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Background: Quasi dynamical symmetry (QDS) and partial dynamical symmetry (PDS) play an important
role in the understanding of complex systems. Up to now these symmetry concepts have been considered to be
unrelated.

Purpose: The goal of this paper is to establish a link between PDS and QDS and find an empirical manifestation.
Methods: Quantum number fluctuations and the intrinsic state formalism are used within the framework of the
interacting boson model of nuclei.

Results: A previously unrecognized region of the parameter space of the interacting boson model that has
both O(6) PDS (purity) and SU(3) QDS (coherence) in the ground band is established. Many rare-earth nuclei
approximately satisfying both symmetry requirements are identified.

Conclusions: PDS is more abundant than previously recognized and can lead to a QDS of an incompatible

symmetry.

DOLI: 10.1103/PhysRevC.89.041302

Understanding the structure and dynamics of complex
many-body systems can often be obtained from the observation
and analysis of symmetries. Symmetry considerations are
particularly significant for addressing a key question in such
systems, namely, how do simple features emerge within a
complicated environment. A notable example is the collective
behavior of nuclei which stems from the complex interactions
among the constituent nucleons. Despite the complex nature of
the low-energy effective forces at work and the large number of
participating particles, collective nuclei give rise to strikingly
regular excitation spectra, signaling the presence of underlying
symmetries [1]. The theme of “simplicity out of complexity”
and the understanding of simple emergent behavior are major
challenges facing the study of almost any many-body system,
from atomic nuclei to nanoscale and macroscopic systems [2].

Although, usually, a many-body Hamiltonian does not
conform to a dynamical symmetry (DS) limit [3], the pos-
sibility exists that certain symmetries are obeyed by only a
subset of its eigenstates. This situation, referred to as partial
dynamical symmetry (PDS) [4], was shown to be relevant
to specific nuclei [4-12] and molecules [13]. In parallel, the
notion of quasi dynamical symmetry (QDS) was introduced
and discussed in the context of nuclear models [14-21]. While
QDS can be defined mathematically in terms of embedded
representations [22,23], its physical meaning is that several
observables associated with particular eigenstates may be
consistent with a certain symmetry which in fact is broken
in the Hamiltonian. This typically occurs for a Hamiltonian
transitional between two DS limits which retains, for a certain
range of its parameters, the characteristics of one of those
limits. This “apparent” symmetry is due to a coherent mixing
of representations in selected states, imprinting an adiabatic
motion and increased regularity [19-21].

PDS and QDS are applicable to any many-body problem
(bosonic and fermionic) endowed with an algebraic structure.
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They play a role in diverse phenomena including nuclear
and molecular spectroscopy [4—16], quantum phase transi-
tions [17-19,24], and mixed regular and chaotic dynamics
[20,21,25]. In this Rapid Communication, a hitherto unnoticed
link is established between these two different symmetry
concepts and it is shown that coherent mixing of one symmetry
(QDS) can result in the partial conservation of a different,
incompatible symmetry (PDS). An empirical manifestation of
such a linkage is presented.

Algebraic models provide a convenient framework for
exploring the role of symmetries [26]. One such framework
is the interacting boson model (IBM) [27], which has been
widely used to describe quadrupole collective states in nuclei
in terms of N monopole (s) and quadrupole (d') bosons,
representing valence nucleon pairs. The model has U(6) as
a spectrum generating algebra and exhibits three DS limits,
associated with chains of nested subalgebras, starting with
U(5), O(6), and SU(3), respectively. These solvable limits
correspond to known benchmarks of the geometric description
of nuclei [28], involving vibrational [U(5)], y-soft [O(6)],
and rotational [SU(3)] types of dynamics. In what follows
we employ the IBM as a test ground for connecting the
PDS and QDS notions. The particular example considered,
namely, SU(3) QDS as an emanation of O(6) PDS, is shown
to have approximate validity in many deformed rare-earth
nuclei.

