.68
1000 30.6 44 12.2 0.99 672 1087 1.62
DD-PC1 728 105 5.1 11.74 1.59 1092 1889 1.73

837 9.8 44 11.73 1.51 925 1564 1.69
DD-ME2 728 104 48 11.74 1.59 1032 1794 1.74
837 9.9 42 1173 1.50 883 1499 1.70

SU(3)-PDS 8.0 4.0 13.0 V2 822 1220 1.48
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Figure 3.  Experimental [40] (EXP) and SU(3)-PDS [6] spectra for 168y, compared
with the spectra resulting from EDF-based IBM calculations for the Skyrme SLy4 EDF
with pairing strength Vo = 1250 MeVfm®, and for the relativistic EDF DD-ME2 with
Vo =837 MeVfm?>. Adapted from [17].

Analysis of wave functions is a more sensitive measure to quantify the simi-
larities and differences in structure between the EDF-based IBM Hamiltonians
and SU(3)-PDS. Figure 4 shows the SU(3) (A, )-decomposition for member
states of the lowest bands in *%®Er. For SU(3)-PDS, the ground and v bands are
pure with SU(3) character (2N, 0) and (2N — 4, 2), respectively, whereas the 3
band contains a mixture of irreps: (2N — 4,2) 87.5 %, (2N — 6,0) 9.6 %, and
(2N — 8,4) 2.9 %, with N = 16. Remarkably, for all nonrelativistic and rela-
tivistic EDFs considered (except SKP with pairing strength V= 1000 MeVfm?),
the mapped IBM Hamiltonians reproduce very well the SU(3)-PDS prediction
of SU(3)-purity for the ground and ~ bands, with probability larger than 95%.
This clearly demonstrates the robustness of the PDS notion and its microscopic
roots. The structure of the 5 band is more sensitive to the choice of EDF. Its
SU(3) mixing is governed by the values of the parameters 5y and ratio hgy/hs
which, in turn, reflect the different topology of the corresponding SCMF sur-
faces. Although the dominance of the (2N —4,2), (2N —6,0), and (2N —8,4)
irreps in the 8 band is generally observed in all cases, their relative weights differ
from those of SU(3)-PDS. This may indicate that additional degrees of freedom
not included in the IBM (e.g., quasi particles) contribute to the structure of the
K = 0, band in '%8Er. Again, the situation is different for the EDF SkP with
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Figure 4. (Color online) SU(3) (A, u)-decomposition of states in the ground (g), v and 8
bands, for the SU(3)-PDS and various EDF-based calculations. Shown are probabilities
larger than 0.5 %. The histograms shown from left-to-right for each band, correspond to
the L; states listed in the upper panels in the order top-to-bottom left-to-right. Adapted

from [17].

Vo= 1000 MeVfm? for which the SU(3) decomposition exhibits large fragmen-
tation. From all the EDFs considered, the SLy4 and SkP with V[ =1250 and 800
MeVfm?®, respectively, appear to yield spectral properties which are closest to
the SU(3)-PDS predictions for *®*Er (SU(3) purity for the ground and ~ bands
with probability 99.8%).
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5 Conclusions and Outlook

We have shown that the occurrence of partial dynamical symmetry (PDS) in
nuclei can be justified from a microscopic point of view. By employing the
constrained mean-field methods with choices of the universal energy density
functionals and pairing interactions, in combination with symmetry analysis of
the wave functions of the mapped IBM Hamiltonians, we arrived at an efficient
procedure to test and explain the emergence of PDS in nuclei. An application to
168y has shown that IBM Hamiltonians derived from known EDFs in this re-
gion, produced eigenstates whose properties resemble those of SU(3)-PDS. The
fact that these results are valid for both nonrelativistic and relativistic EDFs with
several choices of pairing strengths, highlights the robustness of the PDS notion
and its association with properties of the multi-nucleon dynamics in nuclei.

The results of the present investigation pave the way for a number of research av-
enues. (i) Exploring the microscopic origin of other types of PDSs, e.g., SO(6)-
PDS in v-soft nuclei. (ii) When a PDS is found to be manifested empirically
in certain nuclei, it can be used to constrain, improve and optimize (e.g., choice
of the pairing strength) a given EDF in that region. (iii) Exploiting the demon-
strated linkage between the microscopic EDF framework and the algebraic PDS
notion, to predict uncharted regions of exotic nuclei, awaiting to be explored,
where partial symmetries can play a role.
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