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We consider a class of interaction terms that describes correlated tunneling of composite fermions
between effective Landau levels. Despite being generic and of similar strength to that of the usual density-
density couplings, these terms are not included in the accepted theory of the edges of fractional quantum
Hall systems. Here we show that they may lead to an instability of the edge towards a new reconstructed
state with additional channels, and thereby demonstrate the incompleteness of the traditional edge theory.

DOI: 10.1103/PhysRevLett.100.156802 PACS numbers: 71.10.Pm

Much of our theoretical understanding of the edge phys-
ics in the fractional quantum Hall (FQH) regime is based
on the chiral Tomonaga-Luttinger (CTL) model put for-
ward by Wen [1]. For the Jain fractions � � n=�2n� 1�,
this low-energy effective theory may be derived by con-
sidering small fluctuations around the mean-field configu-
ration which describes the bulk of the sample as n filled
Landau levels of composite fermions [1–3]. The theory
associates a chiral channel with each of these levels where
it crosses the Fermi energy near the edge, and includes the
electronic correlations of the bulk FQH liquid through a
nontrivial exchange statistics between the excitations of
the different channels.

A central prediction of this edge model is a nonlinear
tunneling conductance I � V�, with an exponent � � 3
over a range of filling factors 1=3< �< 1=2. While tun-
neling experiments [4–7] have indeed found a power-law
characteristic, the exponent scales as � � a=�� b, where
a and b are nonuniversal constants, in contradiction to the
predicted value [8]. This discrepancy suggests that the
accepted CTL theory does not incorporate some important
elements for the understanding of the FQH edge physics. In
this Letter we concentrate on one such element, namely, a
class of interaction terms describing correlated tunneling
of composite fermions between edge states, and show that
it may lead to edge reconstruction, where the new structure
supports additional channels.

In order to clarify the origin of such processes, consider
the interaction energy between the electrons written in
terms of composite fermions. To this end we transform
from the original electronic operator ��r� to a composite
fermion operator  �r� � ei��r���r�, via a Chern-Simons
phase ��r�, and expand  �r� using the composite fermion
annihilation operators on the n occupied effective Landau
levels  �r� �

Pn
i�1  i�r� [9]. The result is
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0� l�r0�;

(1)

where �e � �y�. In the traditional CTL model only the
Hartree terms i � j, k � l are kept. When the interaction
potential is short ranged the Fock combination i � l, j � k
gives a similar contribution but with an opposite sign and
may be incorporated via a renormalization of the density-
density coupling. Our focus lies with the effect of addi-
tional terms with i � j but k � l (or vice versa) in (1).
These processes, which we dub correlated tunneling, cor-
respond to tunneling of composite fermions between dif-
ferent Landau levels with an amplitude that depends on the
total density. Correlated tunneling is of the same order as
the Hartree-Fock interactions [10] when the interaction
strength is comparable to the gap between the effective
Landau levels. This condition, which is typically satisfied
in the FQH regime, ensures that correlated tunneling con-
serves both energy and momentum.

The possibility of edge reconstruction due to the com-
petition between a long-range Hartree term and a short-
range exchange interaction, has been realized in the con-
text of the integer quantum Hall effect [11]. Composite
fermion Hartree-Fock calculations have found a similar
transition, triggered by a softening of the confining poten-
tial, in a � � 1=3 edge (but not at higher fillings) [12].
Edge reconstruction was also detected in exact diagonal-
ization studies of FQH systems with sharp edges [13–15],
and was attributed to the finite range of the interactions
[16]. Here we offer a new avenue for the instability via the
correlated tunneling processes.

A qualitative picture for the nature of this instability
follows from a toy model where two states, occupied by
identical charged bosons, are coupled by correlated tunnel-
ing. Let N1 and N2 represent the number of particles in
each one of these states, and HC � �N1 � N2 � NT�

2=2C
be the charging energy of the system, where C plays the
role of capacitance, and NT is a constant fixed by the
chemical potential. The correlated tunneling is represented
by a term of the form HCT � ��N1 � N2��b

y
1b2 � b

y
2b1�,

where byj denotes a creation operators of a particle in state
j, and � is a constant which characterizes the strength of
the process. The total Hamiltonian of the system is H �
HC �HCT , and for � � 0 its ground state is set by the
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condition N1 � N2 � NT . For � � 0 the problem can be
simplified by the transformation b� � �b1 � b2�=

���
2
p

,
which brings the Hamiltonian to the form

 H �
X

�;���

A��N�N� �
NT
C
�N� � N�� �

N2
T

2C
; (2)

where N� � by�b�, and

 A �
1

2C
1� 2C� 1

1 1� 2C�

� �
: (3)