One particularly successful approach within the IBM is
the extended consistent-Q formalism (ECQF) [29,30], which
is frequently used for the interpretation and classification of
nuclear data. It uses the same quadrupole operator, QX =
d's + s'd + x (d'd)®, in the E2 transition operator and in
the Hamiltonian, the latter being written as

Hecor = w[(l — &)y — % or - QX}, (1)
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where 7i; is the d-boson number operator, 0% - Q% is the
quadrupole interaction, and the dot implies a scalar product.
The parameters w, &, and x are fitted to empirical data
or calculated microscopically if possible; £ and x are the
sole structural parameters of the model since w is a scaling

factor. The parameter ranges 0 < & < 1 and —*/77 <x <0
interpolate between the U(5), O(6), and SU(3) DS limits,

which are reached for (¢,x) = (0,x), (1,0), and (1,—4),
respectively. It is customary to represent the parameter space
by a symmetry triangle [31], whose vertices correspond to
these limits. The ECQF has been used extensively for the
description of nuclear properties (see, e.g., Ref. [32]) and it
was found that rotational nuclei are best described by ECQF
parameters in the interior of the triangle, away from the naively
expected SU(3) DS limit. The SU(3) mixing was found to be
strong and coherent, i.e., the same for all rotational states in a
band, exemplifying a SU(3) QDS [19-21]. In what follows we
examine the O(6) symmetry properties of ground-band states
in such nuclei, in the rare-earth region, using the ECQF of the
IBM.

The O(6) DS basis states are specified by quantum
numbers N, o, t, and L, related to the algebras in the chain
U(6) D 0(6) D O(5) D O(3) [33]. Given an eigenstate W of
the ECQF Hamiltonian (1), its expansion in the O(6) basis
reads

|‘IJ(€:7X)>:Zai(gvx)|N16i’Ti9L>7 (2)

where the sum is over all basis states and, for simplicity,
the dependence of W and «; on the boson number N and
the angular momentum L is suppressed. The degree of O(6)
symmetry of the state W is inferred from the fluctuations in o
which can be calculated as

2
Aoy = Zaiz af — (Zaf 0i> . 3

If W carries an exact O(6) quantum number, o fluctuations are
zero, Aoy = 0. If ¥ contains basis states with different O(6)
quantum numbers, then Aoy > 0, indicating that the O(6)
symmetry is broken. Note that Aoy also vanishes for a state
with a mixture of components with the same o but different
O(5) quantum numbers 7, corresponding to a ¥ with good O(6)
but mixed O(5) character. This method of quantifying the O(6)
purity of states has already been applied to '>*Xe [34]. Also,
Aoy has the same physical content as wave-function entropy
which, upon averaging over all eigenstates, discloses the global
DS content of a given Hamiltonian [35]. We examine here the
fluctuations Aoy for the entire parameter space of the ECQF
Hamiltonian (1) for values of N up to 60, using the ARBMODEL
code [36].

Results of this calculation for the ground state, ¥ = Ogsi,

with N = 14 and parameters & € [0,1], x € [—4,0], are
shown in Fig. 1. At the O(6) DS limit (§ =1, x = 0) Aoy,
vanishes per construction whereas it is greater than zero for
all other parameter pairs. Towards the U(5) DS limit (¢ = 0),
the fluctuations reach a saturation value of Aoyg ~ 2.47. At

the SU(3) DS limit (6§ =1, x = —4) the fluctuations are
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FIG. 1. (Color online) Ground-state fluctuations Aoy, (3) for the
ECQF Hamiltonian (1) with N = 14 bosons. The fluctuations vanish
at the O(6) DS limit, saturate towards the U(5) DS limit, and are of
the order 1072 in the valley.

Aogs. A~ 1.25. In both cases the O(6) symmetry is completely
dissolved as measured by o = 0.849 [34]. Surprisingly,
there is a previously unrecognized valley of almost vanishing
Aoy s, values, two orders of magnitude lower than at saturation.
This region represents a parameter range of the IBM, outside
the O(6) DS limit, where the ground-state wave function
exhibits an exceptionally high degree of purity with respect
to the O(6) quantum number o.

The ground-state wave functions in the valley of low Aoy .
can be analyzed with the help of the O(6) decomposition (2).
Atthe O(6) DS limit, only one O(6) basis state witho = N and
Tt = 0 contributes, while outside this limit the wave function
consists of multiple O(6) basis states. Investigation of the wave
function for parameter combinations inside the valley reveals
an overwhelming dominance of the O(6) basis states with
o = N. This is seen in Fig. 2 for the ground-state wave func-
tion of the ECQF Hamiltonian (1) at &€ = 0.84 and y = —0.53
with N = 14, parameter values that apply to the nucleus '°°Gd
discussed below. The o = N states comprise more than 99%
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amplitude
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FIG. 2. (Color online) Squared amplitudes o in the expansion
(2) of the O;ﬁs‘ ground state of the ECQF Hamiltonian (1) for § = 0.84
and x = —0.53 (indicated by the red star in the symmetry triangle
and appropriate for '°Gd).
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of the ground-state wave function at the bottom of the valley
and their dominance causes Aoy . to be small. Furthermore, it
is evident that at the same time the O(5) symmetry is broken,
as basis states with different quantum number t contribute
significantly to the wave function. Consequently, the valley can
be identified as an entire region in the symmetry triangle with
an approximate PDS of type III [4], which means that some of
the eigenstates exhibit some of the symmetries. Outside this
valley the ground state is a mixture of several o values, and
Aoy increases. In the SU(3) DS limit the 0 = N components
constitute 67% of the wave function and in the U(5) DS limit
and throughout the plateau of saturated Aoy . this contribution
drops below 1%. This region of approximate ground-state
O(6) symmetry is similar to the previously established “arc
of regularity” [37] which is a region of reduced mixing inside
the IBM parameter space attributed to an approximate SU(3)
symmetry [38].

An argument for the existence of the valley of ground-
state O(6) symmetry can be given in terms of the following
Hamiltonian [7]:

Hy = —Coe) + N(N +4) 4+ 2aCocs) — aCog)
+2aig (N = 2) + VTde(d's + s'd) - @ d)®, @)

where C denotes the quadratic Casimir operator of the group
G [27], N is the total boson number operator, and « is a
parameter. The Hamiltonian (4) generates a PDS of type III
[4]. For « =0, Hy has exact O(6) symmetry whereas for
a > 0 the last two terms introduce O(6)-symmetry breaking.
However, the yrast states of this Hamiltonian, projected from
the IBM intrinsic state with shape variables [28], B =1
and y = 0, keep exact O(6) symmetry (6 = N) but break
the O(5) symmetry (mixed t) for all values of o > 0 [7].
Interestingly, although Hy; differs from I:IECQF, the overlap
between their 07 ground states maximizes (more than 99%)
in extended regions of (&, x) inside the valley of low Aoy .
This suggests that the (8 = 1,y = 0) intrinsic state provides
a good approximation, in a variational sense, to the ground
band of FIECQF along the valley. The equilibrium deformations
for a given IBM Hamiltonian are found by minimizing an
energy surface, E(f,y), obtained by its expectation value in
an intrinsic state which is a condensate of N bosons, bI x
B cos ydg + Bsin y(dg + diz)/«/z + 5T, that depends para-
metrically on (8,y) [39,40]. Apart from a constant, E(8,y)
(14 B> 728%[a — bB cos 3y + cB?], where a, b, and c are
coefficients depending on the Hamiltonian. The two extremum
equations, dE /9B = 0E/dy =0, have B =1 and y =0 as
a solution, provided b = 2c¢. For large N, the coefficients of

FAncor are b = —wsﬂx/N andc = o[l — & — &x2/14]/N.
Thus, in the valley of low Aoy . the desired condition, b = 2c,
fixes & to be

1
£ = - A (%)
=X+ ux?
As seenin Fig. 3, this relation predicts the location of the region

of approximate ground-state O(6) symmetry for large N very
precisely. For small N its precision decreases somewhat due
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FIG. 3. (Color online) The ECQF symmetry triangle with the
position of the nucleus '**Gd indicated by a star. The green area shows
the region of low Ao, , calculated from Eq. (3) for N = 60. The red
dashed line shows the same region of approximate ground-state O(6)
symmetry, as predicted by Eq. (5) for large N. The blue dotted line
shows the “arc of regularity” [37].

to finite-N effects, causing a more pronounced curvature of
the region close to the O(6) limit.

Detailed ECQF fits for energies and electromagnetic tran-
sitions of rare-earth nuclei, performed by McCutchan et al.
[32], allow one to relate the structure of collective nuclei to
the parameter space of the ECQF Hamiltonian (1). Examining
the extracted (&, x ) parameters, one finds that several rotational
nuclei in this region, such as '°°Gd, commonly interpreted as
SU(3)-like nuclei, are actually located in the valley of small o
fluctuations. They can be identified as candidate nuclei with
approximate ground-state O(6) symmetry. The experimental
spectrum of '°Gd, along with its ECQF description with
£ =0.84 and y = —0.53 taken from Ref. [32], is shown in
Fig. 4(a). Figures 4(b) and 4(c) show the decomposition into
0O(6) and SU(3) basis states, respectively, for yrast states with
L =0,2,4. It is evident that the SU(3) symmetry is broken, as
significant contributions of basis states with different SU(3)
quantum numbers (A, u) occur. It is also clear from Fig. 4(c)

TABLE 1. Calculated o fluctuations Aoy, Eq. (3), for rare-earth
nuclei in the vicinity of the identified region of approximate ground-
state O(6) symmetry. Also shown are the fraction fJ(L:)N of O(6) basis
states with o = N contained in the L =0,2,4 states, members of the
ground band. The structure parameters & and x are taken from [32].