From Eq. (2) it is evident that the eigenvalues of the matrix
A determine the nature of the ground state. For any finite �,
one of these eigenvalues, �1�

�����������������������
1� 4�2C2
p

�=2C, is nega-
tive, and the system becomes unstable. This instability
drives N� ! �1 while N� � �1� �C�NT � �1�
2�C�N� for j�jC	 1. Thus, unlike the case � � 0 where
the minimum energy occurs for zero charging, correlated
tunneling leads to a divergence of the total charge N1 �
N2 � NT ’ C��2N� � NT� ! �1. This is because de-
pleting or filling up the system with particles reduces the
kinetic energy associated with the tunneling.

This simple consideration points to the possibility that
correlated tunneling may also play an important role in
determining the nature of the ground state of the FQH
edge. As a test case for such a scenario we focus our
attention on the � � 2=5 edge and take as our starting
point the CTL model whose action in imaginary time is
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By inverting the Chern-Simons transformation, the elec-
tronic operator may be expanded according to ��r� �
e�i��r�

Pn
i�1  i�r� 


Pn
i�1 �i�r�. Each bosonic field �i is

related to the projection of �i�r� on the gapless edge
modes [3]. Denoting the projections by �i�x� one finds

 �i�x� �
Fi���������
2�a
p e�2�i=L�Nix�i�i�x�; (5)

with corresponding normal ordered densities
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K�1
ij
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1

2�
@x�j �

1

L
Ni

�
:

(6)

Here L is the length of the edge and a is a short distance
cutoff of the order of the magnetic length. The Klein
factors Fi and the conjugated number operator Ni obey
the algebra fFi; Fjg � 0 for i � j, fFi; F

y
j g � 2	ij and

�Fi; Nj� � Fi	ij. Finally, the statistics of the edge channels
and their interactions are given by the matrices

 K �
3 2
2 3

� �
; V �

v g
g v

� �
: (7)

The matrix V contains the strength g of the short-range
interaction between the fermions while v is the velocity of
the channels as determined by the confining potential and
the interactions. For simplicity we have assumed the same
velocity for the two channels and ignored the difference in
their Fermi wave vectors which become irrelevant in the
strong interaction regime which we consider.

We derive an effective one-dimensional action describ-
ing the correlated tunneling processes by integrating
Eq. (1) over the coordinate perpendicular to the edge and
replacing the composite fermion operators by their projec-
tions  i�x� on the edge modes. Taking  yi �x� j�x� �
�yi �x��j�x� [17], and using Eq. (5), we find
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Z
dxd�

�
��� �

X2

i�1

: yi  i:
�
� y1 2 � H:c:�

�
1

4�a

Z
dxd��Fy1F2e

�2�i=L��N2�N1�x�i�2�i�1 � H:c:�
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��
;

(8)

where we have used that
Pn
i�1 K

�1
ij � �=n for a Jain frac-

tion � � n=�2n� 1� [3]. The strength of the correlated
tunneling is characterized by the coupling constant � and
we have also included a term, proportional to ��, describing
simple tunneling between the levels, whose origin is the
constant average value of the density in Eq. (1).

The action S � S0 � S1 can be diagonalized exactly. To
this end we add to it the action of a free chiral auxiliary
field �0 with velocity v0 � v� g [18]
 

Saux �
1

4�

Z
dxd��i@x�0@��0 � v0�@x�0�

2�

�
�v0

L

Z
d�N2

0 ; (9)

and transform to new fields, ’i �
P
jAij�j, and number

operators N i �
P
jBijNj [19], with
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1��
2
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2 � 1
2

1��
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2
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p 1����
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1 �1 1
�1 1 1

0
@

1
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(10)

Defining new Klein factors F 0 � F0F1, F 1 � F0F2, and
F 2 � F1F2, which are readily verified to obey the required
commutation algebra among themselves and with the N i,
allows us to introduce the fermions

 
i�x� �
F i���������
2�a
p e�2�i=L�N ix�i’i�x�; i � 0; 1 (11)
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in terms of which the action S � S0 � S1 � Saux reads
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where N c � �N 0 �N 1 � 2N 2�=
������
10
p

� �N1 �

N2�=
������
10
p

. The fields 
0;1 which involve the neutral edge
mode �1 ��2 move with its velocity vn � v� g, while
’2 which creates the symmetric combination �1 ��2

propagates with the velocity of the charged edge mode
vc � 5�v� g�.