Nucleus N &  x Aoy fi2y Aoy f24 Aoy f2

16Gd 12 0.72 —0.86 0.46 953% 0.43 95.8% 0.38 96.6%
8Gd 13 0.75 —0.80 0.35 97.2% 0.33 97.5% 0.30 97.9%
10Gd 14 0.84 —0.53 0.19 99.1% 0.19 99.2% 0.17 99.3%
12Gd 15 0.98 —0.53 0.41 96.0% 0.40 96.0% 0.40 96.1%
1Dy 14 0.81 —0.49 0.44 96.2% 0.39 96.4% 0.36 96.8%
2Dy 15 0.92 —0.31 0.07 99.9% 0.07 99.9% 0.06 99.9%
%Dy 16 0.98 —0.26 0.13 99.6% 0.13 99.6% 0.13 99.6%
164Er 14 0.84 —0.37 0.39 96.5% 0.37 96.7% 0.35 97.1%
166y 15 091 —-0.31 0.12 99.7% 0.11 99.7% 0.10 99.7%
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FIG. 4. (Color online) (a) The experimental spectrum of '*°Gd compared with the IBM calculation using the ECQF Hamiltonian (1) with
parameters £ = 0.84 and y = —0.53 taken from Ref. [32]. (b) The O(6) decomposition in ¢ components of yrast states with L = 0,2,4.
(c) The SU(3) decomposition in (A, ) components of the same yrast states.

that this mixing occurs in a coherent manner with similar
patterns for the different members of the ground-state band.
This is the hallmark of a QDS [18] and it results from the
existence of a single intrinsic wave function for the members
of this band. On the other hand, as seen in Fig. 4(b), the
yrast states with L = 0,2,4 are almost entirely composed
of O(6) basis states with o = N = 14 which implies small
fluctuations Aoy and the preservation of O(6) symmetry in
the ground-state band.

Other rare-earth nuclei with ground-state bands with
approximate O(6) symmetry can be identified by the same
arguments. Their structure parameters £ and x can be taken
from Ref. [32], from where the fluctuations Aoy and the
fractions f,_y of squared 0 = N amplitude can be calculated.
Nuclei with Aoy, < 0.5and fy—y > 95% are listed in Table I.
These quantities are also calculated for yrast states with
L > 0 and exhibit similar values in each nucleus. It is evident
that the IBM predicts a high degree of O(6) purity in the
ground-state band, for a large set of rotational rare-earth
nuclei.

These results show that the approximate O(6) PDS does
hold not only for the ground state but also for the members of
the band built on top of it. Since the entire band corresponds to
asingle intrinsic state, the SU(3) wave-function decomposition
is similar for the different members of the band and therefore
the notion of SU(3) QDS applies. In addition, provided the
indicated intrinsic state has 8 ~ 1 and y = 0, the notion of

O(6) PDS applies. Thus a link is established between SU(3)
QDS and O(6) PDS.

To summarize, the method of quantum-number fluctuations
reveals the existence of a region of almost exact ground-
state-band O(6) symmetry outside the O(6) DS limit of
the IBM. The existence of a valley of small o fluctuations
can be understood in terms of an approximate O(6) PDS
of type IIl. The same wave functions display coherent
(L-independent) mixing of SU(3) representations and hence
comply with the conditions of an SU(3) QDS. Coherent
mixing of one symmetry may therefore result in the purity
of a quantum number associated with partial conservation
of a different, incompatible symmetry. Previously established
ECQF systematics show that many rare-earth nuclei do exhibit
these approximate partial O(6) and quasi-SU(3)-dynamical
symmetries. We conclude that partial dynamical symmetries
are more abundant than previously recognized, may lead to
coherent mixing and quasi dynamical symmetries, and hence
play a role in understanding the regular behavior of complex
nuclei. This example serves to illustrate a fundamental linkage
between two distinct types of intermediate symmetries, PDS
and QDS, with potential implications to algebraic modeling of
diverse dynamical systems.
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