Next, we transform to the even and odd combinations of

0;1 and bosonize once again
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(13)

This step eliminates �� from S and turns the correlated
tunneling term into a density-density interaction between
’2 and ’�. Finally, the resulting quadratic action can be
diagonalized by the transformation
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where the rotation angle

 tan� �
�������������������������������������������
�vn � u1�=�u2 � vn�

q
(15)

is determined by the velocities

 u1;2 �
1
2

�
vc � vn �

�����������������������������������������������
�vc � vn�2 � 4�2=5�2

q �
(16)

of the physical modes in the diagonalized action
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The �0 mode is a new rotated auxiliary field moving with
the same velocity u0 � v0 � vn as the original one. As
expected, and as shown below, its dynamics does not enter
into the electronic edge correlators.

Equations (16) and (17) imply that the system becomes
unstable when u1 < 0, and Eq. (14) indicates that, like in
the toy model considered at the beginning of this Letter, the
instability involves a divergence of the total edge charge
N1 � N2 ! �1. However, in contrast to the toy model,
the instability occurs only once the correlated tunneling
strength crosses the following threshold:

 � >
���
5
p
�

�����������
vcvn
p

: (18)

Composite fermion Hartree-Fock calculations of the col-
lective modes of a � � 2=5 edge [20] find vc � vn �
0:05e2=, where  is the dielectric constant. Since the
correlated tunneling coupling constant is �� e2=, condi-
tion (18) may well be satisfied.

Evidently, the appearance of a negative velocity in the
action (17) calls for regularization. Higher order nonlinear
terms which control the instability appear naturally once
corrections to the assumed linear dispersion of the edge
composite fermion are taken into account in the CTL
action (4). In the course of the various transformations
utilized above, such terms generate couplings between
the modes as well as regularize any divergences. To focus
the discussion we ignore the former and consider the effect
of a cubic term, �k3, in the bare edge dispersion, on the
unstable mode, whose action is now
 

Su �
1

4�

Z
dxd�

�
i@x�@��� u�@x��2 �

�2

2
�@2
x��2

�
�4

2
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where �2 and �4 are functions of � and the other couplings
of our problem. This action my be interpreted as describing
chiral fermions with dispersion E�k� � uk� �4k

3 and
residual self-interaction ��2 � �4��@x��

2. When the veloc-
ity is positive, u > 0, the nonlinear terms have little effect
and the ground state constitutes a Fermi sea that occupies
the range k < 0. However, if u < 0, the Fermi sea breaks
into two distinct components, as illustrated in Fig. 1, and
the single chiral channel, which exists before the instabil-
ity, turns into three. Beside the mode which runs along the
shifted edge of the original Fermi sea the instability gen-
erates two additional counterpropagating channels on the
edges of the detached droplet. Note that the instability
studied here is different from the one discussed in
Ref. [16], where the velocity remains positive for small
k, and the instability is caused by an interaction-induced
negative cubic term in the dispersion.

The effect of the instability on the edge local tunneling
density of states (LDOS), as determined by the electronic
Green’s functions Gj�x � 0; �� � h�j�0; ���

y
j �0; 0�i, de-

pends on the nature of the correlations which exist between
the electrons in the new droplet. Deferring a discussion of
this issue to a future publication [10] we would like to
elucidate here the role of correlated tunneling in the LDOS
before the instability sets it. Using the fact that the auxil-
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iary field �0 is completely decoupled from the physical
fields, and Eq. (11), we find
 

Gj�x; �� �
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where

 �j;� � �3� ��1�j�2 cos2��
���
5
p
� sin2���=2: (21)

Note that the dynamics of the auxiliary field does not
appear in the correlators, which reduce in the limit �!
0 to the known CTL result [18]. Moreover, before the
instability Gj�x � 0; �� � ��3, the same power-law pre-
dicted by the CTL model for the LDOS of a � � 2=5 edge.

We have extended the above analysis to two additional
fractions, � � 2=3 and � � 3=7 [10], and found a similar
instability in both cases. Using an analogous action to the
one given by Eqs. (4) and (8) one obtains that the condition
for the instability in the � � 2=3 case is � >

���
3
p
�

�����������
vcvn
p

,
where vc � 3�v� g� and vn � v� g. It turns out that
since the charge and neutral modes of the � � 2=3 edge
propagate in opposite directions, the correlated tunneling
processes tend to reduce the tunneling exponent from its
CTL value of � � 2, even before the instability occurs. At
filling fraction � � 3=7, the edge, which supports one
charged mode, with velocity vc � 7�v� 2g�, and two
neutral modes, with velocity vn � v� g, reconstructs
once � >

�����������
7=18

p
�

�����������
vcvn
p

. These results suggest a possible

breakdown of the naive CTL model for the FQH edge in
the entire range 1=3< �< 1.
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